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Abstract
Situational awareness can be a valuable indicator of the performance of flight crews and the way
pilots manage navigation information can be relevant to its estimation. In this research, dynamic
Bayesian networks are applied to a dataset of variables both collected in real time during simu-
lated flights and added with expert knowledge. This paper compares different approaches to the
discretization of continuous variables and to the estimation of pilot actions based on variable re-
gression, in order to optimize the model performance.
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1. Introduction

Situational (or situation) awareness (SA) can be defined as the field of study concerned with quan-
tifying the perception of the environment critical to decision-makers in complex and dynamic areas
(Fracker, 1988). In the context of human factors applied to aviation, SA of flight crews usually
depends on how the pilots receive and interpret a large amount of information. Their SA drives
their actions during the flight and is reckoned to be a reliable indicator of the ability of flight crews
to perform their missions safely.

Based on this assumption, a simulation environment has been implemented with the aim of
creating a dataset with variables that mainly contain data from aircraft parameters, aircraft situ-
ation, pilot control actions and pilot management of flight information using an electronic flight
bag (EFB). A post-flight analysis tool adds expert knowledge and performs calculations to sum-
marize information and reduce time dependency of data, to make a selected group of variables in
the dataset more suitable for Dynamic Bayesian Networks (DBN) to learn variable dependencies
from data. This research previosly focused on the issues of DBN for handling continuous variables
and the impact of discretization alternatives on the performance metrics (Morales and Moral, 2015).
This paper revisits the topic from the perspective of applying variable regression as a method to im-
prove computational efficiency of DBN and contribute to the discovery of the relationships between
the dataset variables that may drive the strategy to estimate SA in the future. The current experiment
is performed using 10 datasets produced from 10 repetitions of a commercial flight plan, flown by
several experienced pilots who control the aircraft changing the autopilot settings.
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Our objective is to learn a dynamic Bayesian network modelling the relationships between the
measured variables. It is important to remark that we have continuous and discrete variables. In a
previous paper (Morales and Moral, 2016) we built a model based on discretizing the continuous
variables and we applied an approach based on using linear regression to predict the continuous
variables and discretize the error variables.

Section 2 explains the main characteristics of the dataset and how it has been complemented
to allow DBN learning the dependencies between variables: including expert knowledge to help
the DBN learn the correctness of pilot actions. The criteria to add summary variables that include
information of past phases of the flight in the immediate previous time step, as required by DBN
is also explained, relating the dataset variables to SA levels in terms of pilot perception and time
dependencies.

Section 3 presents the research line followed to translate aeronautical and human factors criteria
into a model for measuring SA with DBN. The focus is set on explaining how the model has been
tested to compare direct discretization of continuous dataset variables with a discretization of the
error from regression variables. Sections 4 and 5 present the results that show how regression-based
DBN obtain better scores when they learn pilot actions, and highlight the next steps of the research.

2. The Dataset

The simulation environment developed for this research collects data in real-time from a commercial
flight simulator and from a desktop application in charge of the user interface. These applications
are connected with software sockets to a local server that hosts the databases where the variables are
stored. A post-flight application is used to add variables that require further calculations, including
the ones that contain expert knowledge. A more detailed description of the simulation environment
was provided in the previous work (Morales and Moral, 2016), together with an introduction to the
criteria for producing summary variables. For offering a better understanding of the dataset, this
section contains a short description of the variable categories and their relationships.

2.1 Categories of variables in the dataset

Although it is not required by DBN to establish categories among the variables in order to learn their
relationships, the dataset variables have been tagged. The following groups have been identified for
the sake of improving the understanding of the variables and to facilitate the detection of unexpected
relationships:

• Aircraft situation (AS): these are parameters that contribute to define the position of the air-
craft in the different axis, also taking into account the flight plan route that the aircraft is
expected to fly. Parameters like aircraft altitude, geographic coordinates, distance to flight
plan waypoints, etc. are included in this group.

• Aircraft parameters (AP): they may be directly or indirectly set by the pilot and their value
can typically be checked in an aircraft instrument. These parameters may vary or oscillate
without human intervention due to aerodynamics and thrust force momentum. At this stage
of the research only engine power settings and aircraft pitch and bank angles are included in
the dataset.
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Figure 1: The dataset variables categories with their main expected dependencies before the regres-
sion experiment.

• Environment variables (EV): the current list includes wind speed and direction, external am-
bient temperature, and atmospheric pressure.

• Pilot actions (PA): these include actions to control the aircraft. For this experiment only the
autopilot actions have been recorded, including those for setting aircraft altitude, speed and
heading. This approach provides relevant data of the pilot intention to control the aircraft,
without the simulation bias associated to manual control.

• Information checks (IC): these are pilot actions to check documents included in the EFB.
This category also contains some variables with a priori incorporated expert knowledge for
assessing if the information checked by the pilot is relevant for the current or the next leg (or
segment) of the flight plan route. More details are provided in section 2.2.

• Situation checks (SC): these are based on pilot queries to obtain information about the posi-
tion of the aircraft, based on a simulation of navigation instruments. Additional SC variables
are calculated after the flight with enhanced context information about the anticipation taken
by the pilot to perform these queries.

• Flight plan (FP): these variables contain flight plan information and are used to compare the
flight path with the expected route.

• Situation accuracy or quality (SQ): including expert knowledge applied to AS and FP vari-
ables, to assess if the aircraft situation is suitable with respect to the flight plan or other
factors related with the desired aircraft trajectory. Section 2.2 explains the principles that will
be followed to add more expert knowledge once the regression experiment is finished.

Fig. 1 shows the dependencies between the identified variable types, that can be initially ex-
pected from domain knowledge. They are not the dependencies learned by the DBN, but a com-
parison of both may be relevant in future stages of this research. The number of variables for each
category included in the dataset is also indicated.

2.2 Characteristics of the added expert knowledge

The current dataset includes two different types of expert knowledge: SQ variables contain a priori
expert knowledge not particularized to any particular flight, that is based on general assumptions of
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compliance with standard flight quality criteria. Their discrete values indicate if the aircraft is too
separated from the expected flight path or the required altitude.

On the other hand, IC variables have also been produced integrating a priori expert knowledge,
but in this category the assessment is particularized to the planned route and should be adapted if
the flight plan is modified. This expert knowledge consists on different discrete variables that rate
the information checked by the pilot in terms of relevance, i.e., the query performed by the pilot
is relevant according to the instant when it happens and it contains information that is necessary to
ensure flight safety; and exclusiveness, i.e., the query provides information that can more or less be
obtained from other sources.

Different values of IC values will vary to indicate from beneficial to distractive queries, whereas
SQ values will indicate deviations based on the flight safety impact. In both cases the applied expert
knowledge is causal, not requiring the knowledge of the future development of the flight to provide
a SA estimation, even in real time. Future stages of the research may focus on adding a posteriori
expert knowledge to the dataset in order to help training the DBN.

2.3 Summary variables

The DBNs we are considering are such that each variable depends only on the variables in previous
time (Markov condition). In order to alleviate this restriction and to introduce dependences from a
full time interval, we have created summary variables that contain information about what happened
in the past. Since the current stage of the process is focused on the improvement brought by regres-
sion rather than summary variables, these are kept simple and no significant model performance
increase is expected from them. Therefore, they basically perform a calculation of the average error
of the aircraft position (SQ variables) and the expert assessment about relevance and exclusiveness
of pilot information queries (IC variables). These averages are calculated for the total flown time,
and for the last two and four minutes of flight, at each time step.

2.4 Dataset variable groups from the perspective of SA levels

The classical approach to provide a definition of SA based on three levels of perception was intro-
duced by Endsley (1995), and it drives our strategy for the SA estimation.

• Level 1 SA - Perception of the elements in the environment: The measurement of perception-
related variables for the current dataset is focused on the navigation information management,
expecting low simulation bias as discussed in (Morales and Moral, 2016). Dataset IC and SC
variable types are expected to contain information about level 1 SA, monitoring real-time
pilot activities related to the retrieval of navigation information.

• Level 2 SA - Comprehension of the current situation: The most common approach to measure
level 2 SA is based on techniques like the situational awareness Global Assessment Technique
(SAGAT, Endsley et al. (1998)) that rely on obtaining direct and explicit feedback from the
subject. As already discussed in our previous work (Morales and Moral, 2016), when the
pilot behaviour is monitored in real time, the assessment on the pilot’s comprehension of
the situation is preferably inferred from his actions rather than from a conscious feedback.
Variable types IC, SC, PA (containing pilot actions) and AS, AP, EV, FP, SQ (containing
aircraft situation/condition) are therefore related to level 2 SA.
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• Level 3 SA - Projection of the near future: The most important conclusion of Endsley (1995)
is that pilots with correct SA not only perceive and comprehend, but also are able to predict the
future flight evolution. This can not be reduced to associating good SA to the absence of crew
mistakes or inaccuracies. Specially in high workload situations, pilot actions should be more
focused on avoiding future problems rather than fixing past mistakes. The expert knowledge
variables incorporated during the present stage of the research contain assessments related
to pilot mistakes or inaccuracies during the flight and their evolution. DBN are expected to
extract level 3 SA information from them.

3. SA measurement based on the estimation of pilot actions

As introduced in section 2, pilot actions are contained in PA, IC and SC variables of the dataset. This
dataset contains ”correct” flights in which no important pilot actions are present. So, the learned
model corresponds to good SA. Our plan for the future is: in a second stage we will learn a model
in which each variable can only depend on the same variable in a former period of time: the idea is
that this is the model corresponding to a bad SA. Finally we will define a Markov chain for the value
of SA in different time points. As we have a model for SA and two different models depending on
the value of SA, by applying probabilistic inference, we can compute in real time the probability of
the SA of the pilot given the current set of measurements.

3.1 The Model

We will assume that we have repeated measures of a basic set of variables X in different time
instants t = 1, . . . ,m. We will denote the variables X = {X1, . . . , Xn} on time t as Xt and the
variable Xi on time t, as Xit. The model will be a dynamic Bayesian network (DBN) which has
been implemented in Elvira environment Consortium (2002). At a first stage, we will consider the
following assumptions:

• Markovian processes: probabilities at a given time step depend only in former time step,
i.e. the set of parents for each variable Xit (denoted by Πit) is included in Xt−1. In some
cases, this condition can be too restrictive, as there can be variables depending of a full pe-
riod of time: Xt−k, . . . ,Xt−1 with k > 1. The objective of introducing summary variables
is precisely this: to include on each instant of time Xt−1 variables containing information
depending of an interval of time and that it is considered as relevant to predict the values of
variables in time Xt.

• Stationary: transition probability between time steps is time independent, i.e. the conditional
probability P (Xit|Πit) is the same for any value of t.

In some cases, dynamic networks also include links between variables in the same period of
time. In a first stage we will not include these links as in Morales and Moral (2016), but when
introducing linear regression we will add some additional instrumental variables and we will make
use of these links to relate them to the initial measured variables.

3.2 Discretization of Variables

Our problem contains continuous and discrete variables. A first approach is to discretize continuous
variables as in Morales and Moral (2016). First, we introduce some notation: if Xi is a continuous
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variable taking values on Ui we will assume that Ui is an interval [ai, bi]. A discretization of this
variable is a finite partition of [ai, bi] in a finite set of subintervals rij = [aij , b

i
j), j = 1, . . . , ki.

Then the possible values of the discretized variable Xd
i will be the finite set of intervals Ri =

{ri1, . . . , riki}. A probability distribution P about this variable will be a mapping P : Ri → [0, 1]

such that
∑k

j=1 P (rik) = 1. This probability distribution will be considered as an approximate
density of the original continuous variable Xi. This density will be constant in each interval rij and
the total density of the interval will be P (rij), i.e. the associated density about Xi will be:

f(x) =
P (rij)

bij − aij
(1)

where rj is the interval containing x (x ∈ [aij , b
i
j)).

A first approach has been to consider several discretizations with thresholds provided by experts:
min Thr contains a discretization with a number of intervals between 2 and 5, also determined by
an expert as a minimum to avoid meaningless values. In the case of 10 Thr, 20 Thr, 50 Thr and 100
Thr, the number represents the number of intervals per variable.

3.3 Learning a Model

Once a discretization has been obtained, we can learn the structure of a DBN from a set of data
with the measurement of variables in several flights D = {Di}mi=1 where each Di contains the
measurement of all the variables on a flight. To learn an optimal set of parents for each variable
Xi, learning is based on finding for each variable Xi the set of parents Πi optimizing one of the
following metrics:

• BIC information criterion:

BIC(Xi,Πi,D) =

hi∑
j=1

li∑
k=1

Nijk log
Nijk

Nij
− (1/2)hi(li − 1) log(N)

• Akaike information criterion:

Akaike(Xi,Πi,D) =

hi∑
j=1

li∑
k=1

Nijk log
Nijk

Nij
− hi(li − 1)

• K2 metric (usually the logarithm of this value is computed):

K2(Xi,Πi,D) =

hi∏
j=1

li∏
k=1

Γ(li)

Γ(li +Nij)
Γ(1 +Nijk)

where Nijk are the frequencies in the data D for which Xi takes the value xk in time t given that
the parents Πi take the combination of values number j in time t − 1. It is assumed that there
are li different values for variable Xi and hi possible combinations of values of the parents. Also
Nij =

∑li
k=1Nijk and N =

∑
j Nij .
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BDEu is not used in this case, as in Morales and Moral (2016) we found that in some cases
this metric was always increasing with the number of parents till the memory was exhausted. This
happened when a variable has an almost constant value during the whole flight, so we do not use
this metric. After the structure, the parameters for each conditional probability are estimated with
Laplace correction (Neapolitan, 2004).

3.4 Learning a Discretization

In above subsection, the discretization was provided by an expert. Now we will consider the case,
in which the discretization is also learned from data.

Given the hypothesis we have done about the densities associated to a discretization (see Equa-
tion (1)), this can be achieved by adding to the scores (in case of K2 to the logarithm of the expres-
sion we have given) the following value:

−
∑
i∈C

ki∑
j=1

Nij log(bij − aij) (2)

where C is the set of indexes of continuous variables that we want to discretize. This method is
based on the procedure in Monti and Cooper (1998) for discretizing variables in a Bayesian network
based on the same assumptions we have done and a non-supervised problem. If BIC score is used,
it represents the application of the minimum length description principle.

With this complement, we have a score for a graph and a discretization. We could compute the
graph and the discretization optimizing this score. However, we will perform a two step optimiza-
tion: first we compute an optimal discretization for each variable with the empty graph (no parents
for any variable) and then we learn the optimal structure as in the previous subsection.

To find an optimal discretization we use a greedy algorithm in which the possible interval limits
are the middle points between the actual points of this variable in the learning data.

The search of a discretization of variable Xi starts with a discretization in which the interval
[ai, bi] is divided in two parts with equal frequency. Then a greedy procedure is repeated while
there are improvements in the score: each actual interval is tested to be splitted in two parts with
equal frequency, and when there are no improvements dividing intervals, then each interval is tested
to be merged with the consecutive interval on its right.

3.5 The regression based model

Our previous experiments in Morales and Moral (2016) showed an improvement in performance
when the number of intervals in the discretization was increased. When learning the discretization
the performance was intermediate. The problem is that most of the continuous variables are such
that its value on a time t is a small variation of its value on previous time t− 1. In this way, it would
have been more reasonable to discretize the differences Xit −Xi(t−1). In this paper, we have gone
an step forward, by trying first to make a numerical estimation of each continuous variableXit using
linear regression and with variables in previous time as predictors. In this way, the variable Xi(t−1)
will be considered as possible predictor of Xit. This has been done with R package bestglm. As
the number of predictors is very high and to avoid overfitting, the number of variables in regression
is limited to a maximum and the best model is chosen with BIC criterion. In our case, the maximum
number of predictors has been selected to be 4 (this number of variables has shown to be enough to
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produce good estimations and though bestglm has a procedure to determine the optimal number
of variables, it this maximum is not limited, the procedure is very time consuming given the large
number of measured variables). . In all the cases, the most important variable to precitor of Xit has
been Xi(t−1) with a regression coefficient close to 1.0.

Assume that we have predicted Xt by means of a linear combination a + b1Y
1
t−1 + · · · bkY k

t−1,
then our model includes in time t− 1 the deterministic variable Zi(t−1) = a+ b1Y

1
t−1 + · · · bkY k

t−1.
The values of this variable can be computed with the values of other variables in the same time.

Then in time t we add another variable, the error variable: Eit = Xit − Zi(t−1). Once, the
regression is computed, then the dataset is expanded by including the artificial variables Zit and
Eit: Zit = a+ b1Y

1
t + · · · bkY k

t , Eit = Xit − Zi(t−1).
With the expanded dataset, we estimate the model structure in the following way:

• Each variable Zi is a deterministic variable depending of other variables in the same period
of time, through its linear equation.

• Each continuos variable Xit is a deterministic variable equal to the sum of the artificial vari-
able in previous period Zi(t−1) and the error variable of the same period, Et.

• Each error variable Eit is discretized with the procedure of above subsection and its set of
parents is computed by optimizing the score with a set of parents Πi(t−1) selected from vari-
ables in previous time, in the same way that it was done with continuous variables in previous
approach.

It is important to remark that though Eit is computed from Xit and Zi(t−1), in the model is
considered thatEit is random and thatXit is the sum ofZi(t−1) andEit. This is the usual assumption
in regression models, where it is assumed that a variable of interest is the sum of a deterministic
function (in our case the value of Zi(t−1)) and a noise (in our case Eit), though in the data the
noise or error is computed by measuring the difference between the real value and the value of the
deterministic function.

In classical regression, it is assumed that variable Ei is Gaussian and independent from the rest
of the variables in the problem. In our case, we do not assume this hypothesis and consider thatEi is
a variable which can depend on any variable in the previous period. We do not consider either that
the errors are Gaussian, learning a generic distribution through the discretization and conditional
probability estimation.

In the regression problem, the discrete variables Xi can also be an explanatory variable, with
values 0, 1, . . . , li − 1 with li the number of elements of variable Xi. We also compute a discretiza-
tion for variables Zi and continuous variables Xi. This discretized variables can be parents of any
discrete or error variable. The full model is represented in Fig. 2.

3.6 Testing a Model

Once a model is learned, its performance is measured using new observations of variables X in a
new flight. Assume that we have a measurement of the variables Xt for a finite set of time steps
t ∈ T . The idea is to compute the logarithm of probability (LP), LP = log(P ((Xt)t∈T |M)) =
log(P (Xt0)) +

∑
t∈T\{t0} log(P (Xt|M,Xt−1)), where M is the learned model and t0 ∈ T is the

initial time.
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Figure 2: Regression model for the estimation of pilot actions.

If only discretization is used, then we start with LP = 0 and for each t and for each variable
Xi in this interval we add the following values to LP : first we compute the observed values of its
parents in former time interval Πt−1 = πt−1, with these values and the conditional probability of
the variable given its parents, we can select a discrete probability Pi for the values of this variable
in time t. Then,

• If it is discrete and Xit = xi, then we add log(Pi(xi)) to LP .

• IfXi is continuous andXit = xi and xi belong to interval rik, then log(Pi(r
i
k))− log(bik−aik)

is added to LP .

In the case of using linear regression, the computation is done in a similar way, but first we have
to compute the values of instrumental variables Zi (linear combinations) and Ei (error variables).
Then, we take into account that variables Zi and continuous variables Xi are considered as deter-
ministic variables and then its true value is predicted with probability one (given the other measured
and error variables). So, these variables add a value of log(1.0) = 0.0 to LP. We have to apply
above computations only to discrete variables and to error variables (with the same procedure that
was applied to discretized continuous variables).

The greater LP results for model M than for model M ′, it should be assumed that the model
M has better predicted the values of variables Xt than model M ′.

If we are interested only in a subset Y ⊂ X of the variables (for example the variables de-
scribing pilot actions) we could compute this value, but adding the computation of LP only for
the variables in that subset (or the corresponding errors in the case of continuous variables with the
regression model).

4. Results of the variable regression experiment

We have carried out a series of experiments in which we have repeated the learning of the model
with 9 flights and tested it with the remaining one (as in 10-fold cross validation). We report the
results of LP for the different discretizations and the regression model in the following experiments:

• Experiment 1: All the variables are used in the model and LP is measured for all the variables.

• Experiment 2: The summary and expert knowledge variables are not used and LP is only
measured for pilot actions.

• Experiment 3: All the variables are used in the model and LP is measured only for pilot
actions including consulting information (PA and IC variables).
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When regression is not used, the discretizations we have tested are provided by the expert. Ex-
periments for learning discretizations without regression are reported in Morales and Moral (2016)
are they are not better than the results obtained with a large number of intervals. In the LP model
the error variable is not known in advance and therefore the intervals have to be learned with the
procedure in Subsection 3.4. Other continuous variables are also discretized with the automatic
method, but this discretized variables can only appear as parents variables.

The results of these experiments are given in Tables 1, 2, and 3, respectively. We see the
following facts:

• Without regression: using a large number of discretization intervals is better, also with the
extra variables added, and when we focus on pilot actions. This is in accordance with the
previous discretization experiment. This is due to the fact that in our model we assume that
the density is constant in each interval of the discretization and then − log(ri) is added to
the likelihood where ri is the length of the interval to which the value of Xi belongs. This
factor has a big impact and gives rise to a preference for larger discretizations with smaller ai
values.

• Using regression plus discretization is always better than just discretization. The differences
are of several orders of magnitude with models that are of smaller size than the large dis-
cretizations, though we have not carried out statistical tests. Here the impact of using a high
number of intervals is not so important, as only error variables are involved in the likelihood
computation and the values of these variables are concentrated around 0 (in contrast with
initial variables that have their values distributed in a large domain).

• Regression benefits from the use of summary variables and expert knowledge, however the
differences are not very important. In the case of discretization, the use of summary variables
does not change the results of the experiments.

• There are no meaningful differences between using the different scores: if we focus on the
regression model, the model learned with K2 is better when estimating all the variables (ex-
periment 1) but BIC it is the best one when learning only the pilot actions (experiment 2).

5. Conclusions and future work

As a project to on-line assess the aircrew SA, we have considered several alternative models to
estimate the pilot actions as a function of variables measures during a flight. In this paper, we have
proposed a model in which linear regression is used, but as the produced errors are not assumed to
be independent Gaussian, we have considered that they can follow an arbitrary distribution that can
depend on any of the measured or artificially built variables. The dependences and the distribution
are estimated by discretizing the error variables and applying methods based on learning discrete
dynamic Bayesian networks. The use of this procedure is shown to have a much better performance
than our previous approach based only on discretizing the continuous variables.

We see two directions for the future: first try to improve the model to predict pilot actions, by
adding more artificial summary variables (their suitability can be tested by checking improvements
in the LP measure), to consider a more proper treatment of discrete variables by considering for
example a different regression model for the different values of a discrete variable having influence
in a continuous variable or using alternative models for continuous variables as the ones in R. Rumı́
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min Thr 10 Thr 20 Thr 50 Thr 100 Thr regression
BIC Score −9.300e5 −6.690e5 −5.699e5 −6.360e5 −5.676e5 −2.475e5
Akaike Score −9.310e5 −6.682e5 −5.655e5 −4.271e5 −5.075e5 −2.450e5
K2 Score −9.305e5 −6.694e5 −5.653e5 −4.188e5 −3.602e5 −1.989e5

Table 1: LP values for the estimation of all variables and using summary variables.

min Thr 10 Thr 20 Thr 50 Thr 100 Thr regr. w/o
BIC Score −1.408e5 −1.034e5 −9.680e4 −1.034e5 −9.280e4 −2.162e4
Akaike Score −1.398e5 −1.021e5 −9.235e4 −8.082e4 −8.966e4 −2.378e4
K2 Score −1.409e5 −1.032e5 −9.330e4 −7.886e4 −6.548e4 −2.184e4

Table 2: LP values for the estimation of pilot action variables, without using summary variables.

and Moral (2006); but we think that the most meaningful step would be to include SA variables
in the model considering that the model in this paper corresponds to a good SA and building a
simple model in which each variable depends only on the same variable in the previous period time,
corresponding to the case of a bad SA, so that we can compute and only probability for SA variables
given the available observations.
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