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Abstract
Maximum a posteriori (MAP) inference is a particularly complex type of probabilistic inference
in Bayesian networks. It consists of finding the most probable configuration of a set of variables
of interest given observations on a collection of other variables. In this paper we study scalable
solutions to the MAP problem in hybrid Bayesian networks parameterized using conditional linear
Gaussian distributions. We propose scalable solutions based on hill climbing and simulated anneal-
ing, built on the Apache Flink framework for big data processing. We analyze the scalability of the
solution through a series of experiments on large synthetic networks.
Keywords: MAP inference; hybrid Bayesian networks; scalable algorithms; Apache Flink.

1. Introduction

Today, omnipresent sensors are continuously providing streaming data on the environments in which
they operate. For instance, a typical monitoring and analysis system may use streaming data gen-
erated by sensors to monitor the status of a particular device and to make predictions about its
future behaviour, or diagnostically infer the most likely system configuration that has produced the
observed data. Sources of streaming data with even a modest updating frequency can produce ex-
tremely large volumes of data, thereby making efficient and accurate data analysis and prediction
difficult. One of the main challenges is related to handling uncertainty in the data, where princi-
pled methods and algorithms for dealing with uncertainty in massive data applications are required.
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Probabilistic graphical models (PGMs) provide a well-founded and principled approach for per-
forming inference and belief updating in complex domains endowed with uncertainty. In particular,
Bayesian networks (BNs) (Jensen and Nielsen, 2007; Kjærulff and Madsen, 2013; Pearl, 1988) have
enjoyed widespread attention in the last decades.

In this paper we focus on scenarios where data come in streams at high speed, and where a quick
response is required. Furthermore, we assume data to consist of observations of both discrete and
continuous variables, and that we are interested in querying a Bayesian network in order to obtain
the most probable configuration of specific variables of interest given observations of particular
evidence variables. As an example consider the problem of situation awareness while piloting
a plane. The system would constantly be receiving input in the form of data streams consisting of
discrete variables (flaps/ slats on or off, landing gear up or down, etc) as well as continuous variables
(ground speed, altitude, outside temperature, engine power, etc). For each observation in the stream,
the system would have to determine the most likely status of the pilot’s situation awareness, defined
in terms of variables such as the current flight situation (landing, take off, cruise, ...) and the degree
of the pilot’s awareness about the current situation (ranging from 0 to 1).

The process of answering such queries is called MAP (maximum a posteriori) inference and is of
special relevance and difficulty (Park, 2002; de Campos et al., 2001; Fu et al., 2013). MAP inference
is known to be NP-hard even for simple network structures like poly-trees and naı̈ve Bayes networks
(de Campos, 2011; Kwisthout, 2011). This makes approximate algorithms even more necessary for
handling practical situations, and current state-of-the-art algorithms range from algorithms based on
simplifying the problem structure and refining the solution afterwards (Choi and Darwiche, 2009)
to search-based algorithms guided by heuristic functions (Yuan and Hansen, 2009; Marinescu et al.,
2014, 2015). Common for these approaches is that they are restricted to domains where the variables
are discrete, and they are therefore not applicable for scenarios like the piloting example above.

The only specific works related to MAP inference in hybrid BNs we have found in the literature
are those of Sun and Chang (2011) and Weiss and Freeman (2010). However, they focus on prob-
lems where the maximum is computed over all non-observed variables, which is a special type of the
MAP problem called the most probable explanation (MPE). Furthermore, convergence to the global
solution is only guaranteed in the pure Gaussian case, replying on the unimodality of the Gaussian
density; the method may only reach a local optimum in multimodal settings. Also restricted to MPE
is the method proposed by Salmerón et al. (2015), where a lazy approach is taken in order to keep
inference complexity comparable with regular marginal inference.

In this paper, we propose scalable approaches to the MAP problem in hybrid Bayesian networks.
The proposals are based on hill climbing and simulated annealing and have been implemented on
top of Apache Flink (Alexandrov et al., 2014), a big data processing architecture compatible with
Map/Reduce schemes (Dean and Ghemawat, 2008). The remainder of the paper is organized as
follows. Basic definitions and notation is given in Section 2. Our proposal is described in Section 3
and is experimentally analyzed in Section 4. The paper ends with conclusions in Section 5.

2. Preliminaries

A BN consists of a directed acyclic graph, where the nodes correspond to random variables and the
arcs represent dependencies among them. Attached to each node in the graph, there is a conditional
probability distribution for the corresponding variable given its parents. By the chain rule, a BN
with N variables X = {X1, . . . , XN} defines a joint probability distribution that factorizes as
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p(X) =
∏N

i=1 p(Xi|Pa(Xi)), where Pa(Xi) are the parents of Xi in the graph. A BN is called
hybrid if it has both discrete and continuous variables. We will use lowercase letters to refer to
values or configurations of values, so that x corresponds to a value of the variable X and boldface
x refers to a configuration of the variables in X. The set of all possible configurations of a random
vector X is denoted by ΩX.

In a Conditional Linear Gaussian (CLG) Network (Lauritzen and Wermuth, 1989), the condi-
tional distribution of each discrete variable XD ∈ X given its parents is a multinomial distribu-
tion, whilst the conditional distribution of each continuous variable Z ∈ X with discrete parents
XD ⊆ X and continuous parents XC ⊆ X, is given as a normal density by

p(z|XD = xD,XC = xC) = N (z;αxD + βT
xD

xC , σxD) , (1)

for all xD ∈ ΩXD
and xC ∈ ΩXC

; αxD and βxD
are the coefficients of a linear regression model

of Z (there is one such set of coefficients for each configuration of the discrete parent variables).
Thus, the conditional mean of Z is a linear function of its continuous parents, while its standard
deviation, σD, only depends on the discrete parents. Finally it should be noted that a CLG network
does not allow continuous variables having discrete children.

2.1 The MAP inference problem

Generally, for the maximum a posteriori (MAP) inference problem we look for a configuration of
a particular subset of variables XI having maximum posterior probability given observation xE

of another set of variables XE : x∗I = arg maxxI∈ΩXI
p(xI |xE) = arg maxxI∈ΩXI

p(xI ,xE). If
XE ∪XI ⊂ X, the variables in the set X \ (XE ∪XI) should be marginalized out before doing
the maximization:

x∗I = arg max
xI∈ΩXI

∑
xD∈ΩXD\(XI∪XE)

∫
xC∈ΩXC\(XI∪XE)

p(x,xE)dxC . (2)

In the special case where X = XE ∪ XI , the inference problem is also referred to as finding the
most probable explanation (MPE) (Gámez, 2004).

Finding an exact solution to the general MAP problem has been shown to be NPPP complete
(Park, 2002). Furthermore, if N equals the number of variables in the model, approximating MAP
with an error-bound growing slower than exponentially in N is NP-hard (Park, 2002; Roth, 1996).
The complexity of the problem motivates the study of approximate algorithms, where the term
“approximate” here refers to the fact that the given solutions are not guaranteed to be optimal.

3. Scalable approximate MAP in CLG networks

The MAP problem is defined as the optimization problem in Equation (2), where the optimization
is carried out over p(xI ,xE). This distribution is obtained from p(x) after marginalizing out all the
variables that are not included in XI ∪XE . We will develop our proposal for doing MAP inference
in CLG networks by first analyzing the problem for discrete models, and then extend these to CLG
models. Afterwards we will consider how to parallelize the calculations required for the MAP
inference.
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3.1 MAP in discrete Bayesian network models

Assume first that the model only contains discrete variables. In this case, the MAP problem can be
approximately solved using well known optimization techniques like hill climbing (Park and Dar-
wiche, 2001) or simulated annealing (de Campos et al., 2001). The idea underlying both schemes
is to explore the space of possible solutions to the MAP problem (that is, configurations over XI )
by iteratively moving from a configuration to one of its “neighbours”, hopefully following a path
leading towards the most probable configuration. There are usually two ways of moving from one
configuration of the discrete variables to the next, namely by selecting an entirely new configura-
tion (potentially changing the value of all the involved variables) or by only partially modifying the
current configuration. These approaches are known as global and local search, respectively (Park
and Darwiche, 2001).

The details of the hill climbing method are given in Algorithm 1. It starts from an initial config-
uration over the variables of interest, XI = xI , and iteratively moves towards the optimum, making
sure never to move to a configuration worse than the current one while exploring the search space.
The exploration is determined by the call to GenerateConfiguration in Line 2, where the move-
ment in the search-space is defined; we shall return to this procedure in Section 3.2. The internals
of this procedure are outlined in Algorithm 3. It requires a pre-defined stopping criterion; some
popular choices are to establish a maximum number of iterations, a maximum number of consec-
utive non-improving iterations, or a target probability threshold. In practice, we found that setting
the maximum number of iterations to a relatively small number produces good results. Also this
algorithm is initiated by a guess about the configuration over the variables of interest.

The algorithm requires that the probability p(xI ,xE) is calculated in Line 3. It can be computed
using Equation (2), but that approach would require handling the joint distribution p(x,xE), which
is often computationally intractable. We therefore propose to approximate it using importance sam-
pling. Let us denote by X∗ variables that are not observed and are not part of the variables of
interest, i.e. X∗ = X \ (XI ∪XE), and let f∗ denote a density function called the sampling distri-
bution. f∗ can be selected arbitrarily, as long as it allocates strictly positive probability mass to any
configuration of X∗ where p has support, f∗(x) > 0 ∀x ∈ ΩX∗ . We follow the evidence weighting
scheme of Salmerón et al. (2015) and choose f∗ to be the product of the conditional distributions in
the network instantiated to xI and xE . Now, we can write p(xI ,xE) as:

p(xI ,xE) =
∑

x∗∈ΩX∗

p(xI ,xE ,x
∗) =

∑
x∗∈ΩX∗

p(xI ,xE ,x
∗)

f∗(x∗)
f∗(x∗)

= Ef∗

[
p(xI ,xE ,x

∗)

f∗(x∗)

]
≈ 1

n

n∑
i=1

p
(
xI ,xE ,x

∗(i))
f∗
(
x∗(i)

) , (3)

where
{
x∗(1), . . . ,x∗(n)

}
is a sample of size n drawn from f∗.

Algorithm 2 details the simulated annealing algorithm for obtaining a MAP estimate. This
technique is a well known optimization procedure designed to avoid local maxima during the search
process. This aspect of the search is controlled by the temperature parameter T , initialized in Line 2.
The algorithm uses the standard stopping criterion of terminating when the system is sufficiently
cold (T < ε). The three free parameters T , α, and ε must be set before the algorithm can run. The
values in Line 2 are the ones used in the experiments reported in this paper. Similar to Algorithm 1,
this algorithm is also initiated by an initial configuration over XI . We retain the new configuration
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HC MAP(B,xI ,xE ,r)
Input: A BN B defining a joint distribution p(x) over variables X, evidence XE = xE

(optional), an initial configuration of the variables of interest XI = xI , and the
number r of variables whose value will be changed to generate a new configuration.

Result: An approximate MAP estimate.
1 while stopping criterion not satisfied do
2 x∗I ← GenerateConfiguration(B, xI , xE , r)
3 if p(x∗I ,xE) ≥ p(xI ,xE) then
4 /* Improvement, so accept the new solution */
5 xI ← x∗I
6 end
7 end
8 return xI

Algorithm 1: Hill climbing algorithm for approximate MAP.

x∗I if it is better than the currently chosen one or if we randomly choose to do so (Line 7). Note how
the temperature T guides the search, from an almost completely random behaviour when T � 1
to almost completely greedy when T � 1. Again, we require the calculation of p(xI ,xE) (used
in Line 7 of Algorithm 2), and again we use importance sampling to approximately calculate this
value (see Equation (3)).

SA MAP(B,xI ,xE ,r)
Input: A BN B with variables X and joint distribution p(x), evidence XE = xE (optional),

an initial configuration of the variables of interest XI = xI , and the number r of
variables whose value will be changed to generate a new configuration.

Result: An approximate MAP estimate.
1 /* Default values of the temperature parameters */
2 T ← 1 000; α← 0.90; ε > 0
3 while T ≥ ε do
4 x∗I ← GenerateConfiguration(B, xI , xE , r)
5 /* Accept x∗I if its prob. increases or decreases < T · ln(1/τ)

*/
6 Simulate a random number τ ∼ U(0, 1)
7 if p(x∗I ,xE) > p(xI ,xE)/(T · ln(1/τ)) then
8 xI ← x∗I
9 end

10 /* Cool down the temperature */
11 T ← α · T
12 end
13 return xI

Algorithm 2: A simulated annealing algorithm for finding a MAP estimate.
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3.2 Hybrid models

In the case of hybrid models, we need to extend the above methods to also accommodate continuous
variables. Notice how Algorithms 1 and 2 above can both be used for CLG models as long as i) we
can approximately calculate p(x∗I ,xE), and ii) we define the procedure GenerateConfiguration
used by both algorithms to work with hybrid domains. The first point is not problematic, as the
importance sampling scheme of Equation (3) can be immediately extended to hybrid domains. The
definition of the search operator GenerateConfiguration is what we will discuss next.

The first step is to recognize an important feature of the MPE configuration of CLG networks.
Recall that discrete variables can never have continuous parents in a CLG network. Therefore, we
can define a topological ordering of the nodes in the DAG so that the discrete variables always
appear before the continuous ones in that order. As a consequence, if there is no evidence (XE = ∅)
it can easily be shown that the most probable configuration1 of the set of continuous variables
XC can be calculated for a given configuration of all the discrete variables XD = xD. For any
complete configuration of XD, the continuous variables represent a single multivariate Gaussian
distribution, and the MPE configuration is found by visiting the continuous variables in topological
order and selecting the mean of each variable conditioned on the values chosen for the parents,
see also Equation (1). Furthermore, since the multivariate Gaussian distribution marginalized onto
a subset of its variables is obtained by simply dropping irrelevant variables, it follows that this
procedure also works for obtaining a MAP configuration over the continuous variables given a full
configuration over XD.

Furthermore, this property also holds whenever the parents of any observed continuous variable
are either discrete or observed, that is, when

Pa(XC ∩XE) ⊆ XD ∪XE . (4)

However, if an unobserved variable Z1 is the parent of an observed variable Z2 the procedure cannot
be applied; when allocating the value of Z1 we are not taking the value of Z2 into account. In those
situations, the topological order of the continuous variables can be modified by using the so-called
arc reversal operation (Madsen, 2008; Cinicioglu and Shenoy, 2009), resulting in a new DAG where
the observed continuous variables (XC ∩XE) appear before the unobserved ones (XC \XE) in the
order. Unfortunately, this procedure can be computationally demanding in practice, and we propose
a more efficient approximate technique. Our particular proposal within the context of CLG networks
is to restrict the search space taking advantage of the property of CLG networks commented above.
More precisely, we propose to randomly generate new values for (at most) the discrete variables
and the continuous variables not satisfying Equation (4). The values of the remaining continuous
variables are then chosen in order to maximize the density of the resulting configuration. Note that
we define a full configuration over all the discrete variables, yet we only return the variables of
interest. The details are given in Algorithm 3, where the parameter r determines if we do global or
local search.

1. Note that we here slightly abuse terminology to ease the following presentation. Since all configurations of the
variables in a hybrid model have probability zero, we here use the term “most probable configuration” to denote the
configuration with the largest probability density.
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GenerateConfiguration(B, xI , xE , r)
Input: A BN B with N variables X = XD ∪XC and joint distribution p(x), evidence

XE = xE (optional), an initial configuration of the variables of interest XI = xI ,
and the number r of discrete variables whose value will be changed to generate a new
configuration

Result: A new configuration of the variables in XI .
1 Let x∗ be the part of configuration xI corresponding to discrete variables
2 for j ← 1 to r do
3 // Change the value of r different discrete variables
4 Randomly draw a discrete variable X from (XD ∩XI) \XE without replacement
5 Select a valid state x of variable X randomly and uniformly
6 Change the value of X to x in x∗

7 end
8 Append xE to x∗

9 foreach X ∈ XD \ (XI ∪XE) in topological order do
10 Simulate a value x for X using its conditional distribution instantiated to x∗

11 Append x to x∗

12 end
13 foreach X ∈ XC \XE : Pa(X) 6⊆ XD ∪XE in topological order do
14 // Handle continuous variables with ‘difficult’ evidence

patterns
15 Simulate a value x for X from its conditional distribution instantiated to x∗

16 Append x to x∗

17 end
18 foreach X ∈ XC \XE : Pa(X) ⊆ XD ∪XE in topological order do
19 // Change the value of the ‘simple’ continuous variables
20 Let x = µX|x∗ , the mean of X conditional on x∗

21 Append x to x∗

22 end
23 Remove from x∗ all the values corresponding to variables not in XI

24 return x∗

Algorithm 3: Procedure to move from one configuration of variables in a CLG BN to another
one.

3.3 Scalable implementation

The algorithms described above have been implemented as a part of of the AMIDST toolbox (Masegosa
et al., 2015, 2016), which is a Java library for scalable probabilistic machine learning 2. The imple-
mentation has been developed on top of Apache Flink (Alexandrov et al., 2014), a framework for
big data processing.

Since hill climbing and simulated annealing are iterative algorithms, a simple manner of par-
allelizing the execution is as follows. First, draw a certain number of samples from the BN ac-
cording to the probability distribution of the variables in the network given the evidence. This can

2. The toolbox can be downloaded from http://amidst.github.io/toolbox/.
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be achieved using forward sampling, i.e., simulating from root to leaves (Salmerón et al., 2015)
until a configuration compatible with the evidence is found. Then use each sample as the initial
guess for any of the optimization algorithms (hill climbing or simulated annealing), which can
be run in parallel to obtain M estimates of the MAP: x∗j = optimizationAlgorithm(xj), j =
1, 2, . . . ,M which are candidates to optimal solution. Finally, pick the best found solution, x∗ =
arg max1≤j≤M p(x∗j ,xE), as the MAP estimate.

Figure 1 shows the flow of computation of a Map/Reduce scheme for performing scalable MAP
Inference. Notice how several instantiations of the selected search algorithm are run for the input
evidence, based on different starting points. Multiple instantiations of the local variations can also
be executed. The output is the MAP estimate x∗I given each observation xE , which is computed
as the maximum of the local solutions obtained in each computing unit. Both Algorithm 1 and
Algorithm 2 are anytime algorithms, thus minimizing synchronization costs.

Figure 1: Illustration of the Map/Reduce scheme for MAP Inference. For each observation received
as input, the optimization is carried out from different starting points that are distributed
among the available computing units (C.U. in the figure). The final estimate is calculated
as the maximum of the local solutions.

4. Experimental evaluation

A number of experiments were carried out in order to assess the scalability of the proposed methods.
They have been tested when working on top of Apache Flink in two different environments: using
a single multi-core node and using a multi-node cluster. For the former scenario, the experiments
were run on a dual-processor AMD Opteron 2.8 GHz server with 32 cores and 64 GB of RAM,
running Linux Ubuntu 14.04.1 LTS. For the latter, we performed experiments with ad-hoc clusters
built within Amazon Web Services (AWS), making use of the Amazon Elastic Cloud Computing
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(EC2) and the Elastic MapReduce (EMR) technologies. In each case, there was a master node
managing a number of worker nodes. All the nodes employed were of type “m4.xlarge”, each with
16 GB of RAM and 4 vCPUs (virtual CPUs) having a Intel Xeon E5-2676 v3 (Haswell), 2.4 GHz,
processor. In our experiments, configurations with 1, 2, 4, 8, 16, and 32 cores/worker nodes were
tested.

The setting of the experiments was the following. We randomly generated hybrid BNs with
50, 100, and 200 variables, where half of the variables were categorical and half were continu-
ous. The evidence consisted of observations of 70% of the variables (randomly selected), whereas
10% of the variables were chosen as variables of interest. Thus, 20% of the variables should be
marginalized out. For both simulated annealing and hill climbing, 250 initial configurations of the
variables of interest were sampled from the BNs. The algorithms were then run for 200 iterations,
using 200 auxiliary samples for estimating the probabilities of each partial assignment (n = 200 in
Equation (3)). The experiments were repeated 5 times and the average runtimes were collected.

The execution times are plotted in Figure 2 for the multi-core scenario (left) and for the multi-
node scenario (right), along with the speed-up of each method. For both situations, the speed-up
was computed as the execution time with 1 core (resp. node) divided by the execution time with
the actually used number of cores (resp. nodes), thus giving a measure of the speed gain due to the
increase of available resources. Due to space limitations, we only show results for 200 variables
BNs, but the results are qualitatively similar for smaller networks. It can be seen that the different
methods exhibit good scalability properties, reaching a maximum speed-up of above 20 in the multi-
node scenario and of approximately 17 for the multi-core setup.
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Figure 2: MAP inference in Bayesian networks with 200 variables. Single multi-core node (left)
and multi-node cluster (right). In each plot, the mean execution time to obtain the MAP
estimate is shown on the left scale and the corresponding speed-up is shown on the right
scale. For the local version of the algorithms, the parameter r was set to 3.

Finally, the scalability in terms of precision was also analyzed by fixing the number of starting
points per core, so that the total number of starting points is proportional to the number of available
computing units. The execution times are therefore approximately the same independently of the
number of computing resources. This analysis was performed with a randomly generated Bayesian
network consisting of 200 variables, 20% of which were set as variables of interest and another 50%
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was set as evidence variables. The different algorithms were run 10 times, with different starting
points, and the log-probabilities of the resulting MAP estimates were computed.

The log-probabilities were calculated using Equation (3) with n sufficiently large (starting from
200,000). To ensure an accurate estimation, the log-probabilities were independently estimated
three times and the relative standard error was computed, as the standard error divided by the abso-
lute value of the mean. If it was greater than 1%, then the value of n was increased by a factor of
4 and the log-probabilities were reestimated. This process was repeated until the relative standard
error was lower than the set threshold, by which time the final probability was computed as the
average of the three last estimates.

The distributions of the log-probabilities of the MAP estimates are depicted in Figure 3 for
the different methods. The figures show an improvement in the quality of the estimates as more
computing resources are used. This effect becomes particularly clear for the median values, which
are increasing for all methods and at the same time the variance is steadily reduced.
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Figure 3: Estimated log-probabilities of the MAP configurations found by each algorithm.

5. Conclusion

In this paper we have studied the problem of performing MAP inference in hybrid BNs from the
perspective of scalability. Our analysis focused on CLG networks, which constitute the core of
the literature on hybrid BNs. We have described solutions based on simulated annealing and hill
climbing, showing how both schemes can be appropriately implemented using MapReduce-based
designs. Both solutions have been implemented on top of Apache Flink and tested on a multi-core
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server as well as on the Amazon Cluster through AWS. The experimental results demonstrate the
scalability of our proposals, both in terms of speed-up and accuracy improvements.
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