JMLR: Workshop and Conference Proceedings vol 52, 287-298, 2016 PGM 2016

Learning Parameters of Hybrid Time Bayesian Networks

Manxia Liu LIUMANXIA @CS.RU.NL
Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
Arjen Hommersom ARJENH @CS.RU.NL

Faculty of Management, Science, and Technology, Open University of the Netherlands
Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands

Maarten van der Heijden M.VANDERHEIJDEN @ CS.RU.NL
Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
Peter J.F. Lucas PETERL @ CS.RU.NL

Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands
Leiden Institute of Advanced Computer Science, Leiden University, The Netherlands

Abstract

Time granularity is an important factor in characterizing dynamical systems. Hybrid time Bayesian
networks model the dynamics of systems that contain both irregularly-timed variables and variables
whose evolution is naturally described by discrete time. The former observations are modeled as
variables in continuous-time manner and the latter are modeled by discrete-time random variables.
We address the problem of learning parameters of hybrid time models from complete data where
all the states are known at any time point, and from incomplete trajectories, where continuous-time
variables are observed only at some time points. We show that for the complete case, the param-
eters can be estimated straightforwardly. When some continuous-time variables are (partially) un-
observed, it becomes infeasible to learn the parameters in closed form. In that case, we propose to
use Markov chain Monte Carlo sampling to estimate the posterior distribution over the parameters.
We tested the approach on a number of hybrid time models where continuous-time variables are
completely or partially observed, showing that close estimation of the original parameters can be
recovered. A medical example is used to illustrate the learning parameters of hybrid time Bayesian
networks.

Keywords: Hybrid time Bayesian networks; parameter estimation; missing values; MCMC.

1. Introduction

Many applications involve reasoning about a complex system that evolves over time. Standard
frameworks, such as dynamic Bayesian networks (DBNs) (Murphy, 2002), discretize time at fixed
intervals and then model the system as evolving discretely from one time slice to the next. Al-
ternatively, in continuous time Bayesian networks (CTBNs) (Nodelman et al., 2002a) states can
change continuously over time. In DBNs, the assumption is usually made that the distribution of
variables at a particular time point is conditional only on the state of the system at the previous time
point. A problem occurs if temporal processes of a system are best described using different rates
of change, e.g., one part of the process changes much faster than another. In CTBNss all probabilis-
tic knowledge, for example derived from expert knowledge, has to be mapped to transition rates
which are hard to interpret. A new formalism called hybrid time Bayesian networks (HTBNs) (Liu
et al., 2016) increases the modeling and analysis capabilities for dynamic systems by allowing both
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irregularly-timed random variables and random variables whose evolution is naturally described by
discrete time.

An important task for using any probabilistic model is learning its parameters from data. In most
practical cases, we also have to deal with missing values. Although some variables can be measured
with a certain fixed frequency, such as daily measurement of drug intake, one cannot observe all
variables continuously in many real-world applications. As a consequence of the limitations of the
data collection process, some variables may then be observed very irregularly and be missing over
the remainder of the time.

In this paper, we describe the learning of the parameters of a hybrid time Bayesian network. In
particular we propose to use a Markov chain Monte Carlo (MCMC) method to estimate the poste-
rior distribution of HTBN parameters given partial trajectories. In the next section, we give a brief
introduction to HTBNs and introduce a medical example, followed by related work in the literature
about learning parameters from data with missing values. Then, in Section 4, we discuss the neces-
sary theory for learning parameters in HTBNs. Subsequently we show the results of experimental
tests of the learning approach on data generated from a number of HTBNs. This illustrates how our
learning framework can be used to learn parameters from complete and incomplete data. The paper
is then concluded with a discussion.

2. Hybrid Time Bayesian Networks (HTBNs)

In this section, we review the hybrid time Bayesian networks (HTBNs) framework presented in Liu
etal. (2016). An HTBN represents a heterogeneous dynamical system over a finite state space with
different evolution rates.

Definition 1 (Hybrid Time Bayesian Networks) A hybrid time Bayesian network is a tuple H =
(B, Gy, ®,N), where B = (G, P) is a Bayesian network specifying an initial distribution, Gy =
(V(Gy), E(Gy)) is a directed graph specifying a transition model with each vertex in V (Gy), ei-
ther a continuous-time variable, collectively denoted by C, or a discrete-time variable, collectively
denoted by D, ® is a set of conditional probability distributions for variables D, and A is a set of
conditional intensity matrices for variables C.

Example 1 Consider the clinical condition of heart failure (Gatti et al., 2012). Heart failure is
said to be cardiogenic when the cardiac muscle is the organ from which the circulatory failure is
triggered. The strength of the heart muscle is represented by its pump (PP). Cardiogenic heart
failure may be caused by acute myocardial infarction (AMI). An AMI reduces blood flow through
the coronary arteries to the heart muscle (CO). It manifests as an intense chest pain, called angina
pectoris (AN). One consequence is that part of the heart muscle will die, which is revealed later
in a blood sample analysis in the lab by an increased level of particular heart muscle proteins, in
particular cardiac enzymes (E). Representing this scenario as an HTBN, we have to decide which
variables are regular and which are irregular. For example, we model the pump of the heart (PP)
as a discrete-time variable, which can be measured regularly, such as on a daily base. On the other
hand, the observations of acute myocardial infarction and measurements of cardiac enzymes are
usually irregular. In Fig. I the complete hybrid time Bayesian network H is shown.

Let a component be defined as the set of vertices that can be reached by a path, from one vertex to
another, ignoring the orientation of the edges. An HTBN can be partitioned into a set of components,
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where the components consisting of only continuous-time variables are collectively referred to as
K, and those consisting of only discrete-time variables as Kp; K¢ € K¢ and Kp € Kp
denote individual components. The parents of V (K¢), denoted as 7(V (K¢)), are a subset X C
V(Kp) if and only if for every D € X there exists at least one arc (D, C) € E(Gy) with C €
V(K¢). Parents 7(V(Kp)) are defined analogously with discrete and continuous time variables
interchanged. In Fig. 1b, there is one discrete component Kp over variables PP, LC, LV, CO and
parents 7(V(Kp)) = {AMI} and two continuous components, namely K¢ over variables AMI
and E and K¢ over variables AN and SS with parents 7(V (K¢)) = n(V(K)) = {CO}.

The joint probability distribution for hybrid time Bayesian networks factorizes over the condi-
tional joint probabilities for the continuous-time and discrete-time components. Given time points
of interest A for the regular variables and B for the irregular variables with A C B, the joint
distribution for an HTBN # is given by:

P(V = [] PvV(Kc)s |=(V ) JI P(V(Ep)a|#(V(Kp))a) (1)
KCGKC KDGKD

(=
ONONBONONORO

(a) Initial model

(b) Transition model

Fig. 1: Acute myocardial infarction network. Variables shown are AMI = acute myocardial
infarction; E = cardiac enzymes; PP = Pump; LC = volume of blood ejected from left heart
ventricle; LV = pressure exerted by the blood; CO = reduction of blood flow; AN = paroxysmal
attacks of chest pain; SS = sympathetic nervous system activity. In Fig. 1b, continuous-time
variables are graphically represented by double-edged shaded circles, and discrete-time variables
by solid nodes. An arc with a number d indicates that the dependence manifests with a delay by
time d, such as 0 and ¢ in Fig. 1b.

Example 2 Consider the example from Fig. 1 with time points of interest A and B, and joint inten-
sity matrix Q) for continuous component Kc over continuous-time variables AMI and E, and Q' for
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K over variables AN and SS. The joint distribution of the transition model P is then given by:

P = HP(PPS(Q) | PPa7AMIs(a))P(LCs(a) | LCavpps(a))P(LVs(a) | LVocaLCs(oz))
acA\{0}

P(CO4(a) | COu,s LV (o)) [ [ Pexp(Qco, (s(8) — 8))) Pexp(Qo, (s(8) — 8)))

BeB\{max B}

where a = max{a | a < B, € A} and s is the successor function that gives the next element in
an ordering.

3. Related Work

There has been some work dealing with parameter estimation of continuous-time and discrete-time
variables from data. When it comes to incomplete data, Expectation Maximization (EM) (Dempster
etal., 1977) is widely used for parameter estimation by optimizing a likelihood function. Nodelman
et al. (2005) use EM to find maximum likelihood parameters in CTBNs, which defines the duration
of a variable staying on a state and the probability distribution over the next state. Unlike EM used
for DBNs (Ghahramani, 1998), the sufficient statistics in CTBNs are the time a variable stays in a
state and the number of transitions from the state.

In theory, an EM approach would be possible for learning parameters from partially observed
trajectories in HTBNs, as HTBNs can be roughly regarded as a mixture of DBNs and CTBNs.
However, computing expectations in HTBNs is hard because of the available method for inference
in HTBNs. The current approach proposed by Liu et al. (2016) suggests to translate an HTBN into
an equivalent discrete-time Bayesian network, called a representative Bayesian network, in which
inference can be performed using standard exact methods. This translation is computationally hard,
which is feasible if the translation has to occur only once. However, in the EM procedure this
translation has to be done for every iteration, which makes it an impractical approach.

MCMC is widely used for the evaluation of posterior distribution for Bayesian models (Gilks,
2005; Hastings, 1970). Recently, Rao and Teh (2011) described a Markov chain Monte Carlo
(MCMC) approach to perform inference in CTBNs. In this paper, we propose an MCMC-based
approach for parameter estimation from incomplete data for HTBNSs, in particular when the values
of some continuous components are observed at only some time points.

4. Parameter Estimation in HTBNs

The parameter estimation of a hybrid-time model requires the estimation of two types of parameters,
i.e. CPTs for discrete-time variables and intensity matrices for continuous-time variables. In this
section, we discuss the maximum a posteriori (MAP) estimates in HTBNSs in order to learn param-
eters. Throughout this section, we make use of existing results on maximum likelihood estimates
and MAP in DBNs (Murphy, 2002) and CTBNs (Nodelman et al., 2002b). In the next subsection,
we will first discuss the likelihood function for HTBNs, decomposed in those of DBNs and CTBNSs.

4.1 Likelihood of complete data

The likelihood for a hybrid time Bayesian network 7 is the probability of observations given H’s
parameters 6. Let H be partitioned in components K¢, Kp. Given data D, describing a complete
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trajectory over all random variables, the log-likelihood for 7 can be written as:

(1(0:D)= Y lkc(Oko D)+ Y. Llip(Okp : D) )
KceKce KpeKp
= > WmPV(Ke) | m(V( D)+> W P(V(Kp) | n(V(Kp)): D)
KceKce KpeKp

Here the log-likelihood is decomposed into the log-likelihood of the continuous-time components,
indicated by (i (0, : D), and discrete-time components by {x (O : D).

The likelihood of each component of an HTBN is similar to the likelihood in CTBNs and DBNs,
conditional on parents which are variables from other components.

Likelihood of discrete-time components Given a discrete component Kp and data D, the log-
likelihood function for component Kp with parameter 0 i, is given by:

lkp (O, D)= (nP(DO] | m(D[0]) : Oxp,) +) I P(Dle] | w(Dla]) : Ox,)) (3)

DEeV(Kp) acA\{0}

where D|[0] and D[«] are assignments to D at time 0 and « in data D respectively, 7(D[0]) to
the values of parents of D in the initial model, and 7(D|a]) to the values of parents of D in the
transition model.

When variables are fully observed over time, the computation of the likelihood can be summa-
rized in terms of sufficient statistics. For discrete components, the sufficient statistics are M [u, d],
M|[u', d], where M [u, d] is the number of times D[0] = d, and 7(D[0]) = u and M [u’, d] the total
number of times D[a] = d and 7(D]a]) = u’ forall o, « € A \ {0}.

For a discrete-time variable D with parents U in the initial model and U’ in the transition model,
we use parameter 9?{'; for each combination of d € Val(D) and u € Val(U) in the initial model

for component Kp. Parameter Gﬁgl is defined analogously in the transition model. We can then
rewrite the log-likelihood function in Eq. 3 as follows:

iy (O : D) = Z (ZZM[u, lned‘ —i—ZZM ln9d|u) 4)
d

DeV(Kp) u

Likelihood of continuous-time components The distribution over transitions of a process in
CTBNs is described with two parts: an exponential distribution over when the next transition will
occur, parameterized by qg, and a multinomial distribution over where the state transits, param-
eterized by O, that is, the next state of the system. Parameters 0 describe the distribution of
states once variables V (K¢) transit, formally, 8, = {H%/C ce#d}

Given a continuous component K¢ with known structure and data D of V(Kc), the log-
likelihood function for component K¢ with parameters qr, Ok is given by Nodelman et al.
(2002b):

EKC (ch’ OKC : D) = KKC (ch : D) + EKC (GKC : D) )

For simplicity, we regard a continuous component as a single continuous-time variable, for
which the intensity matrix is computed by the amalgamation operation over the variables in the
component, as defined in Nodelman et al. (2002a). Thus, the sufficient statistics for a continuous
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component K¢ can be calculated in terms of 7'[c|u], the amount of time V(K ¢) spends in state ¢
where U = u, and M|c, ¢/], the number of times V (K ¢) transit from c to ¢’ for ¢ = ¢ . The log-
likelihood for continuous component K¢ in Eq. 5 can be computed by summing out the likelihood
for all transitions and states, formally:

lke(Are Oke D) =Y > Mle|ullngi™ —¢i™ - T[c| u]
u C

+ZZZM[C, ¢ |u lnﬁiglclu (6)

¢ e

4.2 MAP estimates with complete data

The parameters that we are interested in are described by the most likely parameters given the data
D, formally:

A~

6 = argmax P(6 | D) @)
6

As usual, for computational efficiency, we use a conjugate prior—one where likelihood is in the
same parametric family as the prior. For a discrete-time variable D with a multinomial distribution
parameterized by 6k, , an appropriate conjugate prior is a Dirichlet distribution, where

GKD ~ Dir(yl, e 7'719)

After conditioning on the data, the posterior is obtained by adding the prior hyperparameters to the
empirical counts:

Okp | D ~ Dir(y1 + Mdy | u], ..., v+ Mldy | ul)

Discrete-time variables can have different parents in the initial model and transition model;
assigning a Dirichlet prior with parameters 71, ...,7; and 7/, ..., respectively, we obtain the
MAP estimates:

éd|u _ Ydju T M[u’ d] éd\u’ _ Ydjw + M[u/a d]
Ko Yu+ M|yl Ko Y + M[u’]

®)

where
Yu = Z'Yoﬂu T = Z'Yd\u’
d d

Similarly, the conjugate prior in component K ¢ for multinomial parameters 6 ., is the Dirichlet
distribution 6 g, ~ Dir(p! lw .., uen"). For the exponential parameter ¢ K the conjugate prior
is the Gamma distribution, gr, ~ I'(g",n"). We can then derive the MAP for a continuous
component:

clu MC“‘ + Mc | u] seclu u“’"“ + Mle,d | u]
ke = e £ Tle | u] Ko = " peduy Mle | vl

®

where

“u _ NCC, |u
2
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4.3 Incomplete data

The likelihood of HTBNs given a partial trajectory is the joint distribution over the observations by
summing out the variables which are missing in the data D. Given time points A, B for an HTBN
‘H with graph G, parameter 6, and its associated joint distribution P(V (G)g) as defined in Eq. 1,
we can compute the log-likelihood of ‘H given a partial trajectory D over A as follows:

(1(0:D)=In > P(V(G)) (10)
V(G@)B\D

In the following, we are assuming the typical situation where continuous-time random variables
are observed at arbitrary points in time, which means that almost everywhere they are unobserved.
Since other variables are typically directly related to the value of continuous-time random vari-
ables on discrete-time points (by the factorization of an HTBN), this means that we often need to
marginalize over the continuous-time variables at those time points. In this general situation, it is
infeasible to compute the likelihood in closed form. This is illustrated in the following examples.

€ €

oXNG G0

(?—»T 0 | (? CT 1.5 Time
(? 0.2 Time (?«—@ 2
O—@ 1 ©

25 Y
@C—D (b)C < D

Fig. 2: Two possible structures of HTBNs where continuous components are partially observed.

Example 3 Suppose we have an HTBN with structure of a discrete component with parents from a
continuous component parameterized by 0 as illustrated in Fig. 2a. To compute the likelihood of D
at time 1 given its value at time 0 and value of its parent C' at time 0.2 and C' is unobserved at time
1, we need to marginalize out the value of C at 1:

04(0 : dy,do,co2,c0) =InP(co : @) +1In P(cpz|co : 0) + In P(dy : 6)+
lnzp(d1|d0,C1 . 0)P(C1|Co.2 . 0)

C
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Similarly, suppose the HTBN with the structure of a continuous component which is dependent on
a discrete component, as shown in Fig. 2b. The value of C at time 2.5 is dependent on D at time 2:

57.[(0 : Cg_5,d2,01.5,d1) :lnP(dl : 0) + 111P(d2’d1 : 0) + IHP(61.5 : 9)+

IDZ P(C2.5|d2, CQ : O)P(CQ‘CLLL',, d1 : 0)
Cy
In order to obtain MAP estimates in this case, we resort to MCMC sampling to maximize the
posteriors. Results are discussed in the next section.

5. Experiments

In this section, we experimentally explore learning parameters of HTBNs from complete and incom-
plete trajectories. First an algorithm is presented that generates complete trajectories of HTBN,
including all states and transition time points. Then, the trajectories are used to generate partial
trajectories by sampling at random time points. Subsequently, we use the mentioned complete and
incomplete trajectories to learn the parameters for a number of HTBNs. We then evaluated the
learned model in terms of log-likelihood on new complete trajectories.

5.1 Data generation process for HTBNs

In this section, we describe the procedure for generating complete trajectories from a parameterized
HTBN, i.e., all the states of variables and associated time points where a transition occurs. The
generated trajectories are later used for parameter estimation of HTBNs and model evaluation in
Section 5.3.

The data generation procedure can be seen as generating a sequence of event, where an event
is a pair (X <« x,7), which indicates a variable X that either evolves continuously over time or
is observed regularly, takes value z at time 7. Let a and s(«) be the current and next system time
for all discrete components, «, s(a) € Ng. Let S¢ be the current system time for a continuous
component K. Each continuous component is described by its own system time, which results
from the fact that continuous component states can evolve at different rates.

Let K¢, Kp be a partition of an HTBN H. We initialize o as an empty event sequence. The
parents of a continuous component are denoted as 7(V (K(¢))), with m7(V(K¢))) € V(Kp). A
set of variables 7(D?) refer to the parents of a discrete-time variable D*. Initially, we have o = 0,
Bc = 0, and the states of components are initialized by sampling at random from the initial BN. Let
¢ and d' be the starting states of components K¢, Kp, Ko € K¢, Kp € Kp. We can generate
the event sequence o by repeating the steps in Fig. 3 with the following order: Fig. 3a — Fig. 3b —
Fig. 3¢ — Fig. 3a, where each loop selects events for continuous components to occur between two
successive time slices a and s(«), and events for discrete components at time s(«).

The states of components are propagated between different types of components, as shown in
Fig. 3. Firstly, the current states of discrete components at o are propagated to their corresponding
continuous components. We then choose the intensity matrix Qg |x (v (K¢))as @ = max{a | a <
Bx, }, for a continuous component K¢ with the current configuration of its parents 7(V (K¢)) at
time a. Once we have intensity matrices of continuous components, we search for all events of
continuous component that take place between time « and s(«), as shown from line 4 to 6 in Fig. 3a
and Fig. 3b. It is followed by propagating the states of continuous components at s(«/) to discrete
components in order to sample discrete variables at time s(«), as shown in Fig. 3c.
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1 while s(a) < N do

2 foreach K- € K¢ do

3 Let intensity matrix for K¢ be Q gy |r(v(Ke))a> @ = max{a | a < Bk}
4 while Sk < s(a) do

5 Let ¢’, ¢/ be intensity associated with its current state ¢’

6 goto 3b

7 foreach Kp € Kp do

8 ‘ goto 3¢

9 a=s(a)

(a) Algorithm 1 Data generation

1 7~ Exp (ql)

2 if 7+ Br, < s(«) then

3 Bre = Bre +T , o
4 Choose state V(K ¢) < ¢/ with probability ¢"/ /¢’
5 Add event (V(K¢) < ¢, Bre) oo

6 else

7

| Bre = s(a)

(b) Generate next continuous states

1 Let D', ..., D™ be a topological order of V(K p)

2 foric1:ndo

3 | Sample d from P(D:, | ©(D.)), where 7(D?) C V(Kc) UV (Kp)
4 Add event (D' + d', s(a)) to o

(c) Generate next discrete states

Fig. 3: Data generation procedure for HTBNs. 3b: sample an event for a continuous component
between « and s(«); 3c: sample events for discrete components at time s(«).

5.2 Experimental setup

For learning from complete data, parameters of HTBNs were learned using the exact MAP esti-
mates as discussed in the previous section. The MCMC sampling approach for partial trajectories
was implemented in RStan!, an R-interface to the Stan probabilistic programming language®. We
set the number of total iterations to 1000, including the burn-in stage. We drew the multinomial
parameters of the network from Dirichlet distributions with parameters all equal to 1, and the expo-
nential parameters from a Gamma distribution with both parameters set to 2. We tested the learning
performance to learn parameters from complete and partial trajectories with different length in terms
of the number of discrete-time slices A.

1. Stan Development Team. 2016. RStan: the R interface to Stan, Version 2.9.0. http://mc-stan.org
2. The model description and experiments with more details: http://www.cs.ru.nl/M.Liu/publication.
html
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104 104
17 . T T
—A— Example 1 —%—q = 0.5
D+ C—=cC —— qg=10
Do C 1.5 —A— complete | |

C —- D

N
0.5
~——a—w—t—b 0
! ! ! ! ! !
10! 102 103 10! 102 103
Length of A Length of A
(a) (b)
104
I T I
| —x—q =20.5 ] —x—q=0.5
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6000 |- —
< 4000 RN
1 |- |
2000 -
0 - 0 -
! ! ! ! ! !
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Length of A Length of A
(© (d)

Fig. 4: Log-likelihood distance ¢4 for various HTBNs learned from data. (a) Learning with
complete trajectories with structure D — C, C — D, D <+ C' — (', and the model in Example 1.
Figures (b — d) compare learning with complete and partial trajectories for three structures, with
b)C — D,(c) D — C, (d) the HTBN as shown in Example 1.

We tested on various synthetic data sets, generated from HTBNs according to the procedure
defined in Section 5.1. There are a number of methods to quantify the quality of learned models,
such as the KL-divergence. As computing this measure is computationally hard for larger models,
we evaluate on a testset generated from the true model. In the following, we fix a large testset, and
evaluate the quality of the model in terms of the distance between the log-likelihood of the data on
the original model vs the learned model. Formally:

Ly = |l — e an

where /; is the log-likelihood given the true model, and ¢, given the learned model.
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5.3 Results

We first evaluated the approach to learn from complete trajectories, see Fig. 4a. The learning of
HTBNs converges very quickly to the true parameters for HTBNs that contain only a single con-
tinuous and discrete-time variable. Similar results are obtained for larger models, convergence is
obviously slower since these models contain more parameters.

We further tested our ability to learn parameters of HTBNs from partial trajectories considering
missing values for continuous-time variables. We first sample complete trajectories for continuous-
time variables including all the states and time points when the transitions occur. We then randomly
generated time points from an exponential distribution with rate ¢, to construct point-based evi-
dence, i.e., partial trajectory, where we know nothing between two time slices. The rate ¢ is associ-
ated with the length of the sequence, i.e., the higher the rate is, the more observations we have on
the partial trajectory. We tested our ability to learn parameters from partial trajectories with several
rates q. As we can see in Fig. 4b and 4c, the estimation of parameters is improved by giving a larger
sequence that is generated by a higher rate. It also suggests we can recover the true parameters from
partial trajectories that are generated from a sufficiently high rate. Finally, we tested the learning
performance on a more complicated hybrid model as shown in Example 1, where there is a cycle
between continuous and discrete component. To evaluate if we have similar convergence of the
model given a small dataset, we tested the approach to learn parameters from partial trajectories
generated from a smaller rate. As you can see in Fig. 4d, also in this case, models of high quality
can be learned using the sampling approach.

6. Conclusion

In this work, we addressed the problem of parameter estimation of HTBNs from complete and
partial trajectories. For continuous-time variables that are only observed at some time points, we
proposed to use MCMC to estimate the posterior distribution over the parameters. This learning
approach was tested on various HTBNs with different structures and complexities. The experiment
shows that we can get a close estimation of the distribution of HTBNs from partial trajectories.
Besides, the experiments also suggest that partial trajectories sampled at a higher rate increase the
learning rate.

There are several aspects that will be interesting to explore in the future. Firstly, it will be inter-
esting to see whether the estimated parameters of discrete-time and continuous-time variables con-
verge to the true parameters at same pace. We expect that parameters related to the continuous-time
variables are harder to estimate because the exact time-point where transitions occur is unknown in
partial trajectories. Secondly, at the moment we focused on a comparison of learning models with
different complexities in terms of number of variables and parameters. However, the additional
complexity of HTBNSs is primarily in the dependence between discrete-time and continuous-time
variables. We expect that in real-world applications there will a significant amount of such depen-
dences. Therefore, in a follow-up we will also investigate the quality of learned models for HTBNs
with a varying number of components.
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