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Abstract
Bayesian network structure learning is often performed in a Bayesian setting, by evaluating can-
didate structures using their posterior probabilities for a given data set. Score-based algorithms
then use those posterior probabilities as an objective function and return the maximum a posteriori
network as the learned model. For discrete Bayesian networks, the canonical choice for a posterior
score is the Bayesian Dirichlet equivalent uniform (BDeu) marginal likelihood with a uniform (U)
graph prior (Heckerman et al., 1995). Its favourable theoretical properties descend from assuming a
uniform prior both on the space of the network structures and on the space of the parameters of the
network. In this paper, we revisit the limitations of these assumptions; and we introduce an alterna-
tive set of assumptions and the resulting score: the Bayesian Dirichlet sparse (BDs) empirical Bayes
marginal likelihood with a marginal uniform (MU) graph prior. We evaluate its performance in an
extensive simulation study, showing that MU+BDs is more accurate than U+BDeu both in learning
the structure of the network and in predicting new observations, while not being computationally
more complex to estimate.
Keywords: Bayesian networks; structure learning; graph prior; marginal likelihood; discrete data.

1. Introduction

Bayesian networks (BNs; Pearl, 1988; Koller and Friedman, 2009) are a class of statistical models
composed by a set of random variables X = {X1, . . . , XN} and by a directed acyclic graph (DAG)
G = (V, A) in which each node in V is associated with one of the random variables in X (they are
usually referred to interchangeably). The arcs in A express direct dependence relationships among
the variables in X; graphical separation of two nodes implies the conditional independence of the
corresponding random variables. In principle, there are many possible choices for the joint distribu-
tion of X; literature has focused mostly on discrete BNs (Heckerman et al., 1995), in which both X
and theXi are multinomial random variables and the parameters of interest are the conditional prob-
abilities associated with each variable, usually represented as conditional probability tables. Other
possibilities include Gaussian BNs (Geiger and Heckerman, 1994) and conditional linear Gaussian
BNs (Lauritzen and Wermuth, 1989).

The task of learning a BN from data is performed in two steps in an inherently Bayesian setting.
Consider a data set D and a BN B = (G,X). If we denote the parameters of the joint distribution
of X with Θ, we can assume without loss of generality that Θ uniquely identifies X in the family
of distributions chosen to model D and write

P(B |D) = P(G,Θ | D)︸ ︷︷ ︸
learning

= P(G |D)︸ ︷︷ ︸
structure learning

· P(Θ | G,D)︸ ︷︷ ︸
parameter learning

. (1)

Structure learning consists in finding the DAG G that encodes the dependence structure of the
data. Three general approaches to learn G from D have been explored in the literature: constraint-



AN EMPIRICAL-BAYES SCORE FOR DISCRETE BAYESIAN NETWORKS

based, score-based and hybrid. Constraint-based algorithms use conditional independence tests such
as mutual information (Cover and Thomas, 2006) to assess the presence or absence of individual
arcs in G. Score-based algorithms are typically heuristic search algorithms and use a goodness-of-fit
score such as BIC (Schwarz, 1978) or the Bayesian Dirichlet equivalent uniform (BDeu) marginal
likelihood (Heckerman et al., 1995) to find an optimal G. For the latter a uniform (U) prior over the
space of DAGs is assumed for simplicity. Hybrid algorithms combine the previous two approaches,
using conditional independence tests to restrict the search space in which to perform a heuristic
search for an optimal G. For some examples, see Aliferis et al. (2010), Larrañaga et al. (1997),
Cussens (2011) and Tsamardinos et al. (2006).

Parameter learning involves the estimation of the parameters Θ given the DAG G learned in
the first step. Thanks to the Markov property (Pearl, 1988), this step is computationally efficient
because if the data are complete the global distribution of X decomposes into

P(X | G) =
N∏
i=1

P(Xi |ΠXi) (2)

and the local distribution associated with each node Xi depends only on the configurations of the
values of its parents ΠXi . Note that this decomposition does not uniquely identify a BN; different
DAGs can encode the same global distribution, thus grouping BNs into equivalence classes (Chick-
ering, 1995) characterised by the skeleton of G (its underlying undirected graph) and its v-structures
(patterns of arcs of the type Xj → Xi ← Xk).

In the remainder of this paper we will focus on discrete BN structure learning in a Bayesian
framework. In Section 2 we will describe the canonical marginal likelihood used to identify maxi-
mum a posteriori (MAP) DAGs in score-based algorithms, BDeu, and the uniform prior U over the
space of the DAGs. We will review and discuss their underlying assumptions and fundamental prop-
erties. In Section 3 we will address some of their limitations by introducing a new set of assumptions
and the corresponding modified posterior score, which we will call the Bayesian Dirichlet sparse
(BDs) marginal likelihood with a marginal uniform (MU) prior. Based on the results of an extensive
simulation study, in Section 4 we will show that MU+BDs is preferable to U+BDeu because it is
more accurate in learning G from the data; and because the resulting BNs provide better predictive
power than those learned using U+BDeu.

2. The Bayesian Dirichlet Equivalent Uniform Score (BDeu) with a Uniform Prior
(U)

Starting from (1), we can decompose P(G |D) into

P(G |D) ∝ P(G) P(D |G) = P(G)

∫
P(D |G,Θ) P(Θ | G)dΘ (3)

where P(G) is the prior distribution over the space of the DAGs and P(D |G) is the marginal like-
lihood of the data given G averaged over all possible parameter sets Θ. Using (2) we can then
decompose P(D |G) into one component for each node as follows:

P(D |G) =
N∏
i=1

P(Xi |ΠXi) =
N∏
i=1

[∫
P(Xi |ΠXi ,ΘXi) P(ΘXi |ΠXi)dΘXi

]
. (4)
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In the case of discrete BNs, we assume Xi |ΠXi ∼ Multinomial(ΘXi |ΠXi) where the ΘXi |ΠXi

are the conditional probabilities πijk = P(Xi = k |ΠXi = j). We then assume a conjugate prior
ΘXi |ΠXi ∼ Dirichlet(αijk),

∑
jk αijk = αi > 0 to obtain the posterior Dirichlet(αijk + nijk)

which we use to estimate the πijk from the counts nijk observed inD. αi is known as the imaginary
or equivalent sample size and determines how much weight is assigned to the prior in terms of the
size of an imaginary sample supporting it.

Further assuming positivity (πijk > 0), parameter independence (πijk for different parent con-
figurations are independent), parameter modularity (πijk associated with different nodes are in-
dependent) and complete data, Heckerman et al. (1995) derived a closed form expression for (4),
known as the Bayesian Dirichlet (BD) score:

BD(G,D;α) =
N∏
i=1

BD(Xi,ΠXi ;αi) =
N∏
i=1

qi∏
j=1

[
Γ(αij)

Γ(αij + nij)

ri∏
k=1

Γ(αijk + nijk)

Γ(αijk)

]
(5)

where ri is the number of states of Xi; qi is the number of configurations of ΠXi ; nij =
∑

k nijk;
and αij =

∑
k αijk. For αijk = 1, αi = riqi we obtain the K2 score from Cooper and Herskovits

(1991); and for αijk = α/(riqi), αi = α we obtain the Bayesian Dirichlet equivalent uniform
(BDeu) score from Heckerman et al. (1995), which is the most common choice used in score-based
algorithms to estimate P(G |D). It can be shown that BDeu is score equivalent (Chickering, 1995),
that is, it takes the same value for DAGs that encode the same probability distribution. The uniform
prior over the parameters associated with eachXi |ΠXi was justified by the lack of prior knowledge
and widely assumed to be non-informative.

However, there is an increasing amount of evidence that such a set of assumptions leads to a
prior that is far from non-informative and that has a strong impact on the quality of the learned
DAGs. Silander et al. (2007) showed via simulation that the MAP DAGs selected using BDeu
are highly sensitive to the choice of α. Even for “reasonable” values such as α ∈ [1, 20], they
obtained DAGs with markedly different number of arcs, and they showed that large values of α
tend to produce DAGs with more arcs. This is counter-intuitive because larger α would normally be
expected to result in stronger regularisation and sparser BNs. Steck and Jaakkola (2003) similarly
showed that the number of arcs in the MAP network is determined by a complex interaction between
α and D; in the limits α → 0 and α → ∞ it is possible to obtain both very sparse and very dense
DAGs. Furthermore, they argued that BDeu can be rather unstable for “medium-sized” data and
small α, which is a very common scenario. Steck (2008) approached the problem from a different
perspective and derived an analytic approximation for the “optimal” value of α that maximises
predictive accuracy, further suggesting that the interplay between α and D is controlled by the
skewness of the P(Xi |ΠXi) and by the strength of the dependence relationships between the nodes.
These results have been analytically confirmed more recently by Ueno (2010, 2011).

As far as P(G) is concerned, the most common choice is the uniform (U) distribution P(G) ∝ 1;
the space of the DAGs grows super-exponentially inN (Harary and Palmer, 1973) and that makes it
extremely difficult to specify informative priors (Castelo and Siebes, 2000; Mukherjee and Speed,
2008). In our previous work (Scutari, 2013), we explored the first- and second-order properties of
U and we showed that for each possible pair of nodes (Xi, Xj)

−→pij =←−pij ≈
1

4
+

1

4(N − 1)
and p̊ij ≈

1

2
− 1

2(N − 1)
, (6)
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where −→pij = P({Xi → Xj} ∈ A), ←−pij = P({Xi ← Xj} ∈ A) and p̊ij = P({Xi → Xj ,
Xi ← Xj} 6∈ A). This prior distribution is asymptotically (marginally) uniform over both arc pres-
ence and direction: each arc is present in G with probability 1/2 and, when present, it appears in each
direction with probability 1/2. We also showed that two arcs are correlated if they are incident on a
common node and uncorrelated otherwise through exhaustive enumeration of all possible DAGs for
N 6 7 and through simulation for larger N . This suggests that false positives and false negatives
can potentially propagate through P(G) as well as P(D |G) and lead to further errors in learning G.

3. The Bayesian Dirichlet Sparse Score (BDs) with a marginal uniform (MU) prior

It is clear from the literature review in Section 2 that assuming uniform priors for ΘXi |ΠXi and G
can have a negative impact on the quality of the DAGs learned using BDeu. Therefore, we propose
an alternative set of assumptions; we call the resulting score the Bayesian Dirichlet sparse (BDs)
marginal likelihood with a marginal uniform (MU) prior.

Firstly, we consider the marginal likelihood BDeu. Starting from (5), we can write it as

BDeu(G,D;α) =

N∏
i=1

BDeu(Xi,ΠXi ;α) =

N∏
i=1

qi∏
j=1

[
Γ(riα

∗
i )

Γ(riα∗
i + nij)

ri∏
k=1

Γ(α∗
i + nijk)

Γ(α∗
i )

]
(7)

where α∗
i = α/(riqi). If the positivity assumption is violated or the sample size n is small, there

may be configurations of some ΠXi that are not observed in D. In such cases nij = 0 and

BDeu(Xi,ΠXi ;α) =
∏

j:nij=0

[
���������Γ(riα

∗
i )

Γ(riα∗
i )

ri∏
k=1

Γ(α∗
i )

Γ(α∗
i )

] ∏
j:nij>0

[
Γ(riα

∗
i )

Γ(riα∗
i + nij)

ri∏
k=1

Γ(α∗
i + nijk)

Γ(α∗
i )

]
.

(8)
This implies that the effective imaginary sample size decreases as the number of unobserved parents
configurations increases, since

∑
j:nij>0

∑
k α

∗
i 6

∑
jk α

∗
i = α. In turn, the posterior estimates of

πijk gradually converge to the corresponding maximum likelihood estimates thus favouring overfit-
ting and the inclusion of spurious arcs in G. Furthermore, the comparison between DAGs with very
different number of arcs may be inconsistent because of the respective effective imaginary sample
sizes will be different. Steck and Jaakkola (2003) and Silander et al. (2007) observed both these
phenomena, indeed linking them to the interplay between α and D.

To address these two undesirable features of BDeu we replace α∗
i in (7) with

α̃i =

{
α/(riq̃i) if nij > 0

0 otherwise.
where q̃i = {number of ΠXi such that nij > 0}. (9)

Note that (9) is still piece-wise uniform, but now
∑

j:nij>0

∑
k α̃i = α so the effective imaginary

sample size is equal to α even for sparse data. Intuitively, we are defining a uniform prior just
on the conditional distributions we can estimate from D, thus moving from a fully Bayesian to an
empirical Bayes score. Plugging (9) in (5) we obtain BDs:

BDs(Xi,ΠXi ;α) =
∏

j:nij>0

[
Γ(riα̃i)

Γ(riα̃i + nij)

ri∏
k=1

Γ(α̃i + nijk)

Γ(α̃i)

]
(10)
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If the positivity assumption holds, we will eventually observe all parents configurations in the data
and thus BDs(Xi,ΠXi ;α)→ BDeu(Xi,ΠXi ;α) as n→∞. Note, however, that BDs is not score
equivalent for finite n unless all nij > 0. A numeric example is given below, which also highlights
how BDs can be computed in the same time as BDeu.

Example 1 Consider two binary variables X1 and X2 with data D comprising x11 = 0, x12 = 0,
x21 = 2, x22 = 5 where xij = #{X1 = i,X2 = j}. If α = 1, G1 = {X1 → X2} and
G2 = {X2 → X1}

BDs(G1,D; 1) =[
Γ(1)

Γ(1 + 7)

Γ(1/2 + 0)Γ(1/2 + 7)

Γ(1/2)Γ(1/2)

] [
Γ(1)

Γ(1 + 7)

Γ(1/2 + 2)Γ(1/2 + 5)

Γ(1/2)Γ(1/2)

]
= 0.0006,

BDs(G2,D; 1) =

[
Γ(1)

Γ(1 + 7)

Γ(1/2 + 2)Γ(1/2 + 5)

Γ(1/2)Γ(1/2)

]
[

Γ(1/2)Γ(1/2)

Γ(1/2 + 2)Γ(1/2 + 5)

Γ(1/4 + 0)Γ(1/4 + 0)Γ(1/4 + 2)Γ(1/4 + 5)

Γ(1/4)Γ(1/4)Γ(1/4)Γ(1/4)

]
= 0.0009;

as a term of comparison the empty DAG G0 has BDs(G0,D) = 0.0009.

In the general case we have BDs(Xi,ΠXi ;α) = BDeu(Xi,ΠXi ;α ∗ qi/q̃i) which breaks the
score equivalence condition in Heckerman et al. (1995) because of the uneven imaginary sample size
associated with each node (like the K2 score). We can interpret α∗qi/q̃i as an adaptive regularisation
hyperparameter that penalises Xi |ΠXi that are not fully observed inD, which typically correspond
to Xi with a large number of incoming arcs. Since Steck and Jaakkola (2003) showed that BDeu
favours the inclusion of spurious arcs for sparse Xi |ΠXi , this adaptive regularisation should lead
to sparser DAGs and reduce overfitting, in turn improving predictive accuracy as well.

Secondly, we propose a modified prior over for G with the same aims. We start from the con-
sideration that score-based structure learning algorithms typically generate new candidate DAGs by
a single arc addition, deletion or reversal. So, for example

P(G ∪ {Xj → Xi} |D) > P(G |D)⇒ accept G ∪ {Xj → Xi} and discard G. (11)

When using the U prior we can rewrite (11) as

P(G ∪ {Xj → Xi} |D)

P(G |D)
=

����������P(G ∪ {Xj → Xi})
P(G)

P(D |G ∪ {Xj → Xi})
P(D |G)

> 1. (12)

The fact that U always simplifies is equivalent to assigning equal probabilities to all possible states
of an arc (subject to the acyclicity constraint), say −→pij = ←−pij = p̊ij = 1/3 using the notation in
(6). In other words, U favours the inclusion of new arcs in G (subject to the acyclicity constraint)
as −→pij +←−pij = 2/3. Since Scutari (2013) also showed that arcs incident on a common node are
correlated and may favour each other’s inclusion, U may then contribute to overfitting G.

Therefore, we introduce the marginal uniform (MU) prior, in which we assume an independent
prior for each arc as in Castelo and Siebes (2000), with probabilities

−→pij =←−pij =
1

4
and p̊ij =

1

2
for all i 6= j (13)
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as in Scutari (2013). These assumptions make MU computationally trivial to use: the ratio of
the prior probabilities is 1/2 for arc addition, 2 for arc deletion and 1 for arc reversal, for all arcs.
Furthermore, arc inclusion now has the same prior probability as arc exclusion (−→pij +←−pij = p̊ij =
1/2) and arcs incident on a common are no longer correlated, thus limiting overfitting and preventing
the inclusion of spurious arcs to propagate. However, the marginal distribution for each arc is the
same as in (6) for large N , hence the name “marginal uniform”.

4. Simulation Study

We assessed BDs and MU on a set of 10 reference BNs (Table 1) covering a wide range of N (8
to 442), p = |Θ| (18 to 77K) and number of arcs |A| (8 to 602). For each BN, we generated 20
training samples of size n/p = 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 (to allow for meaningful comparisons
between BNs with such different N and p) and we learned G using U+BDeu, U+BDs, MU+BDeu
and MU+BDs with α = 1, 5, 10 on each sample. For U + BDeu we also considered the optimal
α from Steck (2008), denoted αS . In addition, we considered BIC as a term of comparison, since
log BDeu→ BIC as n→∞. We measured the performance of different scoring strategies in terms
of the quality of the learned DAG using the SHD distance (Tsamardinos et al., 2006) from the GREF

of the reference BN; in terms of the number of arcs compared to |AREF| in GREF; and in terms of
predictive accuracy, computing the log-likelihood on a test set of size 10K as an approximation of
the corresponding Kullback-Leibler distance. For parameter learning, we used Dirichlet posterior
estimates and α = 1 as suggested in Koller and Friedman (2009). All simulations were performed
using the hill-climbing implementation in the bnlearn R package (Scutari, 2010), which provides
several options for structure learning, parameter learning and inference on BNs (including the pro-
posed MU and BDs). Since α = 5 produced performance measures that are always in between
those for α = 1 and α = 10, we omit its discussion for brevity.

SHD distances are reported in Table 2. MU+BDs outperforms U+BDeu for all BNs and n/p and
is the best score overall in 41/60 simulations. BIC also outperforms U+BDeu in 39/60 simulations
and is the best score overall in 9/60. For U+BDeu, α = 1 always results in a lower SHD than αs
and α = 10, which is in agreement with Ueno (2010). The improvement in SHD given by using
BDs instead of BDeu and by using MU instead of U appears to be largely non-additive; MU+BDs
in most cases has the same or nearly the same SHD as the best between U+BDs and MU+BDeu.
However, MU+BDeu is tied with MU+BDs for the best SHD more often than U+BDs (21/60 vs
11/60) which suggests improvements in SHD can be attributed more to the use of MU than that of

network N |A| p network N |A| p
ALARM 37 46 509 HAILFINDER 56 66 2656
ANDES 223 338 1157 HEPAR 2 70 123 1453
ASIA 8 8 18 INSURANCE 27 52 984
CHILD 20 25 230 PATHFINDER 135 200 77155
DIABETES 413 602 429409 PIGS 442 592 5618

Table 1: Reference BNs from the BN repository (Scutari, 2012) with the respective numbers of
nodes (N ), numbers of arcs (|A|) and numbers of parameters (p = |Θ|).
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NETWORK n/p
BIC U + BDeu U + BDs MU + BDeu MU + BDs

1 αS 10 1 10 1 10 1 10

ALARM

0.1 55.5 78.0 80.5 112.7 64.2 87.3 53.0 83.5 53.0 65.5
0.2 50.8 49.2 56.1 92.8 49.5 75.2 39.6 68.3 39.6 56.2
0.5 40.8 35.5 41.9 72.0 34.9 61.5 31.3 53.5 31.3 46.1
1.0 33.7 31.9 37.6 62.6 29.1 51.8 27.1 49.8 27.1 42.1
2.0 28.1 26.3 31.9 53.1 23.1 44.5 22.9 41.0 22.9 36.5
5.0 22.6 24.4 30.1 41.6 20.9 35.0 20.4 31.6 20.4 28.9

ANDES

0.1 367.6 642.1 997.6 1071.0 786.5 1367.8 439.9 765.9 439.9 829.9
0.2 278.3 450.1 686.9 773.4 522.8 957.0 313.0 560.4 313.0 572.4
0.5 197.4 264.9 445.3 576.0 278.4 590.7 197.1 409.1 197.1 386.2
1.0 147.3 196.3 320.7 467.1 196.3 434.3 143.3 331.4 143.3 299.4
2.0 116.2 142.6 246.6 388.3 139.4 345.5 109.9 280.2 109.9 243.9
5.0 78.3 103.5 172.2 289.2 100.8 253.6 78.2 206.5 78.2 176.5

ASIA

0.1 8.3 16.9 16.9 16.9 8.3 8.3 8.0 8.0 8.0 8.0
0.2 8.6 14.1 14.1 14.1 8.5 8.5 8.5 8.0 8.5 8.0
0.5 8.4 10.9 11.1 14.4 8.6 10.1 8.5 8.8 8.5 8.0
1.0 8.3 9.7 9.8 14.1 8.5 11.2 8.2 10.7 8.2 9.6
2.0 8.1 8.2 8.3 13.2 8.6 12.2 7.2 10.2 7.2 9.6
5.0 6.0 5.9 5.9 11.5 5.7 10.3 5.7 9.7 5.7 8.1

CHILD

0.1 28.4 39.6 44.8 51.5 38.6 46.5 31.6 36.5 31.6 33.6
0.2 25.2 26.9 33.0 36.0 29.9 38.1 24.6 27.5 24.6 27.8
0.5 21.0 21.1 23.6 25.0 21.4 24.6 18.9 21.1 18.9 20.7
1.0 18.5 18.1 20.0 19.9 18.1 20.0 17.7 18.0 17.7 17.8
2.0 16.1 17.0 15.6 15.4 17.0 15.4 15.8 13.4 15.8 13.4
5.0 14.4 14.7 12.4 12.3 14.7 12.3 12.8 9.4 12.8 9.4

DIABETES

0.1 484.3 399.9 522.6 444.8 387.8 378.8 400.4 429.5 400.4 378.6
0.2 549.4 381.0 533.2 435.0 377.5 383.2 381.0 385.6 381.0 377.3
0.5 416.8 399.6 531.2 440.0 387.9 373.9 392.2 430.0 392.2 373.9
1.0 412.3 373.0 530.9 420.3 375.0 372.2 368.5 415.8 368.5 372.1
2.0 384.8 380.9 551.6 435.3 365.6 395.7 375.7 432.8 375.7 395.0
5.0 402.1 413.6 599.0 465.0 408.0 427.0 412.6 465.8 412.6 426.7

HAILFINDER

0.1 63.1 66.4 49.6 50.4 62.0 46.1 63.0 48.0 63.0 48.1
0.2 48.9 54.7 44.1 40.8 50.6 36.3 51.7 38.4 51.7 45.3
0.5 31.9 40.0 46.9 35.1 34.7 29.9 36.8 32.1 36.8 38.5
1.0 34.5 33.8 48.4 40.5 31.1 35.3 30.7 39.2 30.7 35.2
2.0 36.4 42.0 38.8 38.4 36.0 33.3 39.0 37.1 39.0 33.1
5.0 16.9 24.4 27.9 21.1 18.4 15.1 21.4 19.0 21.4 15.0

HEPAR2

0.1 143.0 183.7 226.7 269.9 192.4 292.2 149.1 209.8 149.1 210.2
0.2 126.6 153.7 183.8 220.2 157.4 231.1 134.3 175.6 134.3 171.9
0.5 101.5 115.1 138.6 166.6 116.8 167.3 105.3 138.2 105.3 134.2
1.0 85.0 93.0 108.5 132.8 94.2 128.1 88.0 109.8 88.0 105.8
2.0 73.9 76.5 89.3 106.6 77.5 102.3 75.0 89.0 75.0 87.0
5.0 58.6 60.1 63.0 73.0 60.5 69.5 58.7 62.2 58.6 59.5

INSURANCE

0.1 49.5 50.6 57.1 67.8 53.0 63.0 48.5 59.7 48.5 56.9
0.2 46.3 47.5 55.5 63.8 49.4 60.1 45.9 58.5 45.9 53.7
0.5 46.9 45.9 52.5 59.0 45.9 52.2 43.6 55.5 43.6 49.1
1.0 49.8 42.3 48.0 53.6 43.7 50.2 42.3 51.0 42.2 46.3
2.0 46.4 42.9 48.0 53.9 42.8 49.0 43.0 51.6 42.6 46.2
5.0 47.1 39.5 44.3 48.8 39.1 46.2 39.5 47.2 39.1 44.6

PATHFINDER

0.1 278.2 269.2 398.1 345.9 250.3 292.9 237.8 309.0 237.8 257.9
0.2 261.0 256.2 382.7 336.2 221.1 251.2 234.2 304.6 234.2 246.8
0.5 259.6 255.0 351.6 299.4 189.2 203.2 234.2 277.4 234.2 193.7
1.0 240.2 242.8 342.0 289.4 171.3 182.6 220.5 264.9 220.5 173.8
2.0 225.9 232.3 333.9 277.8 156.9 169.7 218.2 253.2 218.2 177.8
5.0 218.5 208.1 320.5 263.4 124.7 130.2 189.8 239.2 189.8 119.5

PIGS

0.1 130.7 114.8 155.4 203.3 116.2 163.0 106.3 166.7 106.3 146.7
0.2 118.0 137.1 142.3 165.6 136.7 127.5 127.5 143.2 127.5 111.5
0.5 131.1 132.9 134.8 142.4 131.3 110.5 122.6 126.5 122.6 95.4
1.0 133.8 135.2 136.2 138.9 132.5 104.8 122.0 124.5 122.0 91.2
2.0 138.7 142.8 143.6 144.8 137.2 109.0 128.2 128.8 128.2 89.0
5.0 149.8 155.5 155.1 156.6 150.2 116.9 140.6 140.7 140.6 99.2

Table 2: Average SHD distance from GREF (lower is better, best in bold).
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BDs. The higher SHD for U+BDeu is a consequence of the higher number of arcs present in the
learned DAGs, shown in Table 3. Both MU+BDs and BIC learn fewer arcs than U+BDeu in 59/60
simulations for both α = 1 and α = 10; U+BDeu learns too many arcs (i.e., the ratio with |AREF|
is greater than 1) in 38/60 simulations even for α = 1, as opposed to 23/60 (MU+BDs) and 18/60
(BIC). As we argued in Section 3, replacing U with MU results in DAGs with fewer arcs for all
BNs and n/p. Replacing BDeu with BDs results in fewer arcs in 32/60 simulations for α = 1 and
in 59/60 for α = 10, which suggests that the overfitting observed for U+BDeu can be attributed to
both U and BDeu.

The rescaled predictive log-likelihoods in Table 4 show that U+BDeu never outperforms MU+BDs
for n/p < 1.0 for the same α; for larger n/p all scores are tied, and are not reported for brevity.
U+BDeu for αs is at best tied with the corresponding score for α = 1 or α = 10. The overall best
score is MU+BDs for 7/10 BNs and BIC for the remaining 3/10.

5. Conclusions and Discussion

In this paper we proposed a new posterior score for discrete BN structure learning. We defined it as
the combination of a new prior over the space of DAGs, the “marginal uniform” (MU) prior, and of
a new empirical Bayes marginal likelihood, which we call “Bayesian Dirichlet sparse” (BDs). Both
have been designed to address the inconsistent behaviour of the classic uniform (U) prior and of
BDeu explored by Silander et al. (2007), Steck and Jaakkola (2003) and Ueno (2010) among others.
In particular, our aim was to prevent the inclusion of spurious arcs.

In an extensive simulation study using 10 reference BNs we find that MU+BDs outperforms
U+BDeu for all combinations of BN and sample sizes, both in the quality of the learned DAGs
and in predictive accuracy. This is achieved without increasing the computational complexity of
the posterior score, since MU+BDs can be computed in the same time as U+BDeu. In this respect,
the posterior score we propose is preferable to similar proposals in the literature. For instance, the
NIP-BIC score from Ueno (2011) and the NIP-BDe/Expected log-BDe scores from Ueno and Uto
(2012) outperform BDeu but at a significant computational cost. The same is true for the optimal
α proposed by Steck (2008) for BDeu, whose estimation requires multiple runs of the structure
learning algorithm to converge. The Max-BDe and Min-BDe scores in Scanagatta et al. (2014)
overcome in part the limitations of BDeu by optimising for either goodness of fit at the expense of
predictive accuracy, or vice versa. As a further term of comparison, we also included BIC in the
simulation; while it outperforms U+BDeu in some circumstances and it is computationally efficient,
MU+BDs is better overall in the DAGs it learns and in predictive accuracy.

References

C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. Local Causal and
Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part
I: Algorithms and Empirical Evaluation. Journal of Machine Learning Research, 11:171–234,
2010.

R. Castelo and A. Siebes. Priors on Network Structures. Biasing the Search for Bayesian Networks.
International Journal of Approximate Reasoning, 24(1):39–57, 2000.

445



SCUTARI

NETWORK n/p
BIC U + BDeu U + BDs MU + BDeu MU + BDs

1 αS 10 1 10 1 10 1 10

ALARM

0.1 0.596 1.635 1.697 2.550 1.329 1.875 1.040 1.854 1.040 1.351
0.2 0.662 1.272 1.448 2.278 1.321 1.874 1.049 1.730 1.049 1.436
0.5 0.746 1.174 1.290 1.993 1.213 1.775 1.060 1.605 1.060 1.436
1.0 0.859 1.165 1.302 1.830 1.180 1.667 1.071 1.553 1.071 1.426
2.0 0.972 1.117 1.236 1.664 1.098 1.528 1.064 1.445 1.064 1.377
5.0 1.092 1.098 1.208 1.457 1.086 1.386 1.061 1.286 1.061 1.252

ANDES

0.1 1.069 1.910 3.020 3.248 2.339 4.121 1.294 2.329 1.294 2.510
0.2 1.032 1.550 2.303 2.570 1.764 3.115 1.129 1.926 1.129 1.963
0.5 1.018 1.224 1.794 2.195 1.258 2.236 1.011 1.694 1.011 1.622
1.0 1.011 1.156 1.556 1.999 1.154 1.898 0.991 1.593 0.991 1.496
2.0 1.007 1.073 1.399 1.829 1.063 1.702 0.996 1.507 0.996 1.399
5.0 0.999 1.056 1.275 1.642 1.046 1.541 0.970 1.394 0.970 1.309

ASIA

0.1 0.163 2.038 2.038 2.038 0.163 0.163 0.000 0.000 0.000 0.000
0.2 0.338 1.669 1.669 1.669 0.163 0.163 0.163 0.000 0.163 0.000
0.5 0.381 1.306 1.337 1.744 0.412 0.706 0.281 0.662 0.281 0.150
1.0 0.312 1.031 1.094 1.731 0.338 0.881 0.231 1.044 0.231 0.463
2.0 0.544 1.025 1.031 1.769 0.762 1.325 0.544 1.238 0.544 0.838
5.0 0.688 1.012 1.012 1.781 0.863 1.406 0.700 1.356 0.700 1.019

CHILD

0.1 0.442 1.150 1.470 1.802 1.114 1.564 0.788 1.098 0.788 0.956
0.2 0.588 0.894 1.250 1.366 1.014 1.444 0.744 0.992 0.744 0.998
0.5 0.642 0.730 1.080 1.134 0.744 1.132 0.658 0.942 0.658 0.950
1.0 0.730 0.774 1.006 1.020 0.772 1.016 0.736 0.912 0.736 0.920
2.0 0.808 0.842 1.000 0.994 0.842 0.994 0.820 0.962 0.820 0.962
5.0 0.914 0.908 1.046 1.034 0.908 1.034 0.898 1.012 0.898 1.012

DIABETES

0.1 1.023 1.107 1.419 1.252 1.122 1.158 1.107 1.229 1.107 1.157
0.2 1.065 1.115 1.447 1.237 1.136 1.169 1.115 1.200 1.115 1.168
0.5 1.051 1.150 1.442 1.224 1.158 1.189 1.138 1.205 1.138 1.189
1.0 1.048 1.156 1.499 1.236 1.164 1.193 1.149 1.228 1.149 1.193
2.0 1.083 1.176 1.539 1.281 1.192 1.264 1.167 1.276 1.167 1.262
5.0 1.158 1.260 1.619 1.349 1.281 1.322 1.261 1.350 1.260 1.321

HAILFINDER

0.1 0.699 0.774 1.077 0.972 0.707 0.880 0.714 0.928 0.714 0.862
0.2 0.782 0.901 1.098 0.977 0.839 0.880 0.852 0.942 0.852 0.873
0.5 0.843 0.933 1.117 0.995 0.854 0.886 0.886 0.970 0.886 0.892
1.0 0.892 0.967 1.145 1.014 0.884 0.904 0.919 0.992 0.919 0.901
2.0 0.898 0.989 1.189 1.049 0.898 0.942 0.943 1.027 0.943 0.936
5.0 0.986 1.059 1.231 1.099 0.968 0.978 1.013 1.067 1.013 0.977

HEPAR2

0.1 0.451 0.886 1.338 1.723 0.972 1.944 0.527 1.198 0.527 1.202
0.2 0.433 0.739 1.121 1.472 0.786 1.576 0.491 1.063 0.491 1.039
0.5 0.467 0.654 0.962 1.250 0.680 1.252 0.498 0.967 0.498 0.922
1.0 0.525 0.635 0.885 1.140 0.653 1.111 0.551 0.908 0.551 0.875
2.0 0.588 0.660 0.885 1.069 0.668 1.041 0.598 0.890 0.598 0.873
5.0 0.681 0.726 0.918 1.020 0.729 0.992 0.697 0.913 0.697 0.887

INSURANCE

0.1 0.405 0.626 0.829 1.042 0.663 0.937 0.549 0.870 0.549 0.779
0.2 0.447 0.647 0.825 1.010 0.674 0.927 0.603 0.901 0.603 0.819
0.5 0.535 0.689 0.859 1.048 0.700 0.906 0.662 0.962 0.662 0.830
1.0 0.638 0.760 0.906 1.054 0.776 0.941 0.746 0.989 0.746 0.870
2.0 0.723 0.806 0.942 1.103 0.811 1.012 0.799 1.058 0.799 0.941
5.0 0.797 0.880 1.011 1.096 0.887 1.040 0.870 1.057 0.870 0.994

PATHFINDER

0.1 0.815 1.154 1.862 1.591 1.062 1.337 0.961 1.391 0.961 1.112
0.2 0.805 1.096 1.852 1.538 0.992 1.190 0.941 1.376 0.941 1.044
0.5 0.871 1.096 1.846 1.438 0.985 1.102 0.963 1.320 0.963 1.014
1.0 0.864 1.081 1.871 1.477 0.965 1.068 0.951 1.343 0.951 0.999
2.0 0.859 1.095 1.907 1.470 0.966 1.014 1.004 1.346 1.004 0.958
5.0 0.864 1.071 1.945 1.467 0.919 0.974 0.985 1.347 0.985 0.946

PIGS

0.1 1.047 1.050 1.098 1.176 1.049 1.156 1.044 1.122 1.044 1.112
0.2 1.059 1.063 1.071 1.112 1.062 1.091 1.052 1.082 1.052 1.065
0.5 1.062 1.065 1.067 1.079 1.063 1.060 1.059 1.066 1.059 1.048
1.0 1.064 1.067 1.069 1.073 1.064 1.051 1.058 1.062 1.058 1.044
2.0 1.073 1.075 1.076 1.079 1.069 1.074 1.062 1.066 1.062 1.044
5.0 1.078 1.085 1.085 1.086 1.079 1.061 1.074 1.074 1.074 1.052

Table 3: Average number of arcs (rescaled by |AREF|; closer to 1 is better, best in bold).
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NETWORK n/p
BIC U + BDeu U + BDs MU + BDeu MU + BDs

1 αS 10 1 10 1 10 1 10

ALARM
0.1 1.54 1.67 1.68 1.85 1.67 1.80 1.51 1.69 1.51 1.60
0.2 1.33 1.32 1.34 1.44 1.35 1.43 1.29 1.36 1.29 1.34
0.5 1.21 1.17 1.17 1.21 1.17 1.20 1.16 1.18 1.16 1.17

ANDES
0.1 11.12 13.14 17.56 18.59 14.75 24.40 11.90 15.77 11.90 17.77
0.2 10.00 10.56 11.53 11.96 10.88 13.30 10.16 11.13 10.16 11.47
0.5 9.50 9.60 9.80 9.96 9.63 10.07 9.53 9.73 9.53 9.74

ASIA
0.1 0.41 0.47 0.47 0.47 0.41 0.41 0.39 0.39 0.39 0.39
0.2 0.37 0.39 0.39 0.39 0.36 0.36 0.36 0.36 0.36 0.36
0.5 0.31 0.32 0.32 0.33 0.32 0.31 0.31 0.30 0.31 0.31

CHILD
0.1 1.82 2.03 2.19 2.30 2.07 2.31 1.91 2.04 1.91 2.00
0.2 1.58 1.66 1.77 1.82 1.71 1.88 1.62 1.68 1.62 1.69
0.5 1.39 1.40 1.44 1.46 1.40 1.46 1.39 1.42 1.39 1.42

DIABETES
0.1 20.54 19.40 19.26 19.27 19.34 19.26 19.40 19.26 19.40 19.26
0.2 19.87 19.14 19.13 19.13 19.20 19.13 19.14 19.10 19.14 19.13
0.5 19.24 19.05 19.03 19.04 19.10 19.00 19.05 19.04 19.05 19.00

HAILFINDER
0.1 5.31 5.31 5.24 5.23 5.30 5.23 5.31 5.22 5.31 5.22
0.2 5.13 5.13 5.09 5.09 5.12 5.08 5.13 5.08 5.13 5.08
0.5 5.01 5.01 5.00 5.01 5.01 4.99 5.01 4.99 5.01 4.99

HEPAR2
0.1 3.49 3.73 3.98 4.24 3.81 4.68 3.58 3.90 3.58 4.04
0.2 3.37 3.45 3.54 3.63 3.47 3.74 3.40 3.51 3.40 3.53
0.5 3.30 3.32 3.34 3.36 3.32 3.37 3.31 3.33 3.31 3.33

INSURANCE
0.1 1.61 1.59 1.60 1.64 1.59 1.66 1.58 1.61 1.58 1.62
0.2 1.52 1.46 1.46 1.47 1.46 1.49 1.46 1.47 1.46 1.47
0.5 1.43 1.38 1.37 1.37 1.38 1.38 1.38 1.37 1.38 1.37

PATHFINDER
0.1 2.65 2.51 2.49 2.49 2.50 2.49 2.51 2.49 2.51 2.49
0.2 2.54 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43
0.5 2.45 2.39 2.38 2.39 2.39 2.38 2.39 2.39 2.39 2.38

PIGS
0.1 33.49 33.25 33.29 33.36 33.24 33.36 33.24 33.31 33.24 33.31
0.2 33.15 33.13 33.14 33.16 33.13 33.15 33.13 33.14 33.13 33.14
0.5 33.05 33.05 33.04 33.05 33.04 33.04 33.04 33.04 33.04 33.04

Table 4: Average predictive log-likelihood (rescaled by −10000; lower is better, best in bold).
n/p = 1.0, 2.0, 5.0 showed the same value for all scores and are omitted for brevity.
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