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Abstract

Bayesian network structure learning is often performed in a Bayesian setting, by evaluating can-
didate structures using their posterior probabilities for a given data set. Score-based algorithms
then use those posterior probabilities as an objective function and return the maximum a posteriori
network as the learned model. For discrete Bayesian networks, the canonical choice for a posterior
score is the Bayesian Dirichlet equivalent uniform (BDeu) marginal likelihood with a uniform (U)
graph prior (Heckerman et al., 1995). Its favourable theoretical properties descend from assuming a
uniform prior both on the space of the network structures and on the space of the parameters of the
network. In this paper, we revisit the limitations of these assumptions; and we introduce an alterna-
tive set of assumptions and the resulting score: the Bayesian Dirichlet sparse (BDs) empirical Bayes
marginal likelihood with a marginal uniform (MU) graph prior. We evaluate its performance in an
extensive simulation study, showing that MU+BDs is more accurate than U+BDeu both in learning
the structure of the network and in predicting new observations, while not being computationally
more complex to estimate.
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1. Introduction

Bayesian networks (BNs; Pearl, 1988; Koller and Friedman, 2009) are a class of statistical models
composed by a set of random variables X = { X7, ..., X} and by a directed acyclic graph (DAG)
G = (V, A) in which each node in V is associated with one of the random variables in X (they are
usually referred to interchangeably). The arcs in A express direct dependence relationships among
the variables in X; graphical separation of two nodes implies the conditional independence of the
corresponding random variables. In principle, there are many possible choices for the joint distribu-
tion of X; literature has focused mostly on discrete BNs (Heckerman et al., 1995), in which both X
and the X; are multinomial random variables and the parameters of interest are the conditional prob-
abilities associated with each variable, usually represented as conditional probability tables. Other
possibilities include Gaussian BNs (Geiger and Heckerman, 1994) and conditional linear Gaussian
BNs (Lauritzen and Wermuth, 1989).

The task of learning a BN from data is performed in two steps in an inherently Bayesian setting.
Consider a data set D and a BN B = (G, X). If we denote the parameters of the joint distribution
of X with ©, we can assume without loss of generality that © uniquely identifies X in the family
of distributions chosen to model D and write

P(B|D)=P(G,0|D) = P(G|D) : PO|G,D) . (1)
—— —_——
learning structure learning parameter learning

Structure learning consists in finding the DAG G that encodes the dependence structure of the
data. Three general approaches to learn G from D have been explored in the literature: constraint-
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based, score-based and hybrid. Constraint-based algorithms use conditional independence tests such
as mutual information (Cover and Thomas, 2006) to assess the presence or absence of individual
arcs in G. Score-based algorithms are typically heuristic search algorithms and use a goodness-of-fit
score such as BIC (Schwarz, 1978) or the Bayesian Dirichlet equivalent uniform (BDeu) marginal
likelihood (Heckerman et al., 1995) to find an optimal G. For the latter a uniform (U) prior over the
space of DAGs is assumed for simplicity. Hybrid algorithms combine the previous two approaches,
using conditional independence tests to restrict the search space in which to perform a heuristic
search for an optimal G. For some examples, see Aliferis et al. (2010), Larrafiaga et al. (1997),
Cussens (2011) and Tsamardinos et al. (2006).

Parameter learning involves the estimation of the parameters © given the DAG G learned in
the first step. Thanks to the Markov property (Pearl, 1988), this step is computationally efficient
because if the data are complete the global distribution of X decomposes into

N
P(X|G) =[] P(X:|Tx,) (2)

i=1

and the local distribution associated with each node X; depends only on the configurations of the
values of its parents IIx,. Note that this decomposition does not uniquely identify a BN; different
DAGs can encode the same global distribution, thus grouping BNs into equivalence classes (Chick-
ering, 1995) characterised by the skeleton of G (its underlying undirected graph) and its v-structures
(patterns of arcs of the type X; — X; < Xj).

In the remainder of this paper we will focus on discrete BN structure learning in a Bayesian
framework. In Section 2 we will describe the canonical marginal likelihood used to identify maxi-
mum a posteriori (MAP) DAGs in score-based algorithms, BDeu, and the uniform prior U over the
space of the DAGs. We will review and discuss their underlying assumptions and fundamental prop-
erties. In Section 3 we will address some of their limitations by introducing a new set of assumptions
and the corresponding modified posterior score, which we will call the Bayesian Dirichlet sparse
(BDs) marginal likelihood with a marginal uniform (MU) prior. Based on the results of an extensive
simulation study, in Section 4 we will show that MU+BDs is preferable to U+BDeu because it is
more accurate in learning G from the data; and because the resulting BNs provide better predictive
power than those learned using U+BDeu.

2. The Bayesian Dirichlet Equivalent Uniform Score (BDeu) with a Uniform Prior
(U)

Starting from (1), we can decompose P(G | D) into
P(G|D) x P(G)P(D|G) = P(9) /P(D|g,@)P(@ |G)do 3)

where P(G) is the prior distribution over the space of the DAGs and P(D | G) is the marginal like-
lihood of the data given G averaged over all possible parameter sets ©. Using (2) we can then
decompose P(D | G) into one component for each node as follows:

N N
P(D|G) = [P | Tix) =[] [ [Pxiing ex)POx Mx)dox] . @

i=1 =1

439



SCUTARI

In the case of discrete BNs, we assume X; ] IIx, ~ Multinomial(©x, | I1x,) where the O, | IIx,
are the conditional probabilities 7, = P(X; = k|Ilx, = j). We then assume a conjugate prior
Ox, |lx, ~ Dirichlet(cji), Z]k a;jr, = o4 > 0 to obtain the posterior Dirichlet (o, + n4jk)
which we use to estimate the 7;;, from the counts n;;i observed in D. «; is known as the imaginary
or equivalent sample size and determines how much weight is assigned to the prior in terms of the
size of an imaginary sample supporting it.

Further assuming positivity (m;;, > 0), parameter independence (;j, for different parent con-
figurations are independent), parameter modularity (m;;;, associated with different nodes are in-
dependent) and complete data, Heckerman et al. (1995) derived a closed form expression for (4),
known as the Bayesian Dirichlet (BD) score:

N N g T

D(G,D;a) = HBD(X% Iy,; H H ING) H [(ojp + niji) )

(« n; INGTT
i=1 i=1j=1 ij + 1) k=1 ( ”k)

where r; is the number of states of X;; g; is the number of configurations of IIx,; n;; = > i Tijiks
and o;; = ) ;. ajji. For a;j, = 1, ; = r;q; we obtain the K2 score from Cooper and Herskovits
(1991); and for ojr, = o/(riq;), vy = o we obtain the Bayesian Dirichlet equivalent uniform
(BDeu) score from Heckerman et al. (1995), which is the most common choice used in score-based
algorithms to estimate P(G | D). It can be shown that BDeu is score equivalent (Chickering, 1995),
that is, it takes the same value for DAGs that encode the same probability distribution. The uniform
prior over the parameters associated with each X; | ITx, was justified by the lack of prior knowledge
and widely assumed to be non-informative.

However, there is an increasing amount of evidence that such a set of assumptions leads to a
prior that is far from non-informative and that has a strong impact on the quality of the learned
DAGs. Silander et al. (2007) showed via simulation that the MAP DAGs selected using BDeu
are highly sensitive to the choice of a. Even for “reasonable” values such as o € [1,20], they
obtained DAGs with markedly different number of arcs, and they showed that large values of «
tend to produce DAGs with more arcs. This is counter-intuitive because larger o would normally be
expected to result in stronger regularisation and sparser BNs. Steck and Jaakkola (2003) similarly
showed that the number of arcs in the MAP network is determined by a complex interaction between
« and D; in the limits o — 0 and a — oo it is possible to obtain both very sparse and very dense
DAGs. Furthermore, they argued that BDeu can be rather unstable for “medium-sized” data and
small «, which is a very common scenario. Steck (2008) approached the problem from a different
perspective and derived an analytic approximation for the “optimal” value of « that maximises
predictive accuracy, further suggesting that the interplay between « and D is controlled by the
skewness of the P (X | I, ) and by the strength of the dependence relationships between the nodes.
These results have been analytically confirmed more recently by Ueno (2010, 2011).

As far as P(G) is concerned, the most common choice is the uniform (U) distribution P(G) o 1;
the space of the DAGs grows super-exponentially in N (Harary and Palmer, 1973) and that makes it
extremely difficult to specify informative priors (Castelo and Siebes, 2000; Mukherjee and Speed,
2008). In our previous work (Scutari, 2013), we explored the first- and second-order properties of
U and we showed that for each possible pair of nodes (X;, X;)

i =fi

1 . 1 1
+ m and Pij = - — o (6)

e~ =
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where p;; = P({X; — X;} € A), pi; = P{X; + X;} € A) and pi; = P({X; — X,
X < X;} ¢ A). This prior distribution is asymptotically (marginally) uniform over both arc pres-
ence and direction: each arc is present in G with probability 1/2 and, when present, it appears in each
direction with probability 1/2. We also showed that two arcs are correlated if they are incident on a
common node and uncorrelated otherwise through exhaustive enumeration of all possible DAGs for
N < 7 and through simulation for larger /N. This suggests that false positives and false negatives
can potentially propagate through P(G) as well as P(D | G) and lead to further errors in learning G.

3. The Bayesian Dirichlet Sparse Score (BDs) with a marginal uniform (MU) prior

It is clear from the literature review in Section 2 that assuming uniform priors for O, |IIx, and G
can have a negative impact on the quality of the DAGs learned using BDeu. Therefore, we propose
an alternative set of assumptions; we call the resulting score the Bayesian Dirichlet sparse (BDs)
marginal likelihood with a marginal uniform (MU) prior.

Firstly, we consider the marginal likelihood BDeu. Starting from (5), we can write it as

BDeu(G, D; ) = ﬁBDeu(X' My.:a ﬂ ﬁ ﬁ (e 4+ ngjk) )
T P e 1 [lrag +mg)k . (o))

where of = a/(r;q;). If the positivity assumption is violated or the sample size n is small, there
may be configurations of some Il x, that are not observed in D. In such cases n;; = 0 and

[(ria}) 14 Dles T(rial) 14 T(af +n)
ez F(aﬁ] 11 [P(Tiaernz‘j)H P(Of-k)j ]

k=1 Jmig>0 k=1 ?
(®)

This implies that the effective imaginary sample size decreases as the number of unobserved parents
configurations increases, since ) ;>0 >k < > af = a. In turn, the posterior estimates of
m;jk gradually converge to the corresponding maximum likelihood estimates thus favouring overfit-
ting and the inclusion of spurious arcs in G. Furthermore, the comparison between DAGs with very
different number of arcs may be inconsistent because of the respective effective imaginary sample
sizes will be different. Steck and Jaakkola (2003) and Silander et al. (2007) observed both these
phenomena, indeed linking them to the interplay between « and D.
To address these two undesirable features of BDeu we replace o in (7) with

BDeu(X;,IIx,; ) = H

J:mi;=0

) where ¢; = {number of Il x, such that n;; > 0}. )
otherwise.

N a/(mcjz) if Nij >0
o =
0
Note that (9) is still piece-wise uniform, but now » Jini >0 > 1 @ = a so the effective imaginary
sample size is equal to « even for sparse data. Intuitively, we are defining a uniform prior just
on the conditional distributions we can estimate from D, thus moving from a fully Bayesian to an
empirical Bayes score. Plugging (9) in (5) we obtain BDs:

T

| o L(ric;) INGTEY
BDs(X;, Ix;;0) =[] L(r;é&; + nij) kljl I'(a) "

Jini;>0
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If the positivity assumption holds, we will eventually observe all parents configurations in the data
and thus BDs(X;, IIx,; ) — BDeu(X;, IIx;; ) as n — oo. Note, however, that BDs is not score
equivalent for finite nn unless all n;; > 0. A numeric example is given below, which also highlights
how BDs can be computed in the same time as BDeu.

Example 1 Consider two binary variables X, and X with data D comprising x11 = 0, x12 = 0,
To1 = 2, oo = D where Tij = #{Xl = i,XQ = j} Ifa =1, gl = {X1 — XQ} and
Go = {X2 = X1}

BDs(Gy, D; 1

) =
[ I'a) Ite+0)I(te+ 7)} { ra) rie+2)Irie+5)
+7

L(12)L(1/2) T(1+7) L(RT(1k) ] = 0.0006,

BDS(Q%D;I):[ (1) r(1/2+2)r(1/2+5)]

F+7) TR
LRr0R)  T/a+ 0T /1+ 0+ 2)T(Y/1+5)
{F(1/2 +2)I(2+5) L1/ (/4)L (/)0 (/1)

as a term of comparison the empty DAG Gy has BDs(Gg, D) = 0.00009.

] = 0.0009;

In the general case we have BDs(X;, IIx,; «) = BDeu(X;, Ilx,; « * ¢;/G;) which breaks the
score equivalence condition in Heckerman et al. (1995) because of the uneven imaginary sample size
associated with each node (like the K2 score). We can interpret axq; /¢; as an adaptive regularisation
hyperparameter that penalises X | ILx, that are not fully observed in D, which typically correspond
to X; with a large number of incoming arcs. Since Steck and Jaakkola (2003) showed that BDeu
favours the inclusion of spurious arcs for sparse X | IIx,, this adaptive regularisation should lead
to sparser DAGs and reduce overfitting, in turn improving predictive accuracy as well.

Secondly, we propose a modified prior over for G with the same aims. We start from the con-
sideration that score-based structure learning algorithms typically generate new candidate DAGs by
a single arc addition, deletion or reversal. So, for example

P(GU{X; = X;}|D) > P(G|D) = accept G U {X; — X;} and discard G. (11)
When using the U prior we can rewrite (11) as

P(GU{X; — X;}|D) QU{X/X’FTPD\QU{X—)X}) S1. (12
P(G|D) /P/Q P(D|G) '

The fact that U always simplifies is equivalent to assigning equal probabilities to all possible states
of an arc (subject to the acyclicity constraint), say p_Z; = % = pi; = 1/3 using the notation in
(6). In other words, U favours the inclusion of new arcs in G (subject to the acyclicity constraint)
as p_U) + ﬁj = 2/3. Since Scutari (2013) also showed that arcs incident on a common node are
correlated and may favour each other’s inclusion, U may then contribute to overfitting G.

Therefore, we introduce the marginal uniform (MU) prior, in which we assume an independent
prior for each arc as in Castelo and Siebes (2000), with probabilities

1
i and P =3 forall i # j (13)
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as in Scutari (2013). These assumptions make MU computationally trivial to use: the ratio of
the prior probabilities is !/2 for arc addition, 2 for arc deletion and 1 for arc reversal, for all arcs.
Furthermore, arc inclusion now has the same prior probability as arc exclusion (p_w> + ﬁ] = pij =
1/2) and arcs incident on a common are no longer correlated, thus limiting overfitting and preventing
the inclusion of spurious arcs to propagate. However, the marginal distribution for each arc is the
same as in (6) for large NV, hence the name “marginal uniform”.

4. Simulation Study

We assessed BDs and MU on a set of 10 reference BNs (Table 1) covering a wide range of NV (8
to 442), p = |©] (18 to 77K) and number of arcs |A| (8 to 602). For each BN, we generated 20
training samples of size »/p = 0.1, 0.2, 0.5, 1.0, 2.0, and 5.0 (to allow for meaningful comparisons
between BNs with such different IV and p) and we learned G using U+BDeu, U+BDs, MU+BDeu
and MU+BDs with & = 1, 5,10 on each sample. For U + BDeu we also considered the optimal
a from Steck (2008), denoted ag. In addition, we considered BIC as a term of comparison, since
log BDeu — BIC as n — oo. We measured the performance of different scoring strategies in terms
of the quality of the learned DAG using the SHD distance (Tsamardinos et al., 2006) from the Grgr
of the reference BN; in terms of the number of arcs compared to |Agrgr| in Grer; and in terms of
predictive accuracy, computing the log-likelihood on a test set of size 10K as an approximation of
the corresponding Kullback-Leibler distance. For parameter learning, we used Dirichlet posterior
estimates and o = 1 as suggested in Koller and Friedman (2009). All simulations were performed
using the hill-climbing implementation in the bnlearn R package (Scutari, 2010), which provides
several options for structure learning, parameter learning and inference on BNs (including the pro-
posed MU and BDs). Since @ = 5 produced performance measures that are always in between
those for & = 1 and a = 10, we omit its discussion for brevity.

SHD distances are reported in Table 2. MU+BDs outperforms U+BDeu for all BNs and 7/ and
is the best score overall in 41/60 simulations. BIC also outperforms U+BDeu in 39/60 simulations
and is the best score overall in 9/60. For U+BDeu, o = 1 always results in a lower SHD than «
and o = 10, which is in agreement with Ueno (2010). The improvement in SHD given by using
BDs instead of BDeu and by using MU instead of U appears to be largely non-additive; MU+BDs
in most cases has the same or nearly the same SHD as the best between U+BDs and MU+BDeu.
However, MU+BDeu is tied with MU+BDs for the best SHD more often than U+BDs (21/60 vs
11/60) which suggests improvements in SHD can be attributed more to the use of MU than that of

network N | 4] D network N | |A| D
ALARM 37 | 46 509 HAILFINDER | 56 | 66 | 2656
ANDES 223 | 338 1157 HEPAR 2 70 | 123 | 1453
ASIA 8 8 18 INSURANCE 27 | 52 984
CHILD 20 | 25 230 PATHFINDER | 135 | 200 | 77155
DIABETES | 413 | 602 | 429409 PIGS 442 | 592 | 5618

Table 1: Reference BNs from the BN repository (Scutari, 2012) with the respective numbers of
nodes (), numbers of arcs (| A|) and numbers of parameters (p = |O]).
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BIC U+ BDeu U+ BDs MU + BDeu MU + BDs
NETWORK n/p 1 as 10 1 10 1 10 1 10
01| 555 | 780 805 1127 | 642 873 | 530 835 | 530 655
02| 508 | 492  s6.1 928 | 495 752 | 396 683 | 396 562
05| 408 | 355 419 720 | 349 615 | 313 535 | 313 461
ALARM 10| 337 319 376 62.6 | 29.1 518 | 271 498 | 271 421
20| 281 | 263 319 531 | 231 445 | 229 410 | 229 365
50| 226 | 244 301 416 | 209 350 | 204 316 | 204 289
0.1 | 367.6 | 6421 997.6 1071.0 | 7865 13678 | 4390 7659 | 439.9 8299
02 | 2783 | 4501 6869 7734 | 5228  957.0 | 313.0 5604 | 313.0 5724
0.5 | 1974 | 2649 4453 5760 | 2784  590.7 | 197.1 409.1 | 197.1 3862
ANDES 1.0 | 1473 | 1963 3207  467.1 | 1963 4343 | 1433 3314 | 1433 2994
20 | 1162 | 1426 2466 3883 | 1394 3455 | 109.9 2802 | 109.9 2439
S0 | 783 | 1035 1722 2892 | 100.8  253.6 | 782 2065 | 782 1765
0.1 83 | 169 169 16.9 83 83 8.0 8.0 8.0 8.0
0.2 86 | 141 141 14.1 8.5 8.5 8.5 8.0 8.5 8.0
0.5 84 | 109 1L1 14.4 8.6 10.1 8.5 8.8 8.5 8.0
ASIA 1.0 8.3 9.7 9.8 14.1 8.5 112 82 107 8.2 9.6
2.0 8.1 8.2 8.3 132 8.6 122 72 102 7.2 9.6
5.0 6.0 59 59 11.5 5.7 10.3 57 9.7 57 8.1
01| 284 | 396 448 515 | 386 465 | 316 365 | 316 336
02| 252 | 269 330 360 | 299 38.1 | 246 275 | 246 278
05| 210 | 211 236 250 | 214 246 | 189 211 | 189 207
CHILD 10| 185] 181 200 199 | 18.1 200 | 177 180 | 177 178
20| 161 ] 170 156 154 | 170 154 | 158 134 | 158 134
50| 144 | 147 124 123 | 147 123 | 128 94 | 128 9.4
0.1 | 4343 | 3999 522.6 4448 | 387.8 3788 | 4004 4295 | 4004 3786
02 | 5494 | 381.0 5332 4350 | 3775 3832 | 381.0 385.6 | 381.0 3773
0.5 | 4168 | 399.6 5312 4400 | 387.9  373.9 | 3922 4300 | 3922 3739
DIABETES 10 | 4123 | 373.0 5309 4203 | 3750 3722 | 3685 4158 | 368.5 372.1
2.0 | 3848 | 3809 551.6 4353 | 365.6 3957 | 3757 4328 | 3757 395.0
5.0 | 402.1 | 413.6  599.0  465.0 | 408.0  427.0 | 412.6 4658 | 412.6 4267
01| 631 664 496 504 | 620 461 | 630 480 | 630 481
02| 489 | 547 441 408 | 506 363 | 517 384 | 517 453
05| 319 | 400 469 35.1 | 347 299 | 368 321 | 368 385
HAILFINDER 1.0 | 345 | 338 484 405 | 311 353 | 307 392 | 307 352
20 | 364 | 420 388 384 | 360 333 | 390 371 | 390 331
50| 169 | 244 279 21.1 | 184 151 | 214 190 | 214 150
0.1 | 143.0 | 1837 2267 2699 | 1924 2922 | 149.1 209.8 | 149.1 2102
02 | 126.6 | 1537 1838 2202 | 1574 2311 | 1343 1756 | 1343 1719
0.5 | 101.5 | 1151 1386 1666 | 1168 1673 | 1053 1382 | 1053 1342
HEPAR2 10| 850 | 930 1085 1328 | 942 1281 | 88.0 109.8 | 88.0 105.8
20| 739 | 765 893 1066 | 775 1023 | 750 890 | 750  87.0
50| 586 | 60.1 630 730 | 605 69.5 | 587 622 | 586 3595
01| 495 | 506 571 678 | 53.0 630 | 485 597 | 485 569
02| 463 | 475 555 638 | 49.4 60.1 | 459 585 | 459 537
05| 469 | 459 525 59.0 | 459 522 | 43.6 555 | 436 491
INSURANCE 1.0 | 498 | 423 480 536 | 437 502 | 423 510 | 422 463
20 | 464 | 429 480 539 | 42.8 490 | 430 516 | 426 462
50| 471 ] 395 443 488 | 39.1 462 | 395 472 | 390 446
01 | 2782 | 2692 398.1 3459 | 2503 2920 | 237.8 300.0 | 237.8 2579
0.2 | 261.0 | 2562 3827 3362 | 221.1 2512 | 2342 304.6 | 2342 2468
0.5 | 259.6 | 2550 351.6 2994 | 1892 2032 | 2342 2774 | 2342 1937
PATHFINDER 1.0 | 2402 | 242.8 3420 2894 | 1713  182.6 | 2205 2649 | 2205 173.8
20 | 2259 | 2323 3339  277.8 | 1569  169.7 | 2182 2532 | 2182 177.8
5.0 | 2185 | 208.1 3205 2634 | 1247 1302 | 189.8 2392 | 189.8 119.5
01 | 1307 | 1148 1554 2033 | 1162 1630 | 1063 1667 | 1063 1467
02 | 1180 | 1371 1423 1656 | 1367 1275 | 1275 1432 | 1275 1115
0.5 | 131.1 | 1329 1348 1424 | 1313 1105 | 1226 1265 | 1226 954
PIGS 1.0 | 1338 | 1352 1362 1389 | 1325 1048 | 1220 1245 | 1220 912
20 | 1387 | 1428 1436 1448 | 1372 109.0 | 1282 128.8 | 1282  89.0
50 | 1498 | 1555 1551 1566 | 1502 1169 | 140.6 1407 | 140.6  99.2

Table 2: Average SHD distance from Ggrgr (lower is better, best in bold).
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BDs. The higher SHD for U+BDeu is a consequence of the higher number of arcs present in the
learned DAGs, shown in Table 3. Both MU+BDs and BIC learn fewer arcs than U+BDeu in 59/60
simulations for both & = 1 and & = 10; U+BDeu learns too many arcs (i.e., the ratio with | Argr|
is greater than 1) in 38/60 simulations even for aw = 1, as opposed to 23/60 (MU+BDs) and 18/60
(BIC). As we argued in Section 3, replacing U with MU results in DAGs with fewer arcs for all
BNs and 7/p. Replacing BDeu with BDs results in fewer arcs in 32/60 simulations for o« = 1 and
in 59/60 for a = 10, which suggests that the overfitting observed for U+BDeu can be attributed to
both U and BDeu.

The rescaled predictive log-likelihoods in Table 4 show that U+BDeu never outperforms MU+BDs
for n/p < 1.0 for the same «; for larger /p all scores are tied, and are not reported for brevity.
U+BDeu for «; is at best tied with the corresponding score for « = 1 or & = 10. The overall best
score is MU+BDs for 7/10 BNs and BIC for the remaining 3/10.

5. Conclusions and Discussion

In this paper we proposed a new posterior score for discrete BN structure learning. We defined it as
the combination of a new prior over the space of DAGs, the “marginal uniform” (MU) prior, and of
a new empirical Bayes marginal likelihood, which we call “Bayesian Dirichlet sparse” (BDs). Both
have been designed to address the inconsistent behaviour of the classic uniform (U) prior and of
BDeu explored by Silander et al. (2007), Steck and Jaakkola (2003) and Ueno (2010) among others.
In particular, our aim was to prevent the inclusion of spurious arcs.

In an extensive simulation study using 10 reference BNs we find that MU+BDs outperforms
U+BDeu for all combinations of BN and sample sizes, both in the quality of the learned DAGs
and in predictive accuracy. This is achieved without increasing the computational complexity of
the posterior score, since MU+BDs can be computed in the same time as U+BDeu. In this respect,
the posterior score we propose is preferable to similar proposals in the literature. For instance, the
NIP-BIC score from Ueno (2011) and the NIP-BDe/Expected log-BDe scores from Ueno and Uto
(2012) outperform BDeu but at a significant computational cost. The same is true for the optimal
a proposed by Steck (2008) for BDeu, whose estimation requires multiple runs of the structure
learning algorithm to converge. The Max-BDe and Min-BDe scores in Scanagatta et al. (2014)
overcome in part the limitations of BDeu by optimising for either goodness of fit at the expense of
predictive accuracy, or vice versa. As a further term of comparison, we also included BIC in the
simulation; while it outperforms U+BDeu in some circumstances and it is computationally efficient,
MU+BDs is better overall in the DAGs it learns and in predictive accuracy.
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BIC U + BDeu U+ BDs MU + BDeu MU + BDs
NETWORK n/p 1 as 10 1 10 1 10 1 10

0.1 | 0596 | 1.635 1.697 2550 | 1.329 1.875 | 1.040 1.854 | 1.040 1.351
02 | 0662 | 1.272 1.448 2278 | 1.321 1.874 | 1.049 1.730 | 1.049 1.436
05 | 0746 | 1.174 1290 1.993 | 1.213 1.775 | 1..060 1.605 | 1.060 1.436
ALARM 1.0 | 0.859 | 1.165 1.302 1.830 | 1.180 1.667 | 1.071 1.553 | 1.071 1.426
20| 0972 | 1.117 1236 1.664 | 1.098 1528 | 1.064 1.445 | 1.064 1.377
50 | 1.092 | 1.098 1.208 1.457 | 1.086 1386 | 1.061 1.286 | 1.061 1.252

0.1 | 1.069 | 1910 3.020 3.248 | 2.339 4.121 | 1.294 2329 | 1.294 2510
02 | 1.032 | 1.550 2303 2570 | 1.764 3.115 | 1.129 1926 | 1.129 1.963
05 | 1.018 | 1.224 1.794 2.195 | 1.258 2236 | 1.011 1.694 | 1.011  1.622
ANDES 1.0 | 1.011 | 1.156 1.556 1999 | 1.154 1.898 | 0.991 1.593 | 0991 1.496
20 | 1.007 | 1.073 1399 1.829 | 1.063 1.702 | 0.996 1.507 | 0.996 1.399
50 | 0999 | 1.056 1.275 1.642 | 1.046 1.541 | 0970 1.394 | 0.970 1.309

0.1 | 0.163 | 2.038 2.038 2.038 | 0.163 0.163 | 0.000 0.000 | 0.000 0.000
02 ] 0338 | 1.669 1.669 1.669 | 0.163 0.163 | 0.163 0.000 | 0.163  0.000
0.5 | 0381 | 1.306 1337 1.744 | 0412 0.706 | 0.281 0.662 | 0.281  0.150
ASIA 1.0 | 0312 | 1.031 1.094 1.731 | 0338 0.881 | 0.231 1.044 | 0.231 0.463
20 | 0544 | 1.025 1.031 1.769 | 0.762 1.325 | 0.544 1.238 | 0.544 0.838
50 | 0.688 | 1.012 1.012 1.781 | 0.863 1.406 | 0.700 1356 | 0.700 1.019

0.1 | 0442 | 1.150 1470 1.802 | 1.114 1.564 | 0.788 1.098 | 0.788  0.956
02 | 0588 | 0.894 1250 1.366 | 1.014 1.444 | 0.744 0.992 | 0.744  0.998
05 | 0.642 | 0.730 1.080 1.134 | 0.744 1.132 | 0.658 0942 | 0.658 0.950
CHILD 1.0 | 0.730 | 0.774 1.006 1.020 | 0.772 1.016 | 0.736 0912 | 0.736  0.920
20 | 0.808 | 0.842 1.000 0994 | 0.842 0994 | 0.820 0.962 | 0.820 0.962
50 | 0914 | 0908 1.046 1.034 | 0908 1.034 | 0.898 1.012 | 0.898 1.012

0.1 | 1.023 | 1.107 1.419 1.252 | 1.122 1.158 | 1.107 1.229 | 1.107 1.157
02 | 1.065 | 1.115 1.447 1237 | 1.136 1.169 | 1.115 1.200 | 1.115 1.168
0.5 | 1.051 | 1.150 1.442 1.224 | 1.158 1.189 | 1.138 1.205 | 1.138 1.189
DIABETES 1.0 | 1.048 | 1.156 1.499 1236 | 1.164 1.193 | 1.149 1.228 | 1.149 1.193
20 | 1.083 | 1.176  1.539 1.281 | 1.192 1264 | 1.167 1276 | 1.167 1.262
50 | 1158 | 1.260 1.619 1.349 | 1.281 1.322 | 1.261 1.350 | 1.260 1.321

0.1 | 0.699 | 0.774 1.077 0972 | 0.707 0.880 | 0.714 0.928 | 0.714  0.862
02 | 0.782 | 0901 1.098 0.977 | 0.839 0.880 | 0.852 0942 | 0.852 0.873
05 | 0.843 | 0933 1.117 0.995 | 0.854 0.886 | 0.886 0.970 | 0.886  0.892
HAILFINDER 1.0 | 0.892 | 0967 1.145 1.014 | 0.884 0904 | 0919 0.992 | 0919 0.901
20 | 0.898 | 0989 1.189 1.049 | 0.898 0942 | 0943 1.027 | 0.943 0.936
5.0 | 0986 | 1.059 1.231 1.099 | 0968 0978 | 1.013 1.067 | 1.013 0.977

0.1 | 0451 | 0.886 1.338 1.723 | 0972 1944 | 0.527 1.198 | 0.527 1.202
02 | 0433 | 0739 1.121 1472 | 0.786 1.576 | 0491 1.063 | 0.491 1.039
0.5 | 0467 | 0.654 0962 1250 | 0.680 1.252 | 0498 0.967 | 0.498 0.922
HEPAR2 1.0 | 0.525 | 0.635 0.885 1.140 | 0.653 1.111 | 0.551 0908 | 0.551 0.875
20 | 0588 | 0.660 0.885 1.069 | 0.668 1.041 | 0.598 0.890 | 0.598 0.873
5.0 | 0.681 | 0.726 0918 1.020 | 0.729 0.992 | 0.697 0913 | 0.697 0.887

0.1 | 0405 | 0.626 0.829 1.042 | 0.663 0.937 | 0.549 0.870 | 0.549 0.779
0.2 | 0447 | 0.647 0.825 1.010 | 0.674 0927 | 0.603 0.901 | 0.603 0.819
0.5 | 0535 | 0.689 0.859 1.048 | 0.700 0.906 | 0.662 0962 | 0.662 0.830
INSURANCE 1.0 | 0.638 | 0.760 0906 1.054 | 0.776 0941 | 0.746 0.989 | 0.746  0.870
2.0 | 0723 | 0.806 0942 1.103 | 0.811 1.012 | 0.799 1.058 | 0.799 0.941
50 | 0797 | 0.880 1.011 1.096 | 0.887 1.040 | 0.870 1.057 | 0.870  0.994

0.1 | 0.815 | 1.154 1.862 1.591 | 1.062 1337 | 0.961 1391 | 0961 1.112
02 | 0.805 | 1.096 1.852 1.538 | 0.992 1.190 | 0.941 1376 | 0.941 1.044
05 | 0.871 | 1.096 1.846 1.438 | 0985 1.102 | 0.963 1.320 | 0963 1.014
PATHFINDER 1.0 | 0.864 | 1.081 1.871 1477 | 0965 1.068 | 0.951 1.343 | 0951 0.999
2.0 | 0.859 | 1.095 1907 1470 | 0.966 1.014 | 1.004 1346 | 1.004 0.958
50 | 0.864 | 1.071 1945 1467 | 0919 0974 | 0.985 1.347 | 0985 0.946

0.1 | 1.047 | 1.050 1.098 1.176 | 1.049 1.156 | 1.044 1.122 | 1.044 1.112
02 | 1.059 | 1.063 1.071 1.112 | 1.062 1.091 | 1.052 1.082 | 1.052 1.065
0.5 | 1.062 | 1.065 1.067 1.079 | 1.063 1.060 | 1.059 1.066 | 1.059 1.048
PIGS 1.0 | 1.064 | 1.067 1.069 1.073 | 1.064 1.051 | 1.058 1.062 | 1.058 1.044
20 | 1.073 | 1.075 1.076 1.079 | 1.069 1.074 | 1.062 1.066 | 1.062 1.044
50 | 1.078 | 1.085 1.085 1.086 | 1.079 1.061 | 1.074 1.074 | 1.074 1.052

Table 3: Average number of arcs (rescaled by |Argr

; closer to 1 is better, best in bold).
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BIC U + BDeu U+ BDs MU + BDeu MU + BDs
NETWORK n/p 1 as 10 1 10 1 10 1 10
01| 154 | 167 168 18 | 167 180 | 151 169 | 151  1.60
ALARM 02| 133 | 132 134 144 | 135 143 | 129 136 | 129 134
05| 121| 117 117 121 | 117 120 | 116 118 | 116  1.17
01 | 1112 | 13.14 1756 1859 | 14.75 2440 | 11.90 1577 | 11.90 17.77
ANDES 02 | 10.00 | 1056 1153 1196 | 10.88 1330 | 10.16 11.13 | 10.16 11.47

0.5 9.50 9.60 9.80 9.96 9.63 10.07 9.53 9.73 9.53 9.74
0.1 0.41 0.47 0.47 0.47 0.41 0.41 0.39 0.39 0.39 0.39

ASIA 0.2 0.37 0.39 0.39 0.39 0.36 0.36 0.36 0.36 0.36 0.36
0.5 0.31 0.32 0.32 0.33 0.32 0.31 0.31 0.30 0.31 0.31
0.1 1.82 2.03 2.19 2.30 2.07 2.31 1.91 2.04 1.91 2.00
CHILD 0.2 1.58 1.66 1.77 1.82 1.71 1.88 1.62 1.68 1.62 1.69

0.5 1.39 1.40 1.44 1.46 1.40 1.46 1.39 1.42 1.39 1.42
0.1 | 2054 | 1940 1926 19.27 | 1934 19.26 | 1940 19.26 | 1940 19.26
DIABETES 02 | 19.87 | 19.14 19.13 19.13 | 1920 19.13 | 19.14 19.10 | 19.14 19.13
0.5 | 1924 | 19.05 19.03 19.04 | 19.10 19.00 | 19.05 19.04 | 19.05 19.00
0.1 5.31 5.31 5.24 5.23 5.30 5.23 5.31 5.22 5.31 5.22
HAILFINDER 0.2 5.13 5.13 5.09 5.09 5.12 5.08 5.13 5.08 5.13 5.08
0.5 5.01 5.01 5.00 5.01 5.01 4.99 5.01 4.99 5.01 4.99
0.1 3.49 3.73 3.98 4.24 3.81 4.68 3.58 3.90 3.58 4.04
HEPAR2 0.2 3.37 3.45 3.54 3.63 3.47 3.74 3.40 3.51 3.40 3.53
0.5 3.30 3.32 3.34 3.36 3.32 3.37 3.31 3.33 3.31 3.33
0.1 1.61 1.59 1.60 1.64 1.59 1.66 1.58 1.61 1.58 1.62
INSURANCE 0.2 1.52 1.46 1.46 1.47 1.46 1.49 1.46 1.47 1.46 1.47
0.5 1.43 1.38 1.37 1.37 1.38 1.38 1.38 1.37 1.38 1.37
0.1 2.65 2.51 2.49 2.49 2.50 2.49 2.51 2.49 2.51 2.49
PATHFINDER 0.2 2.54 243 243 243 243 243 243 243 243 243
0.5 2.45 2.39 2.38 2.39 2.39 2.38 2.39 2.39 2.39 2.38
0.1 | 3349 | 3325 3329 3336 | 33.24 3336 | 33.24 3331 | 33.24 3331
PIGS 0.2 | 33.15 | 3313 33.14 33.16 | 3313 33.15 | 33.13 33.14 | 33.13 33.14
0.5 | 33.05 | 33.05 33.04 33.05 | 33.04 33.04 | 33.04 33.04 | 33.04 33.04

Table 4: Average predictive log-likelihood (rescaled by —10000; lower is better, best in bold).
n/p =1.0,2.0, 5.0 showed the same value for all scores and are omitted for brevity.
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