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Abstract

We present an algorithm for estimating bounds on causal effects from observational data which
combines graphical model search with simple linear regression. We assume that the underlying
system can be represented by a linear structural equation model with no feedback, and we allow
for the possibility of latent variables. Under assumptions standard in the causal search literature,
we use conditional independence constraints to search for an equivalence class of ancestral graphs.
Then, for each model in the equivalence class, we perform the appropriate regression (using causal
structure information to determine which covariates to include in the regression) to estimate a set
of possible causal effects. Our approach is based on the “IDA” procedure of Maathuis et al. (2009),
which assumes that all relevant variables have been measured (i.e., no unmeasured confounders).
We generalize their work by relaxing this assumption, which is often violated in applied contexts.
We validate the performance of our algorithm on simulated data and demonstrate improved preci-
sion over IDA when latent variables are present.

Keywords: Causal inference, ancestral graphs, latent variables, Markov equivalence

1. Introduction

It is well known that regression estimates for causal effects will be biased unless a variety of con-
ditions on the data are satisfied; methods which correct for confounding by covariate adjustment
depend on facts about the causal structure of the system under study (e.g., whether all the relevant
variables have been measured and how the measured covariates are causally linked to the variables
of interest). Maathuis et al. (2009) provide a good overview and explanation of this idea; see also
Entner et al. (2013) for related analysis. Roughly speaking, regressing ¥ on X while controlling
for additional covariates does not produce an unbiased estimate of the effect of intervening on X
unless the additional covariates account for any possible confounding of X and Y. In the language
of causal graphs, the covariates must block all causal pathways from variables (measured or not)
which are causes of both X and Y and the covariates should not include effects of X. The con-
ditions under which regression can produce an unbiased estimate of a causal effect can be readily
translated into conditions on an appropriate causal graphical model (Pearl 2009).

The method proposed here combines techniques from automated causal search and regression
to estimate causal effects (also called intervention effects) from observational data. In particular, the
algorithms described in section 4 estimate causal effects even when there are relevant unmeasured
variables (i.e., “latent confounding” or “causal insufficiency”). The method is based on the one
developed by Maathuis et al. (2009), which has been fruitfully applied in the context of genetics
research (Maathuis et al., 2010; Stekhoven et al., 2012). The IDA (“Intervention when the DAG
is Absent”) algorithm of Maathuis et al. is consistent under a set of assumptions which includes
causal sufficiency: the assumption that no variables which are common direct causes of at least
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two measured variables are unmeasured. Importantly, IDA is feasible in high-dimensional settings,
where sample sizes are small but the number of covariates is very large. In their genetics applica-
tions there are more than 4000 variables, and the goal is to find variables which are likely strong
regulators (causes) of some chosen variable of interest in order to prioritize gene knock-out exper-
iments. In the data which is typical in the social sciences and many areas of biomedical research,
the assumption of causal sufficiency is often unwarranted. Even genome-wide expression data may
be causally insufficient if there are unmeasured factors like proteins which act as common causes
of multiple gene expressions. Our procedure is consistent in the presence of latent common causes
and is feasible for large numbers of variables.

The work of Pearl and his collaborators (e.g., Tian and Pearl, 2002; Shpitser and Pearl, 2006)
provides techniques for calculating the outcomes of interventions when the true causal structure
(i.e., true causal graph) is known. These results relate to the general conditions for “back-door
adjustment” and “front-door adjustment” described in Pearl (2009). The back-door criterion is a
graphical criterion that is sufficient for adjustment in the following sense: if a set of variables satis-
fies the back-door criterion for a given graph, then conditioning on that set is sufficient for estimating
intervention effects from observed distributions alone. Maathuis and Colombo (2015) generalize the
back-door criterion to different types of graphical objects, and their result will play an instrumen-
tal role in the algorithms we propose. In order to estimate the intervention effects from data, the
researcher must be able to identify the set of covariates which satisfy the back-door criterion. To
determine which variables satisfy this condition without substantial background causal knowledge,
we use an automated causal search algorithm called FCI (Spirtes et al., 1995; Zhang, 2008b).

Though our procedure cannot always pin down a unique causal graphical model, from an equiv-
alence class of graphs we can estimate bounds on causal effects. That is, for a given variable pair
(X,Y) we can calculate a set of estimates for the causal effect of X on Y. Each estimate corre-
sponds to some model in the equivalence class. The minimum and maximum estimates in such a
set are bounds on the true causal effect, and these bounds can be used to prioritize follow-up ex-
periments by, for example, concentrating on experimental manipulations of variables with effects
bounded away from zero.

2. Definitions and Background

It is assumed here that the causal structure of the system under study can be represented by a Di-
rected Acyclic Graph (a DAG). A graph G is a pair (V, E) where V is a set of vertices corresponding
to random variables V = { X7, ..., X;,} and E is a set of edges. A DAG contains only directed edges
(—) and has no cycles (no sequence of directed edges from any variable to itself). If X; — X; then
X; is called a parent of X;, and X is a child of X;. Two variables are adjacent if there is some edge
between them, and a path is a sequence of distinct adjacent vertices (e.g., X; < X; < X — X)).
A directed path from X; to X is a path which contains only directed edges away from X; and
toward X ;. When there is a directed path from X; to X; we call X; an ancestor of X, and X
is a descendent of X;. Denote the set of parents of a vertex X in G by pa(X,G), and the sets of
ancestors of X and descendents of X by An(X,G) and De(X, G) respectively. The adjacency set
of X is adj(X,G). A v-structure is a triple (X;, X, Xj) such that X; — X;, X; < X}, and X; and
X}, are not adjacent. X; is called a collider because X; and X}, “collide” at X ;. A collider which is
part of a v-structure (i.e., a collider with non-adjacent parents) is also called an unshielded collider.

In a causal DAG, X; — X if and only if X; is a direct cause of X; relative to V. We assume
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that our candidate causal models satisify the Causal Markov Condition (CMC) and the Causal Faith-
fulness Condition (CFC). See Spirtes et al. (2000) for discussion of these assumptions. The CMC
requires that every variable in V is independent of its non-descendents conditional on its parents
in the causal graph, i.e., that the joint probability distribution f(V) = [[x, v f(Xi[pa(X;, G)).
The CFC stipulates that the only independencies that are true in the population are the ones im-
plied by the CMC, or equivalently, that the only independence relationships are the ones reflected
in Pearl’s graphical criterion of d-separation (Pearl, 2009). This is a way of stipulating that there is
no accidental “cancelling out” of causal pathways, or independencies which are the result of special
(measure-zero) parameterizations. Two DAGs are called Markov equivalent if they encode all the
same independence relationships among the observed variables. DAGs which share all the same ad-
jacencies and all the same v-structures form a Markov equivalence class (Verma and Pearl, 1991).

A Markov equivalence class can be represented by a single graph, called a Pattern or CPDAG.
A Pattern or CPDAG has all the same adjacencies as each DAG in the equivalence class but can
contain undirected edges (—) in addition to directed edges. An undirected edge X; — X indicates
that some DAG in the equivalence class contains X; < X, and some DAG contains X; — Xj.
If X; — X, in a CPDAG, Xj is called a sibling of X; and we denote the set of siblings of X by
sib(X,G). The PC algorithm of Spirtes et al. (2000) assumes the CMC and CFC to search for a
CPDAG. If some of the variables in the set V are unmeasured, we represent the system with a causal
MAG (Maximal Ancestral Graph) over the measured variables. A MAG is a kind of mixed graph so
it may have the following kinds of edges: — and <». More generally, if we include the possibility
of selection variables, a MAG can also have undirected edges, but we will not consider selection
variables hereE] A MAG represents a DAG after all latent variables have been marginalized out, and
it preserves all entailed conditional independence relations among the measured variables which are
true in the underlying DAG. In a MAG M, a tail mark at X; (e.g., X; — X;) means that X is an
ancestor of X; in all DAGs represented by M. An arrowhead at X; (e.g., X; < X, or X; <+ X)
means that X; is not an ancestor of X in all DAGs represented by M. A <> edge between two
variables indicates that neither variable is an ancestor of the other (though they are probabalistically
dependent). See Richardson and Spirtes (2002) for details on MAGs. A Markov equivalence class
of MAG:s is represented by a PAG (Partial Ancestral Graph), which (possibly) has edges with the
additional “circle” edge mark o (e.g., X; o— X;). This indicates that in some MAG in the equiva-
lence class there is an arrowhead at X; and in some other MAG there is a tail at X;. So, the PAGs we
will consider (again, excluding the possibility of selection variables) can have the following edges:
—, o—, o—o, and <. The FCI algorithm assumes the CMC and CFC to search for a PAG.

The total causal effect on Y of an intervention on X, written do(X; = x7) in Pearl’s (2009)
notation, is ZE(Y|do(X; = ))|z=o;- That is, we are interested in the change in the expected
value of Y when we intervene to change the value of X; by one unit. For a DAG which represents
a linear structural equation model, the total causal effect of X; on Y with Y ¢ pa(X;,G) is the
regression coefficient of X; in the regression of Y on X; and pa(X;, G). Call this regression coeffi-
cient Bjpq(x,,6)- See Maathuis et al. (2009: 3138) for details on this. If Y € pa(X;, ) the causal
effect is 0. More generally, for any set S C {X1,..., Xp, Y} \ {X;}, we write ;g to denote the
coefficient of X; in the linear regression of Y on X; and S, and let ;5 = 0if Y € .S. The reason
we include the parents of X; in the regression of Y on X in calculating the total effect is because
pa(X;, G) is sufficient to block all causal pathways from variables which are causes of both X; and

1. So technically speaking what we call a MAG is a DMAG (a Directed MAG) in the parlance of Zhang and Spirtes
(2005).
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Y. Another way of putting this is that the set pa(X;, G) satisfies Pearl’s “back-door criterion” for
DAGs (Pearl, 2009: ch. 3). Maathuis and Colombo (2015) extend Pearl’s back-door criterion for
DAGs to the graphical structures above: CPDAGs, MAGs, and PAGs. The sufficient back-door set
is more complicated but the principle is the same. We will summarize their result in section 4 and
use it to propose a general algorithm for estimating causal effects from PAGs.

3. The IDA Approach

Maathuis et al. (2009) provide algorithms to estimate causal effects under the following assump-
tions: they assume that the data is generated from an unknown DAG; they assume the Causal
Markov Condition and Causal Faithfulness Condition hold; they assume a set of jointly Gaussian
variables {X7, ..., X;,,Y'}; and they assume causal sufficiency, i.e., that there are no unmeasured
common causes. The Gaussianity assumption can be weakened to only linearity; joint Gaussianity
implies linearity but only linearity is needed so that the total causal effects can be identified with
coefficients in linear regressionsﬂ Effectively, Maathuis et al. are assuming that the system under
study can be represented by a linear structural equation model with no feedback. We will discard
the assumption of causal sufficiency in the next section.

In their “global” algorithm, Maathuis et al. begin by searching for a CPDAG from their data
with PC. Then, they list all the DAGs in the equivalence class represented by this CPDAG. For each
DAG §G; (j = 1,...,m) in the equivalence class, they regress Y on each non-descendent X; along
with pa(X;, G;) in order to estimate the causal effect 6;;. They collect the §;;’s in a p X m matrix ©,
where the columns correspond to covariates and the rows correspond to DAGs in the equivalence
class. The “global” IDA algorithm is very slow if the number of covariates is large, because of the
step that lists all the DAGs in the equivalence class. For the intended application (genetics data with
p > 4000) this is infeasible. So, Maathuis et al. propose a second algorithm which is much faster
because it only requires “local” information. The key is that for each DAG G;, one only needs to
know the back-door set pa(X;, G;) in order to carry out the regression. Knowledge of the rest of the
graph is not necessary. Maathuis et al. exploit this fact in their “local” algorithm. Starting with a
CPDAG, the algorithm needs only to examine possible parent sets by orientating undirected edges
with vertices in sib(X;,G). The orientations considered must preserve Markov equivalence; see
Maathuis et al. (2009: 3141-3143).

The substantial increase in speed comes at a price, however; the local IDA algorithm sacrifices
information about which causal effect estimate comes from which DAG in the equivalence class.
Instead of producing the complete matrix ©, IDA outputs multisets (which are collections in which
members are allowed to appear more than once) 9{4 of causal effects for each covariate X;. Each
element of the @Z-L is the causal effect of X; on Y in some DAG represented by the CPDAG, but we
do not know which one. Maathuis et al. prove that ©; and @Z—L are equal (z = 1, ..., p) when they
are interpreted as sets (2009: Theorem 3.2). They also provide a sample version of this algorithm,
prove its consistency under a variety of assumptions (concerning sparsity of the graph, etc.), and
validate it on the genetics dataset by using it to pick out the variables with the largest minimum
causal effect. See their paper for a full discussion.

2. The current implementation of their algorithm uses independence tests based on Fisher’s z-score, which is only a test
of independence when the data is jointly Gaussian. Future implementations can incorporate more general tests of
independence instead, e.g., Zhang et al. (2011) or Ramsey (2014).
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4. Intervention Effects in Causally Insufficient Systems

In this section we sketch two algorithms analogous to the ones presented by Maathuis et al. without
the assumption of causal sufficiency. Our algorithm takes the output of FCI (a PAG) as input, and so
we must work with the set of MAGs represented by that PAG. In following the procedure of global
IDA, we would like to list all the MAGs My, ..., M,, represented by a PAG P, and estimate the
matrix of causal effects. But what set do we regress Y on? We need a back-door set for (X;,Y") in
each MAG. In order to construct a sufficient adjustment set we need several definitions. First, let a
collider path from X; to X; be a path on which every vertex (except the endpoints) is a collider.

Definition 4.1 (Visible and invisible edges) All directed edges in DAGs and CPDAGs are said to be
visible. Given a MAG M / PAG P, a directed edge X — Y in M /P is visible if there is a vertex Z
not adjacent to'Y', such that there is an edge between Z and X that is into X, or there is a collider
path between Z and X that is into X and every non-endpoint vertex on the path is a parent of Y.
Otherwise X — 'Y is said to be invisible.

Definition 4.2 (D-SEP(X,Y,G)) Let X and Y be two distinct vertices in mixed graph G. We say
that V€ D-SEP(X,Y,G) if V. # X and there is a collider path between X and V' in G, such that
every vertex on this path is an ancestor of X orY in G.

Definition 4.3 (R and R 5) Let X be a vertex in G, where G represents a causal DAG, CPDAG,
MAG, or PAG. Let R be a DAG or MAG represented by G, in the following sense. If G is a DAG
or MAG, we simply let R = G. If G is a CPDAG/PAG, we let R be a DAG/MAG in the Markov
equivalence class described by G with the same number of edges into X as G. Let Rx be the graph
obtained from 'R by removing all directed edges out of X that are visible in P.

All of these definitions can be found in Maathuis and Colombo (2015); the definition of visi-
ble/invisible edges is a generalization of the standard one introduced in Zhang (2008a). A visible
edge between X and Y in a MAG or PAG picks out an ancestral relationship that is incompatible
with any latent common cause between X and Y in the underlying DAG. possibleDe(X, G) is de-
fined as the set of possible descendents of X in G, where X is a possible descendent of X if there
is a path from X; to X; with no arrowhead pointing towards X ;. possibleDe(X,G) and De(X, G)
are equal if G is a MAG. Maathuis and Colombo (2015) prove the following theorem:

Theorem 4.1 (Back-door Set) Let X and Y be two distinct vertices in a causal DAG, CPDAG,
MAG, or PAG G. Let R and R x be defined as above. If Y € adj(X,Rx) or D-SEP(X,Y,Rx) N
possibleDe(X,G) # 0, then f(y|do(x)) is not identifiable via the generalized back-door criterion.
Otherwise D-SEP(X,Y, Rx) satisfies the generalized back-door criterion relative to (X,Y") and
g.

The set D-SEP(X;, Y, M), when the antecedent condition is not met, is a back-door set for
(X;,Y) in MAG M so we can take the coefficient of X; in the regression of ¥ on X; and D-
SEP(X;,Y, Mx,) to be the causal effect of X; onY in M.

Algorithm 4.1 is the “global” algorithm. Listing all the MAGs represented by a PAG is more
complicated than listing all the DAGs represented by a CPDAG. In the latter case, there are well-
known and efficient algorithms which orient undirected edges and exhaustively apply orientation
rules (to orient remaining undirected edges) which preserve Markov equivalence; see Meek (1995).
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No such procedures are currently known for PAGs. One would need a way of transforming circle
marks on o— and o—o edges into tails and arrowheads, and deciding which further orientations
in the graph are implied by these new tails and arrowheads, while preserving Markov equivalence.
This is because some combinations of transformations could introduce new independence relation-
ships among the variables, e.g., if transforming two circles into arrowheads simultaneously creates
a new v-structure.

The naive approach would be a brute force method that exhaustively tries every combination
of circle mark transformations, and then checks if the resulting graph is Markov equivalent to the
starting graph using the procedure introduced by Ali et al. (2009). This approach would be exceed-
ingly slow. For large graphs with many circle marks, there are just too many possible combinations
of transformed marks and checking Markov equivalence for every resultant graph would require a
lot of computation time. We pursued an alternative approach to enumerate the list of MAGs more
quickly. The procedure is based on a suggestion by Jiji Zhang, and it exploits a transformational
characterization of equivalence between MAGs introduced in Zhang and Spirtes (2005). We call it
the ZML (Zhang MAG Listing) algorithm, and it is described in Malinsky and Spirtes (2016).

Algorithm 4.1: LV-IDA(“global”)

Input: PAG P, conditional dependencies of X1, ..., X, Y
Output: Matrix © of possible causal effects

1. List the MAGs My, ..., M, in the equivalence class of P.
2. forj=1ton

3. fori=1top

4. ifY € De(Xi,./\/lj) then 91']' =0
5. ifY € adj(Xi,Mj7Xi) or D-SEP( X, Y,Mj,xi> N De(Xi,Mj) £ 0
6. then 6;; = “NA” B
- olse {S = D-SEP(X;,Y, M, x,)
0ij = Bis
8. end
9. end

Even with the ZML algorithm for enumerating MAGs, the “global” LV-IDA is too slow for even
moderately-sized graphs (e.g., more than 15 or 20 variables). The “local” IDA algorithm operates
on the principle that one only needs to know enough information about the DAGs in the equivalence
class to determine what the possible back-door sets are. Similarly, for a “local” version of the above
algorithm one only needs to know enough about the MAGs to calculate the back-door set.

For the local algorithm, we need to define the set Possible-D-SEP(X;, Y, G), abbreviated as
pds(X;,Y,G):

Definition 4.4 (pds(X;,Y,G)) Let V € pds(X;, X;,G) if and only if there is a path  between X
and V in G such that for every subpath < X, X;, Xj, > on 7 either X is a collider on the subpath
inGor< Xy, X;, Xy > is atriangle in G.

A triangle is a triple (X,,, X;, X},) where each pair of vertices is adjacent. There are alterna-
tive definitions of pds(X;,Y, G) which make the set smaller (but potentially more computationally
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intensive to search for), see Colombo et al. (2012)°| In order to compute D-SEP(X;, Y, M x,) and
check if Y € adj(X;, Mx,) or D-SEP(X;, Y, M x,)NDe(X;, M) # (), we only need the variables
in possibleDe(X;, P) U pds(X;,Y,P). The set pds(X;,Y,P) (which includes all the adjacencies
of X; the way it is defined here) is sufficient for determining which edges out of X; are visible (for
constructing Mx,). pds(X;,Y,P) is also needed for checking if Y € adj(X;, Mx) and for con-
structing D-SEP(X}, Y, Mx;,). The set of possible descendents of X; is needed to check whether
D-SEP(X;,Y, M x,)NDe(X;, M) # ). Knowing the induced subgraph over these variables is at
least sufficient for calculating the back-door set for (X;,Y) in 7. We propose Algorithm 4.2.

Algorithm 4.2: LV-IDA(“local”)

Input: PAG P, conditional dependencies of X1, ..., X}, Y
Output: Multisets ©F i =1, ...,p
1.fori=1top
2. Form the set Z; = possibleDe(X;, P) Upds(X;,Y,P).
3 Form P*, the subgraph of P over vertices Z;.
4 List the MAGs M, ..., M, represented by P*.
5 fork=1tom
6. if Y ¢ De(X;, M) then add 6, = 0 to ©F
7 ifY € adj(X;, My, x,;) or D-SEP(X;,Y, thi) N De(X;, My) # 0
8 then add 6;;, = “NA” to ©F o
{S = D-SEP(X;,Y, My, x,)
9 el [
add 6;;, = 52‘5 to @z
10. end
11. end

Essentially we just run the “global” algorithm on the subgraph over the set which is sufficient
to calculate all the local back-door sets. This algorithm is really only “semi-local” in the sense that
one might have to list a large number of MAGs if the number of vertices in Z; is large. However, if
the number of vertices in Z; is manageably small, this algorithm could be substantially faster than
the “global” algorithm. Indeed, the set Z; seems to be small enough to run the ZML algorithm in
all the simulated trials we ran, which included graphs of over 100 Variablesf_f]

As with the local IDA algorithm, we sacrifice some information: we no longer know which esti-
mated causal effects correspond to which graphs in the equivalence class. We also cannot determine
how many graphs in the equivalence class imply a particular causal effect estimate. Fortunately, we
do not sacrifice anything else, as evinced by Theorem 4.2:

Theorem 4.2 The local and global versions of LV-IDA produce the same output, when the output
is interpreted as a set. That is, ©; = OF foralli=1,...p.

The proof is in Malinsky and Spirtes (2016). This is directly analagous to Theorem 3.2 in
Maathuis et al. (2009). Note that the output of LV-IDA may contain elements which are labeled

3. In our implementation we use both the definition above as well as a variant which requires that V' is an ancestor of
either X; or Y.
4. For large graphs, we used RFCI due to Colombo et al. (2012) instead of FCI to perform the initial PAG search.
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“NA”. The causal effects of some variables may not be identifiable by Maathuis and Colombo’s
generalized back-door criterion, as is clear from the definition. They may sometimes be identifiable
by other means (Maathuis and Colombo, 2015; Perkovi¢ et al., 2015; Hyttinen et al., 2015). When
an LV-IDA estimate is “NA” this indicates that the measured set of covariates is not sufficient to rule
out (using the back-door criterion) confounding in some MAG consistent with the data. Unless one
can rule out confounding by background knowledge, one may attribute an arbitrary proportion of the
observed correlation between two variables to a latent variable. The number of identifiable, non-zero
effects is largely determined by the presence of visible edges in the graph, which of course depends
on the causal structure and which covariates are measured. IDA assumes that all causal effects are
identifiable by ruling out latent common causes. As a consequence, there may be variable pairs
for which IDA will estimate non-trivial effect bounds, but which are not identifiable under the less
restrictive assumptions of LV-IDA.

Hyttinen et al. (2015) introduce a procedure which combines an ASP constraint solver with
a version of the do-calculus to calculate causal effects in graphs with latent variables. For small
graphs, they find that their approach is faster than a procedure which naively enumerates all the
Markov equivalent graphs. Their enumeration procedure differs from the one proposed here — rather
than “naive enumeration” we use the ZML algorithm. Further, we exploit the locality of back-door
adjustment, and use regression instead of estimation via the do-calculus (which would be much
slower). All of these differences contribute to the feasibility of our algorithm on large graphs. The
procedure in Hyttinen et al., however, may identify some causal effects which are unidentifiable
by LV-IDA, since the do-calculus algorithm they use is complete and the generalized back-door
criterion is not. More recently, Perkovic et al. (2016) have proposed a complete adjustment criterion
(and constructive adjustment set). In future work these results can be combined with LV-IDA to
perhaps increase the number of identifiable effects.

5. Simulations

First, we show an example of how LV-IDA and IDA compare in the infinite-sample limit. We
simulate a DAG with 8 measured variables and 4 latents. The DAG is parameterized as a linear
Gaussian structural equation model. See Figure 1. We run PC and FCI on the true covariance
matrix, and then apply IDA and LV-IDA to estimate intervention effects on the output of PC and
FCI respectively. LV-IDA is successful in the sense that the true causal effect is contained within
the estimated set of possible effects, but IDA gets it wrong. When we estimate the causal effect of
X5 on Xg using LV-IDA we get {NA,0.894,1.345,1.707}, and using IDA we get {1.345,1.481}.
The true effect size is 0.894 so the output of LV-IDA contains the true value while the output of
IDA does not. For the effect of X5 on X7, LV-IDA yields {NA,0,1.143,1.662} and IDA yields
{1.603,1.662}. The true effect is 1.143 so again the output of LV-IDA contains the true value while
the output of IDA does not. Note that LV-IDA can produce a set of estimates which includes both
“NA” and the true value, and it can also produce estimates which contain the true value and no “NA”
while IDA gets it wrong. In general, IDA will yield estimates which do not include the true value
in the causally insufficient setting because PC may return graphs with spurious edges or incorrect
orientations even in the infinite sample limit. FCI will not make such mistakes in the infinite sample
limit.

Next, we ran a number of finite sample simulations. We generated 100 random sparse DAGs
with 15 variables, 4 or 5 of which are latent. We parameterized these with linear Gaussian structural
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Figure 1: A simulated DAG with several unmeasured confounders Uy, ...,Us. The true causal
effects of X5 on Xg and X5 on X7 are 0.894 and 1.143, respectively. LV-IDA produces the esti-
mates {NA, 0.894,1.345,1.707} and {NA,0,1.143,1.662}, respectively. IDA produces the esti-
mates {1.345,1.481} and {1.603, 1.662}, respectively.

equations (coefficients distributed £Uniform[0.5,1.5]) and generated data vectors with n = 1000
samples. We searched for a CPDAG using PC, for a PAG using a variant of FCI, and then used
these as inputs to IDA and LV-IDA. The PAG search was done with GFCI, a procedure which
mixes greedy score-based search with conditional independence tests (Ogarrio et al., 2016). GFCI
achieves better performance in finite samples as compared with FCI. In both PC and GFCI the «
tuning parameter was set to 0.0IEI For every pair of variables in each graph, we estimated the total
causal effect and compared our estimates with the true value. In the case of LV-IDA, we confine our
results to causal effects which are identifiable, i.e., which have no “NA” among the set of estimates.
(About 12.7 percent of estimated effects had an “NA” for some graph in the equivalence class.)
Both LV-IDA and IDA can produce multiple estimates for a particular causal effect, so we choose
the best estimate to compare with the true value from among the multiset. LV-IDA is more accurate
than IDA in terms of mean squared error: the MSE for LV-IDA was 0.022 and the MSE for IDA
was 0.056. We plot precision and recall in Figure 2. For both IDA and LV-IDA we use the minimum
absolute value estimate in the multiset of causal effects, following Maathuis et al. (2009). While
LV-IDA does worse than IDA with respect to recall, it does better with respect to precision. That
is, if LV-IDA identifies a large effect estimate (in absolute value), then the true effect is likely to be
large (in absolute value). For the intended application of IDA - finding a manageable number of
strong regulators in a genetic regulatory network to prioritize knock-out experiments — precision is
more important than recall. Our simulation results suggest that in many cases, true large effects are
possibly confounded and thus not identifiable. Fortunately we need only correctly identify a small
number of true large effects to plan follow-up experiments, and for this task LV-IDA does well.
The performance of LV-IDA is contingent on the accuracy of the underlying PAG search. IDA
has been improved by variations on PC like PC-stable (Colombo and Maathuis, 2014) and with

5. IDA and PC are implemented in the R package pcalg (Kalisch et al., 2012) and our LV-IDA is also implemented in
R. For GFCI and the data generation we used the TETRAD software: https://github.com/cmu-phil/tetrad.
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Figure 2: Precision and recall plots for simulation study, described in the text.

stability selection techniques (Stekhoven et al., 2012). Similar steps may likewise improve the
performance of LV-IDA.

6. Conclusion

The LV-IDA algorithm is a straightfoward extension of the IDA algorithm to the domain of causally
insufficient systems, i.e., systems with possible unmeasured confounding. Thus, LV-IDA makes
estimating (sets of) intervention effects possible when an unknown number of possibly relevant
variables have been left out of the model. Although it may not be feasible to run LV-IDA on
very high-dimensional data sets with thousands of variables, it can be applied to local regions of
a large graph (e.g., the Markov blanket of some variable of interest). The result of this kind of
localized application of LV-IDA should be correct, since ancestral Markov models are closed under
marginalization (Richardson and Spirtes, 2002). Then, identified causal effect estimates which
are bounded away from zero can be used to prioritize follow-up experiments. In any case, LV-
IDA improves on IDA when the research goal requires accurate estimation of intervention effects
that account for possible bias from latent variables. Sometimes the causal effect of interest is not
identifiable from the current set of measured covariates. In such cases, bounds on causal effects

may be misleading so the researcher would be advised to expand their set of measured variables or
try to identify the effect by other means.

Acknowledgments

The authors would like to thank Clark Glymour and Joseph Ramsey. This research was supported
by grant US4HG008540 awarded by the National Institutes of Health (NIH).

308



CAUSAL EFFECTS WITH ANCESTRAL GRAPH MARKOV MODELS

References

R. A. Ali, T. S. Richardson, and P. Spirtes. Markov equivalence for ancestral graphs. The Annals of
Statistics, 37(5B):2808-2837, 20009.

D. Colombo and M. H. Maathuis. Order-independent constraint-based causal structure learning.
Journal of Machine Learning Research, 15(1):3741-3782, 2014.

D. Colombo, M. H. Maathuis, M. Kalisch, and T. S. Richardson. Learning high-dimensional di-
rected acyclic graphs with latent and selection variables. The Annals of Statistics, 40(1):294-321,
2012.

D. Entner, P. Hoyer, and P. Spirtes. Data-driven covariate selection for nonparametric estimation of
causal effects. In Proceedings of the Sixteenth International Conference on Artificial Intelligence
and Statistics, pages 256264, 2013.

A. Hyttinen, F. Eberhardt, and M. Jirvisalo. Do-calculus when the true graph is unknown. In
Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, pages 395—
404. AUALI Press, 2015.

M. Kalisch, M. Michler, D. Colombo, M. H. Maathuis, and P. Biihlmann. Causal inference using
graphical models with the R package pcalg. Journal of Statistical Software, 47(11):1-26, 2012.

M. H. Maathuis and D. Colombo. A generalized back-door criterion. The Annals of Statistics, 43
(3):1060-1088, 2015.

M. H. Maathuis, M. Kalisch, and P. Biilhlmann. Estimating high-dimensional intervention effects
from observational data. The Annals of Statistics, 37(6A):3133-3164, 2009.

M. H. Maathuis, D. Colombo, M. Kalisch, and P. Biihlmann. Predicting causal effects in large-scale
systems from observational data. Nature Methods, 7:247-248, 2010.

D. Malinsky and P. Spirtes. Estimating causal effects with ancestral graph Markov models. Techni-
cal Report CMU-PHIL-194, Carnegie Mellon University, 2016.

C. Meek. Causal inference and causal explanation with background knowledge. In Proceedings
of the Eleventh Conference on Uncertainty in Artificial Intelligence, pages 403—410. Morgan
Kaufmann Publishers Inc., 1995.

J. M. Ogarrio, P. Spirtes, and J. D. Ramsey. A hybrid causal search algorithm for latent variable
models. Journal of Machine Learning Research: Workshop and Conference Proceedings (PGM
16), 52:368-379, 2016.

J. Pearl. Causality. Cambridge University Press, 2009.

E. Perkovié, J. Textor, M. Kalisch, and M. H. Maathuis. A complete adjustment criterion. In
Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, pages 682—
691. AUAI Press, 2015.

309



MALINSKY AND SPIRTES

E. Perkovié, J. Textor, M. Kalisch, and M. H. Maathuis. Complete graphical characterization and
construction of adjustment sets in Markov equivalence classes of ancestral graphs. arXiv preprint
arXiv:1606.06903, 2016.

J. D. Ramsey. A scalable conditional independence test for nonlinear, non-Gaussian data. arXiv
preprint arXiv:1401.5031, 2014.

T. Richardson and P. Spirtes. Ancestral graph Markov models. The Annals of Statistics, 30(4):
962-1030, 2002.

I. Shpitser and J. Pearl. Identification of joint interventional distributions in recursive semi-
Markovian causal models. In Proceedings of the National Conference on Artificial Intelligence,
volume 21, pages 1219-1226, 2006.

P. Spirtes, C. Meek, and T. Richardson. Causal inference in the presence of latent variables and se-
lection bias. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
pages 499-506. Morgan Kaufmann Publishers Inc., 1995.

P. Spirtes, C. N. Glymour, and R. Scheines. Causation, prediction, and search. MIT Press, 2000.

D. J. Stekhoven, I. Moraes, G. Sveinbjornsson, L. Hennig, M. H. Maathuis, and P. Biihlmann.
Causal stability ranking. Bioinformatics, 28(21):2819-2823, 2012.

J. Tian and J. Pearl. On the testable implications of causal models with hidden variables. In Pro-
ceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pages 519-527.
Morgan Kaufmann Publishers Inc., 2002.

T. S. Verma and J. Pearl. Equivalence and synthesis of causal models. In Proceedings of the Sixth
Conference on Uncertainty in Artificial Intelligence, pages 220-227. Elsevier, 1991.

J. Zhang. Causal reasoning with ancestral graphs. Journal of Machine Learning Research, 9:1437—
1474, 2008a.

J. Zhang. On the completeness of orientation rules for causal discovery in the presence of latent
confounders and selection bias. Artificial Intelligence, 172(16):1873-1896, 2008b.

J. Zhang and P. Spirtes. A transformational characterization of Markov equivalence classes for
directed acyclic graphs with latent variables. In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, pages 667-674. AUAI Press, 2005.

K. Zhang, J. Peters, and B. Scholkopf. Kernel-based conditional independence test and application
in causal discovery. In Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, pages 804—-813. AUAI Press, 2011.

310



	Introduction
	Definitions and Background
	The IDA Approach
	Intervention Effects in Causally Insufficient Systems
	Simulations
	Conclusion

