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Abstract

Bayesian networks, and especially their structures, are powerful tools for representing condi-

tional independencies and dependencies between random variables. In applications where re-
lated variables form a priori known groups, chosen to represent different “views” to or aspects
of the same entities, one may be more interested in modeling dependencies between groups
of variables rather than between individual variables. Motivated by this, we study prospects
of representing relationships between variable groups using Bayesian network structures. We
show that for dependency structures between groups to be expressible exactly, the data have
to satisfy the so-called groupwise faithfulness assumption. We also show that one cannot
learn causal relations between groups using only groupwise conditional independencies, but
also variable-wise relations are needed. Additionally, we present algorithms for finding the
groupwise dependency structures.

1. Introduction

Bayesian networks are representations of joint distributions of random variables. They are
powerful tools for modeling dependencies between variables. The dependencies and indepen-
dencies are implied by the structure of a Bayesian network, which is represented by a directed
acyclic graph (DAG).

In practical applications it is common that the analyst does not know the structure of a
Bayesian network a priori. However, samples from the distribution of interest are commonly
available. This has motivated development of algorithms for learning Bayesian networks from
observational data. Although the problem is NP-hard (Chickering, 1996), there exist plenty of
exact algorithms (Jaakkola et al., 2010; Silander and Myllymiki, 2006) as well as theoretically
sound heuristics (Aliferis et al., 2010; Chickering, 2002).

Bayesian networks model dependencies and independencies between individual variables.
However, often the relationships between groups of variables are even more interesting. An
example is multiple different measurements of expression of the same genes, made with mul-
tiple measurement platforms, but the goal being to find relationships between the genes and
not of the measurement platforms. The measurements of each gene would here be the groups.
Another example is measurements of expression of individual genes, with the goal of the anal-
ysis being to understand cross-talk between pathways consisting of multiple genes, or more
generally, relationships on a higher level of a hierarchy tree in hierarchically organized data.
Here the pathways would be the groups. In both cases, a Bayesian network for variable groups
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would directly address the analysis problem, and would also have fewer variables and hence
be easier to visualize.

More generally, the setup matches multi-view learning where data consist of multiple
“views” to the same entity, multiple aspects of the same phenomenon, or multiple phenom-
ena whose relationships we want to study. For these setups, a Bayesian network for variable
groups can be seen as a dimensionality reduction technique with which we extract interesting
information from a larger, noisy data set.

While the structure learning problem is well-studied for individual variables, knowledge
about modeling relationships between variable groups using the Bayesian network framework
is scarce. Motivated by this, we study prospects of learning Bayesian networks for variable
groups. In summary, while Bayesian networks for variable groups can be learned under some
conditions, strong assumptions are required and hence they have limited applicability.

We start by exploring theoretical possibilities and limitations for learning Bayesian net-
works for variable groups. First, we show that in order to be able to learn a structure that
expresses exactly the conditional independencies between variable groups, the distribution and
the groups need to together satisfy a condition that we call groupwise faithfulness (Section 3.1);
our simulations suggest that this is a rather strong assumption. Then, we study possibilities of
finding causal relations between variable groups. It turns out that one can draw only very
limited causal conclusions based on only the conditional independencies between groups (Sec-
tion 3.2), and hence also dependencies between the individual variables are needed.

We introduce methods for learning Bayesian network structures for variable groups. First,
it is possible to learn a structure directly using conditional independencies or local scores be-
tween groups (Section 4.1). However, this approach suffers from needing lots of data. For the
second approach, we observe that if all conditional independencies between individual vari-
ables are known, one can infer the conditional independencies between groups. The second
approach is to construct a Bayesian network for individual variables and then to infer the struc-
ture between groups (Section 4.2). Finally, we evaluate the algorithms in practice (Section 5).
Our results suggest that the second approach is more accurate.

1.1 Related Work

We are not aware of any work with close resemblance with this study, but there have been some
efforts to solve related problems.

Object-oriented Bayesian networks (Koller and Pfeffer, 1997) are a generalization of
Bayesian networks and enable representing groups of variables as objects. Hierarchical
Bayesian networks (Gyftodimos and Flach, 2002) are another generalization of Bayesian net-
works where variables can be aggregations (or Cartesian products) of other variables. Variables
form a hierarchical tree structure and a variable’s parents are its parent in the tree and possibly
some of its siblings. Both of these formalisms are very general and they are capable of rep-
resenting conditional independencies between variable groups. Therefore, our results may be
applied to these models. However, these models are unnecessarily complicated for our analysis
and thus we do not consider them.

Module networks (Segal et al., 2005) have been designed to handle large data sets. The
variables are partitioned into modules where the variables in the same module share parents
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and parameters. Module networks are particularly good for approximate density estimation.
However, their structural limitations make them unsuitable for analysing conditional indepen-
dencies between variable groups.

Burge and Lane (2006) have presented Bayesian networks for aggregation hierarchies
which are related to hierarchical Bayesian networks. Groups of variables are aggregated by,
for example, taking a maximum or mean and then networks are learned between the aggre-
gated variables. From our point of view, the downside of this approach is that conditional
independencies between aggregated variables do not necessarily correspond to conditional in-
dependencies between groups.

Entner and Hoyer (2012) have presented an algorithm for finding causal structures among
groups of continuous variables. Their model works under the assumptions that variables are
linearly related and associated with non-Gaussian noise.

2. Preliminaries

2.1 Conditional Independencies

Two random variables x and y are conditionally independent given a set S of random vari-
ables if P(z,y|S) = P(z|S)P(y|S). If the set S is empty, variables x and y are marginally
independent. We use = 1L y|S to denote that = and y are conditionally independent given S.

Conditional independence can be generalized to sets of random variables. Two sets of
random variables X and Y are conditionally independent given a set .S of random variables if
P(X,Y|S) = P(X|S)P(Y|S).

2.2 Bayesian Networks

A Bayesian network is a representation of a joint distribution of random variables. A Bayesian
network consists of two parts: a structure and parameters. The structure of a Bayesian network
is a directed acyclic graph (DAG) which expresses the conditional independencies and the
parameters determine the conditional distributions.

Formally, a DAG is a pair (N, A) where N is the node set and A is the arc set. If there is
an arc from u to v, that is, uv € A then we say that u is a parent of v and v is a child of u. The
set of parents of v in A is denoted by A,. Nodes v and u are said to be spouses of each other
if they have a common child and there is no arc between v and u. Further, if there is a directed
path from u to v we say that u is an ancestor of v and v is a descendant of u. The cardinality
of N is denoted by n. When there is no ambiguity on the node set /N, we identify a DAG by
its arc set A.

Each node in a Bayesian network is associated with a conditional probability distribution
of the node given its parents. The conditional probability distribution is specified by the pa-
rameters. A DAG represents a joint probability distribution over a set of random variables if
the joint distribution satisfies the local Markov condition, that is, every node is conditionally
independent of its non-descendants given its parents. Then the joint distribution over a node
set IV can be written as P(N) = [ [,y P(v|Ay).

The conditional independencies implied by a DAG can be extracted using a d-separation
criterion. The skeleton of a DAG A is an undirected graph that is obtained by replacing all
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directed arcs uv € A with undirected edges between u and v. A path in a DAG is a cycle-free
sequence of edges in the corresponding skeleton. A node v is a head-to-head node along a
path if there are two consecutive arcs uv and wv on that path. Nodes v and w are d-connected
by nodes Z along a path from v to u if every head-to-head node along the path is in Z or has
a descendant in Z and none of the other nodes along the path is in Z. Nodes v and u are
d-separated by nodes Z if they are not d-connected by Z along any path from v to u.

Nodes s, t, and u form a v-structure in a DAG if s and ¢ are spouses and w is their common
child. Two DAGs are said to be Markov equivalent if they imply the same set of conditional
independence statements. It can be shown that two DAGs are Markov equivalent if and only if
they have the same skeleton and same v-structures (Verma and Pearl, 1990).

A distribution p is said to be faithful to a DAG A if A and p imply exactly the same set
of conditional independencies. If p is faithful to A then v and u are conditionally independent
given Z in p if and only if v and u are d-separated by Z in A. This generalizes to variable sets.
That is, if p is faithful to A then variable sets 7" and U are conditionally independent given Z
in p if and only if ¢ and u are d-separated by Z in A forallt € T'and u € U.

3. Groupwise Independencies

In this section we introduce a new assumption, groupwise faithfulness, that is necessary for
principled learning of DAGs for variable groups. We will also show that groupwise conditional
independencies have a limited role in learning causal relations between groups.

3.1 Groupwise Faithfulness

First, let us introduce some terminology. Recall that N is our node set. Let W =
{W1,..., W} be a collection of nonempty sets where W; C N Vi, and W forms a parti-
tion of N. We call W a grouping. We call a DAG on N a variable DAG and a DAG on W
a group DAG; Note that the nodes of the group DAG are subsets of N. We try to solve the
following computational problem. We are given a grouping W and data D from a distribution
p on variables N that is faithful to a variable DAG G. The task is to learn a group DAG H on
W such that for all W;, W; € W and S = U1}, with T = {T",..., T} € W\ {W;, W,}, it
holds that W; and W; are d-separated by S in H if and only if W; 1L W;|S in p.

It is well-known that DAGs are not closed under marginalization. That is, even though
the data-generating distribution is faithful to a DAG on a node set NV, it is possible that the
conditional independencies on some subset of [V are not exactly representable by any DAG. We
note that DAGs are not closed under aggregation, either. By aggregation we mean representing
conditional independencies among groups using a group DAG. We show that by presenting
an example. Consider a distribution that is faithful to the DAG in Figure 1(a). We want to
express conditional independencies between groups Vi, Vo, and V3. By inferring conditional
independencies from the variable DAG, we get that V; 1L V5 and V; 1L V5|V3. There does not
exist a DAG that expresses this set of conditional independencies exactly.

To avoid cases where conditional independencies are not representable by any group DAG,
we introduce a new assumption: groupwise faithfulness. Formally, we define groupwise faith-
fulness as follows.
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Figure 1: (a) A variable DAG where conditional independencies among groups Vi, Vs, and
V3 cannot be expressed exactly using any DAG. (b) A causal variable DAG where
conditional independencies among groups Vi, Vs, and V3 lead to a group DAG in
which v-structures cannot be interpreted causally. (c) A group DAG corresponding
to causal variable DAG in (b).

Definition 1 (Groupwise faithfulness) A distribution p is groupwise faithful to a group DAG
H given a grouping W, if H implies the exactly same set of conditional independencies as p
over the groups W.

Note that this assumption is analogous with the faithfulness assumption in the sense that in
both cases there exists a DAG that expresses exactly the independencies in the distribution.

Sometimes it is convenient to investigate whether conditional independencies implied by a
variable DAG given a grouping are equivalent to the conditional independencies implied by a
group DAG.

Definition 2 (Groupwise Markov equivalence) A variable DAG G is groupwise Markov
equivalent to a group DAG H given a grouping W, if H implies the exactly same set of condi-
tional independencies as G over groups W.

We note that if a distribution p is faithful to a DAG G, and G is groupwise Markov equiv-
alent to a DAG H given a grouping W, then p is groupwise faithful to A given W. This
shows that faithfulness and groupwise Markov equivalence together imply groupwise faithful-
ness. However, neither faithfulness nor groupwise Markov equivalence alone is necessary or
sufficient for groupwise faithfulness.

To see this, let us consider the following examples. First, to see that faithfulness is not
sufficient for groupwise faithfulness, assume that we have a distribution that is faithful to the
DAG in Figure 1(a). Given groups Vi, Va, and V3, the distribution is groupwise unfaithful.
Second, consider a distribution over the variable set x1, z2, T3, x4, and x5. Let us assume
that the groups are Vi = {1, 22}, Vo = {x3}, and V3 = {x4, 25} and the Bayesian network
factorizes according to the variable DAG in Figure 1(b). Now, it is possible to construct a dis-
tribution such that the local conditional distribution at node x1 is exclusive or (XOR), and thus
the variable DAG is unfaithful. If the other local conditional distributions do not introduce any
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additional independencies then the distribution is groupwise faithful. This shows that faithful-
ness is not necessary for groupwise faithfulness. Next, let us consider the same structure but let
us assume that both x; and x5 are associated with XOR distributions. In this case the variable
DAG is groupwise Markov equivalent to the group DAG but the distribution is not groupwise
faithful which shows that groupwise Markov equivalence is not sufficient for groupwise faith-
fulness. Finally, consider the variable DAG and the grouping in Figure 1(a). This variable
DAG is not groupwise Markov equivalent to the group DAG given the grouping. However, if
the distribution is unfaithful to the DAG and the variables x; and x5 are independent then the
distribution is groupwise faithful. This shows that groupwise Markov equivalence is not neces-
sary for groupwise faithfulness. As neither faithfulness nor groupwise Markov equivalence is
sufficient or necessary for groupwise faithfulness, it follows that groupwise faithfulness implies
neither faithfulness or groupwise Markov equivalence.

Next, we will explore how strong the groupwise faithfulness assumption is. That is, how
likely we are to encounter groupwise faithful distributions. To this end, we consider distribu-
tions that are faithful to variable DAGs. The joint space of DAGs and groupings is too large
to be enumerated and we are not aware of any formula for assessing the number of groupwise
unfaithful networks. Therefore, we analyze the prevalence of groupwise faithfulness by an
empirical evaluation using simulations.

In simulations, a key question is how to check groupwise faithfulness. That is, given a
variable DAG and a grouping, how to check whether the conditional independencies entailed
by the variable DAG over groups can be represented exactly using a group DAG. This can
be done by first using the PC algorithm (Spirtes et al., 2000) to construct a group DAG; here
we use d-separation in the variable DAG as our independence test. Once the group DAG has
been constructed we can check that the set of conditional independencies entailed by the group
DAG is exactly the set of groupwise conditional independencies implied by the variable DAG
and the grouping. The PC algorithm is sound and complete so if there exists a DAG that
implies exactly the set of given conditional independencies, then the PC algorithm returns (the
equivalence class of) that DAG. Thus, the conditional independencies match if and only if the
variable DAG and the grouping are faithful to a group DAG.

We used the Erdds-Rényi model to generate random DAGs. A DAG from model G(n, p)
has n nodes and each arc is included with probability p independently of all other arcs; to get
an acyclic directed graph, we fix the order of nodes. We generated random DAGs with n = 20
by varying the parameter p from 0.1 to 0.9. We also generated random groupings where group
size was fixed to 2, 3, 4, or 5 (20 is not divisible by 3, so in this case one group is smaller
than the others). For each value of p, we generated 100 random graphs. Then, we generated
10 groupings for each graph for each group size and counted the proportion of groupwise
faithful DAG-grouping pairs. The results are shown in Figure 2. It can be seen that groupwise
unfaithfulness is probable with sparse graphs and small group sizes. One should, however,
note that the simulation results are for random graphs and groupings, and real life graphs and
groupings may or may not follow this pattern.
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Figure 2: Proportion of DAG-grouping pairs that are groupwise faithful in random graphs of
20 nodes. Parameter p is the probability that an arc is present.

3.2 Causal Interpretation

Probabilistic causation between variables is typically defined to concern predicting effects of
interventions. This means that an external manipulator intervenes the system and forces cer-
tain variables to take certain values. A DAG is called causal if it satisfies the causal Markov
condition, that is, all variables are conditionally independent of their non-effects given their
direct causes. Assuming faithfulness and causal sufficiency (if any pair of observed variables
has a common cause then it is observed), it is possible to identify causal effects using the do-
operator (Pearl, 2000). The do-operator do(v = v7) sets the value of the variable v to be vy.
The probability P(u|do(v = wv1)) is the conditional probability distribution of u given that
the variable v has been forced to take value v;. In other words, one takes the original joint
distribution, removes all arcs that head to v and sets v = wv1; then one computes the probability
P(u|v = v1) in the new distribution. We define a cause using the so-called operational crite-
rion for causality (Aliferis et al., 2010), that is, we say that a variable v is a cause (direct or
indirect) of a variable u if and only if P(u|do(v = v1)) # P(u|do(v = v9)) for some values
v1 and vy. A straightforward generalization leads to the following definition of causality for
variable groups.

Definition 3 (Group causality) Given variable groups V and U, V is a cause of U if
P(Uldo(V = V1)) # P(U|do(V = Va)) for some instantiations Vi and Va of values of
V.

Note that the above definition allows causal cycles between groups. To see this, consider
a causal DAG on {v1, v9,v3, v4} which has arcs vjvs and v4ve. If there are two groups Wy =
{v1,v2} and Wy = {vs, v4} then W is a cause of W (because there is a causal arc vv3) and
W is a cause of W7 (because of a causal arc v4v9).

Next, we will study to what extent causality between variable groups can be detected from
observational data using only conditional independencies among groups. We assume that the
data come from a distribution that is faithful to a causal variable DAG. Further, we assume that
we have no access to the raw data but only to an oracle that conducts conditional independence
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tests. Formally, we assume that we have access to an oracle Og that answers queries W; L
W;|S, where W, W; € Wand S = U/T; with T' = {T1,...T;,,} € W\ {W;, W;}. Note that
in the standard scenario with conditional independencies between variables, we have an oracle
Oy that answers queries X 1l Y'|Z, where X, Y € Nand Z C N\{X,Y}; If max; |W;| > 1
then the oracle Oy is strictly more powerful than Og.

It is well-known that, under standard assumptions, a causal variable DAG can be learned
up to the Markov equivalence class. A Markov equivalence class can be represented by a com-
pleted partial DAG (CPDAG) where we have both directed and undirected edges. Directed
edges or arcs are the edges that point to the same direction in every member of the equivalence
class whereas undirected edges express cases where the edge is not directed to the same direc-
tion in all members of the equivalence class. If there is a directed path from a variable v to a
variable u in the CPDAG then v is a cause of u. In other words, existence of such a path is
a sufficient condition for causality. However, it is not a necessary condition and it is possible
that v is a cause of u even when there is no directed path from v to u in the CPDAG.

Next, we consider causality in the group context. Manipulating an ancestor of a node
affects its distribution and thus the ancestor is a cause of its descendant. It is easy to see that
given a causal variable DAG G, a group W; is a group cause of a group W; if and only if there
is at least one directed path from W; to W; in G, that is, there exists v € W; and u € W; such
that there is a directed path from v to u. It is clear from the above that a sufficient condition for
a group W; to be a group cause of a group W; is that there is at least one directed path from
W; to W; in the CPDAG.

Standard constraint-based algorithms for causal learning start by constructing a skeleton
and then directing arcs based on a set of rules. So let us take a look on these rules in the group
context. The first rule is to direct v-structures. The following theorem shows that arcs that are
part of a v-structure in a group DAG imply group causality.

Theorem 4 Let N be a node set and W a grouping on N. Let p be a distribution that
is groupwise faithful to some group DAG H given the grouping W. If there exist groups
Wi, W;, Wy, € W such that (i) W; 1L Wy|S for some S C W \ {W;, W;, Wy} and (ii)
Wi L Wi (WD) UW forall T = {T1,..., Ty} C W\ {W;, W;, Wi} then W; is a group
cause of Wj.

Proof It is sufficient to show that there exists a pair w; € W; and w; € W; such that w; is an
ancestor of w; in the variable DAG.

Due to (i), all paths that go from W; to W), without visiting .S must have a head-to-head
node. Due to (ii) there has to exist at least one path between W; and W}, such that there are no
non-head-to-head nodes in W\ {W;, W} and all head-to-head nodes are unblocked by W;
let us denote one such a path by R. Without loss of generality, we can assume that all nodes in
R except the endpoints are in W \ {W;, Wi }. Let s,t,u € N be three consecutive nodes in
path R such that there are edges st and ut. Nodes s and u cannot be head-to-head nodes along
R and therefore s,u € W; U W},. Node ¢ is a head-to-head node and therefore either ¢ € W
or t has a descendant in I¥;. In both cases there is a directed path from both s and u to the set
W;. The path R has one end-point in W; and another in W},. Thus, there is a directed path
from W; to W; in the variable DAG. |
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Note that the proof of the previous theorem implies that there is a v-structure W; — W, <
W}, in the group DAG only if there exists w; € W;, w; € Wj, and wy, € W, such that there
exists a v-structure w; — w; <~ wy, in the variable DAG.

After v-structures have been directed, one can direct the rest of the edges that point to
the same direction in every DAG of the Markov equivalence class using four local rules often
referred to as the Meek rules (Meek, 1995). The rules are (Pearl, 2000):

R1: Orient v — s into v — s if there is an arrow v — v such that u and s are nonadjacent.
R2: Orient v — v into w — v if there is a chainu — s — v.

R3: Orient u — v into © — v if there are two chains © — s — v and u — ¢ — v such that s
and ¢ are nonadjacent.

R4: Orient v — v into v — v if there are two chains w — s — ¢t and s — ¢ — v such that s
and v are nonadjacent and v and ¢ are adjacent.

We would like to generalize these rules for variable groups. However, these rules are not
sufficient to infer group causality if one does have access only to the groupwise conditional
independencies (and to nothing else). To see this, consider a group DAG H = (W, E) where
W ={S,T,U,V}and E = {SU,TU,UV}. Now, Theorem 4 says that S and 1" are causes
of U. The rule R1 suggest that we could claim that U is a cause of V. However, we can
construct a causal variable DAG G = (N, F') with N = {sy, s9, t1, t2, u1, u2, us, vi,ve} and
F = {SlUl,tlUl,’UQUQ,UQtQ,UlUg, U382} and S = {81, 82}, T = {tl,tQ}, U= {ul, u, U3},
and V = {vy,v2}. Clearly, G implies the same conditional independencies on W as does H
and there is no directed path from U to V in G. Thus, U is not a cause of V in G.

The above observation implies that the Meek rules cannot be used to infer causality in group
DAGs. However, it is not known whether there are some special conditions under which the
Meek rules would apply in this context. Note that the above applies only when the conditional
independencies between individual variables are not known; when the variable DAG is known,
this information can be used to help to infer more causal relations.

4. Algorithms

Next, we will introduce two approaches for learning group DAGs.

4.1 Direct Learning

The most straightforward approach is to learn a group DAG directly, that is, either using con-
ditional independencies or local scores on a grouping . In other words, we can consider
each group as a variable. Assuming that the variables are discrete, the possible states of the
new variable w;, corresponding to the group W, are the Cartesian product of the states of the
variables in WW;. Now there is a bijective mapping between joint configurations of variables in
W; and states of w;. Thus W; 1L W;|S; if and only if w; 1L w;|S2 where W; C S; if and
only if w; € Sy. This leads to a simple procedure described in Algorithm 1. The procedure
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FINDVARIABLEDAG in the second step is an exact algorithm for finding a DAG; it can use
either the constraint-based or score-based approach.

Algorithm 1 FINDGROUPDAG1

Input: Data D on a node set N, a grouping W on N.

Output: Group DAG G
1: Convert variables z; € IV into new variables y; on W such that y; = Xz, €W, Ti -
2: Learn a DAG G on the new variables on W using procedure FINDVARIABLEDAG.
3: return G

4.2 Learning via Variable DAGs

We note that a DAG over individual variables specifies also all the conditional independencies
and dependencies between groups. Thus, it is possible to learn a group DAG by first learning
a variable DAG and then inferring the group DAG. Algorithm 2 summarizes this approach.

Algorithm 2 FINDGROUPDAG?2
Input: Data D on a node set N, a grouping W on N.
Output: Group DAG G
1: Learn a DAG H on N using procedure FINDVARIABLEDAG.
2: Learn a group DAG G on W using the PC algorithm and d-separation in H as an indepen-
dence test.
3: return G

5. Experiments
5.1 Implementations

We implemented our algorithms using Matlab. The implementation is available at http:
//research.cs.aalto.fi/pml/software/GroupBN/. The implementation of PC
algorithm from the BNT toolbox' was used as the constraint-based version of procedure FIND-
VARIABLEDAG. As the score-based version, we used the state-of-the-art integer linear pro-
gramming algorithm GOBNILP?.

5.2 Simulations

We generated data from three different Bayesian network structures called structures 1, 2, and
3 having 30, 40, and 50 nodes, respectively, divided into 10 equally sized groups. All structures
were groupwise faithful to the group DAG; the network structures are not shown due to space
constraints. For each structure we generated 50 binary-valued Bayesian networks by sampling
the parameters uniformly at random. Then, we sampled data sets of size 100, 500, 2000, and
10000 from each of the Bayesian networks.

1. https://code.google.com/p/bnt/
2. http://www.cs.york.ac.uk/aig/sw/gobnilp/

389



PARVIAINEN AND KASKI

Structure 1 Structure 2 Structure 3

Average SHD

10 . )
. .
0

100 500 2000 10000 100 500 2000 10000 100 500 2000 10000
Sample size Sample size Sample size

Figure 3: Average SHD (Structural Hamming Distance) between the learned group DAG and
the true group DAG when the data were generated from three different structures.
DL = direct learning, VD = learning using variable DAGs, CB = constraint-based,
SB = score-based. The numbers on the x-axis are sample sizes. Missing bars for
constraint-based direct learning are due to the algorithm running out of memory.

We ran both the constraint-based and score-based version of Algorithms 1 and 2. In all tests
we used a 2 GB memory limit. The results are shown in Figure 3. It is clear that direct learning
is inferior compared to learning via variable DAGs. This is due to the fact that variables in
the direct learning approach have lots of states and thus direct learning requires lots of data
to draw any conclusions. Based on the results, it seems that the constraint-based approach
outperforms the score-based approach when there are few samples, and the roles are reversed
once the sample size grows.

6. Discussion

In this paper we introduced the concept of group DAG for modeling conditional independencies
and dependencies between groups of random variables, and studied prospects of learning group
DAGs. It turned out, perhaps unsurprisingly, that many aspects become more complicated
when moving from individual variables to groups of variables.

We have assumed that the variable groups are known beforehand, as prior knowledge, and
asked what can be done with the extra prior knowledge. A natural follow-up question is that
can the groups be learned from data. Even though this interesting question is superficially
related it is, however, a distinct and very different problem that is likely to require a different
machinery. Multiple different goals for such a clustering of variables are possible and sensible.
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