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Abstract
Under-reporting occurs in survey data when there is a reason to systematically misreport the re-
sponse to a question. For example, in studies dealing with low birth weight infants, the smoking
habits of the mother are very likely to be misreported. This creates problems for calculating effect
sizes, such as bias, but these problems are commonly ignored due to lack of generally accepted
solutions. We reinterpret this as a problem of learning from missing data, and particularly learning
from positive and unlabelled data. By this formalisation we provide a simple method to incorpo-
rate prior knowledge of the misreporting and we present how we can use this knowledge to derive
corrected point and interval estimates of the mutual information. Then we show how our corrected
estimators outperform more complex approaches and we present applications of our theoretical
results in real world problems and machine learning tasks.
Keywords: Under-reported; misclassification bias; missing data; mutual information.

1. Introduction

Smoking during pregnancy is a key risk factor for adverse outcomes, including preterm birth and
low birth weight (LBW). Like many health behaviours, accurate measurement of smoking habits
can be difficult and expensive during pregnancy. For that reason, many studies use self-reported
data, e.g. Wright et al. (2013). Given that most smokers know their habit to be harmful both to
themselves and their unborn child, there are strong motivations for women to under-report or deny
their smoking status (Dietz et al., 2011). As such, the frequency of smokers in a sample is expected
to be less than the true frequency. Any statistical measure of association between this under-reported
(UR) variable and another will be biased in a manner that is specific to the nature of the association
measure itself, and the degree/pattern of under-reporting. Thus, any policy decisions made on the
basis of such a biased measure will be questionable.

The only guaranteed method to completely correct for this is to manually identify individuals
that are likely to have misreported, and ignore/correct their testimony, raising issues of data privacy.
As an alternative to this, authors in medical statistics treat it as a problem of misclassification bias,
and combine data with a prior belief of the pattern of misclassification, to derive corrected estimators
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for the log-odds ratio (Chu et al., 2006; Edwards et al., 2013), and the relative-risk (Rahardja and
Young, 2011). These solutions suffer from a number of weaknesses, which are addressed in this
paper. Firstly, they naturally only apply to binary data – arbitrary categorical data is handled via a
one-vs-one or one-vs-all strategy. Secondly, conditional estimation with respect to other categorical
variables are problematic for similar reasons. Due to these weaknesses, ranking of variables in
relation to a target – a common need in feature selection and other machine learning tasks – is not
straightforward. One way to overcome this limitation is to derive corrected estimators for the mutual
information (MI), a measure of effect size widely used in machine learning applications with several
nice properties (Brillinger, 2004).

To derive this estimator we reinterpret the challenge not as dealing with misclassification and
biased data, but as a problem of learning from missing data. We present solutions based on mutual
information and a graphical representation called missingness graphs (Mohan et al., 2013) – this
naturally handles categorical data, and incorporates a prior belief of the misreporting at the popu-
lation (or appropriate sub-demographic) level. This is made possible by examining independence
properties observable via the m-graph representation.

In this paper, we present the following novel contributions: (1) Consistent and efficient esti-
mators of the mutual information between an UR variable and an arbitrary categorical variable, for
both conditional and unconditional MI, including interval estimates; (2) a case study using 13,776
births in the north of England, demonstrating some significant false conclusions that might be drawn
when ranking variables without correcting for UR; (3) an application using our estimators for feature
selection when training/test distributions differ.

2. Background Material

To the best of our knowledge, our work is the first that tackles the problem of estimating MI in
under-reporting scenarios. In classic statistics there are some works that estimate other types of
effect sizes (i.e. odds/risk ratios, obviously limited to binary data) and we review them in Section
2.1. Section 2.2 shows how the under-reported can be phrased as missing data problem. Finally,
Section 2.3 gives the background on estimating MI.

2.1 Under-reporting as Misclassification Bias Problem

We assume that we have two random variables X and Y, representing a scenario where X is likely
to be UR. In this case, we cannot observe the true value of X, but instead receive observations from
a proxy variable X̃. In the notation below we use lower case letters (y, x, x̃) to denote a realisation
from these variables. In our example of smoking during pregnancy, y ∈ {0, 1}, is an indicator1

of LBW, x ∈ {0, 1} is whether the mother smoked during pregnancy (1 for smoking and 0 for
not smoking), and x̃ ∈ {0, 1} is whether the mother reported that she smoked in pregnancy (1 for
reported smoking and 0 for not smoking).

A classical solution to the under-reporting problem is to consider it as misclassification bias
(Greenland, 2014). Following their terminology, for an under-reported variable, the specificity is
p(x̃ = 0|x = 0) = 1, while the sensitivity is p(x̃ = 1|x = 1) < 1. Here, the specificity is the
probability that a non-smoker would tell the truth (equal to 1 in this setting) and the sensitivity is
the probability that a smoker would tell the truth (in our setting strictly < 1). As presented, this is

1. The techniques presented in this work are also applied to categorical data with more than two levels |Y| > 2.
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the simplest scenario – referred to as non-differential — that is, the probabilities do not vary with
respect to Y. The more complex case is when the sensitivity depends on Y, that is p(x̃ = 1|x = 1, y),
known as differential misclassification (Greenland, 2014). In this work, we will focus on the non-
differential UR scenario, and leave the differential as a future work, outlined in Section 8.

Estimating the strength of association between variables, using this misclassification approach,
is a well explored challenge in epidemiology. For example, Chu et al. (2006) derive corrected
estimators for the log-odds ratio, while Rahardja and Young (2011) for the relative-risk. To derive
these corrections, knowledge over the specificities/sensitivities, or in other words knowledge of
the misclassification rates, is needed. This knowledge can be derived in different ways, such as
validation studies or domain prior knowledge. A different way of estimating these effect sizes is to
use a model to impute the values of the possibly misclassified examples, for example Edwards et al.
(2013) present a way of using multiple imputations to estimate log-odds ratios. With our work we
derive corrections for the mutual information, by incorporating simple forms of prior knowledge.

2.2 Under-reporting as Missing Data Problem

A different way to phrase the under-reporting problem is by connecting it with the equivalent prob-
lem from the missing data literature. The first step is to consider the under-reporting bias as a
positive and unlabelled (PU) problem (Elkan and Noto, 2008). That is, a semi-supervised binary
classification problem where we have a set of positive examples and a separate set of unlabelled ex-
amples, which can be either positive or negative. The positive examples can be seen as the reported
“smoking” cases (x̃ = 1), while the unlabelled can be seen as the reported “non-smoking” cases
(x̃ = 0).

Furthermore, from the missing data literature we borrow a graphical representation which will
help us to make apparent the assumptions behind the under-reporting mechanism. Mohan et al.
(2013) introduced a formalism for graphical modelling in the presence of missing data – known as
missingness graphs or m-graphs. While in the literature of misclassification bias there is a different
graphical representation (Greenland, 2014), our modification of the m-graphs provides more useful
information, by capturing both the data generation model and the causal mechanisms responsible
for the misclassification process.

Figure 1a shows the simplest case of non-differential under-reporting. A solid node indicates a
fully observed variable, whilst dashed nodes represent unobserved variables. Associated with every
unobservable variableX there are two additional nodes. FirstlyMX , which controls whether a value
from X is correctly reported (mx = 1) or not (mx = 0). And secondly, the proxy variable X̃ which
is fully observed. The major difference between missingness graphs used by Mohan et al. (2013)
and those here is that the mechanismMX is not observable, and for that reason we must incorporate
prior knowledge over the sensitivity p(mx = 1|x = 1) and specificity p(mx = 1|x = 0). Figure 1b
shows the more realistic situation where ethnicity has an effect on both the smoking status and the
LBW. The current paper shows (in its simplest case) how to recover the value I(X;Y ) from I(X̃;Y )
by deriving a correction based on prior belief over the mechanismMX . Them-graph representation
allows us to read off independence properties such as: Y ⊥⊥ MX |x = 1 — which corresponds to
the selected completely-at-random assumption in the positive and unlabelled literature (Elkan and
Noto, 2008). Sechidis et al. (2014) suggested informed ways of testing independence in PU data,
while our work focuses on the estimation of MI.
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Figure 1: A graphical representation for under-reporting. (a) Non-differential, where low birth
weight Y is assumed to be associated with smoking X , so we want to know the strength of as-
sociation I(X;Y ) on this arc. However, X is under-reported, so the true value is unobservable,
and instead we have a proxy X̃ , determined by X and the misclassification mechanism MX . (b)
Non-differential with a confounding variable Z, in this case we are also interested in the strength of
the conditional (adjusted) association I(X;Y |Z).

2.3 Estimating Mutual Information

In practical applications we want to explore relationships between random variables. Just giving
a yes/no answer through a hypothesis test may not be of much interest, and estimating the size of
the effect gives more useful information. For example, how strongly smoking is correlated with low
birth weight. In machine learning one of the main ways of measuring the strength of this association
is by estimating Shannon’s mutual information (MI) (Brillinger, 2004). The maximum likelihood
(ML) estimate of the MI is:

Î(X;Y ) =
∑

x∈X ,y∈Ŷ
p(x, y) ln

p̂(x, y)

p̂(x)p̂(y)
.

Asymptotic distribution theory has a set of tools to derive the sample distribution of the ML-MI
estimator and the following theorem presents this known result (Brillinger, 2004).

Theorem 1 (ML-MI estimator, asymptotic distribution)
For the estimator Î(X;Y ) it holds that:

√
n
(
Î(X;Y )− I(X;Y )

)
D−→ N

(
0, σ2MI

)
, where D−→

denotes convergence in distribution. The standard error of the estimator is:

SE
[
Î(X;Y )

]
=
σMI√
n

=
1√
n

∑
x∈X ,y∈Y

p(x, y)

(
ln

p(x, y)

p(x)p(y)

)2

− I(X;Y )2


1
2

(1)

Proof sketch: This result can be proved by using delta methods (Agresti, 2013).

While the asymptotic variance here depends on the population values p(x, y), in practice for interval
estimation we replace them by their sample values p̂(x, y). This standard procedure (Agresti, 2013,
Section 3.1.7) is followed for all the sampling distributions we present in this work. The distribution
of the conditional mutual information: Î(X;Y |Z) =

∑
z∈Z p̂(z)Î(X;Y |z) can be derived in a

similar manner, using the same methodology as we did for the unconditional.
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3. Motivating the Problem of Estimating MI in Under-Reported Scenarios

The ideal method to completely correct UR is to spend resources to identify the individuals that
have misreported, and correct their testimony. For example, it could be done by performing cotinine
blood tests to all women that reported non-smoking (x̃ = 0). This approach is expensive, and it also
raises issues of data privacy. On the other hand, the simplest way to estimate mutual information in
under-reported scenarios is to follow a naive approach and just use the observed data. Unfortunately,
this estimator, Î(X̃;Y ), is not consistent for estimating I(X;Y ). This can be easily proved, since
under the model of Figure 1a the following strict inequality holds2: I(X̃;Y ) < I(X;Y ).

Another way to estimate mutual information is by trying to “predict” the real values of the
misclassified examples using some prediction model. Then, impute new values for this examples,
and finally, estimate MI using the imputed data. This is similar to solving the missing data problem
by imputation (Allison, 2001). In our running example this means imputing the actual values of the
women who reported not smoking (x̃ = 0). To do so we need to build a model to derive the Bayesian
posterior distribution p(x = 1|y, x̃ = 0), and using this model to impute the values for the examples
with x̃ = 0. Then, we can use these imputed values to derive point and interval estimates of the MI
using the expressions presented in Section 2.3. One limitation of single-imputation is that estimating
standard error using conventional methods –such as eq. (1)– does not take into account the fact that
some of the data were imputed (Rubin, 2004). One solution to this problem is to perform multiple-
imputations and use improved ways of estimating the standard errors, such as Rubin’s rule presented
in (Allison, 2001, Chapter 5). But also multiple-imputation has some limitations; for example, it
is computationally expensive, while, in the case of estimating MI, there are no guarantees that the
confidence intervals derived by Rubin’s rule will have the coverage defined by the nominal (user
specified) level. For more details on the strengths and weaknesses of multiple-imputation we refer
to Rubin (2004).
Our contribution: In the next section we present a corrected estimator for the mutual information
that takes into account the under-reporting and overcomes the above limitations: (1) it is consistent,
unlike the naive approach, (2) it produces valid interval estimates, unlike the simple-imputation, and
(3) it is computational-efficient/imputation-free, unlike the multiple-imputations.

4. Correcting Mutual Information for Under-Reporting

To estimate mutual information in the under-reported scenario, we need to come up with a way to
estimate marginal and joint/conditional probabilities, despite the restrictions of the problem. While
we can estimate the marginal p(y) from all data, the conditionals are more challenging. For example,
the conditional p(y|x = 1) is inaccessible, as we do not have access to the full set of the examples
with x = 1, i.e. we do not know the identities of all smokers, but only those that self-reported
it (x̃ = 1). Because of the event based independence assumption Y ⊥⊥ MX |x = 1 it holds that
p(y|x = 1) = p(y|x = 1,mx = 1)⇔

p(y|x = 1) = p(y|x̃ = 1). (2)

To find the other conditional p(y|x = 0) we use a simple trick first introduced by Denis et al.
(2003) in the context of positive and unlabelled data. By using (2) we can write the marginal as

2. We can prove this result by using Jensen’s inequality, and the fact that in non-differential under-reporting the follow-
ing strict inequality holds: p(x̃ = 1) < p(x = 1).
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p(y) = p(y|x̃ = 1)p(x = 1) + p(y|x = 0)p(x = 0) and solving for p(y|x = 0):

p(y|x = 0) =
p(y)− p(y|x̃ = 1)p(x = 1)

1− p(x = 1)
. (3)

Finally, since we do not have access to the marginal distribution p(x = 1), and since it cannot
be estimated without modelling assumptions, we incorporate prior knowledge3 as a parameter γ,
provided by a user’s belief over the true prevalence p(x = 1). Incorporating prior knowledge over
the true prevalence is a widely used approach in the positive and unlabelled literature (Sechidis
et al., 2014).

By assuming perfect knowledge over the prevalence γ = p(x = 1) and using only the observed
variables Y and X̃ we can estimate I(X;Y ) using the following corrected estimator.

Definition 2 (Corrected ML-MI estimator)
The corrected for under-reporting estimator of the mutual information is:

Îγ(X̃;Y ) =
∑
y∈Y

(
γ p̂(y|x̃ = 1) ln

p̂(y|x̃ = 1)

p̂(y)
+ (p̂(y)− γp̂(y|x̃ = 1)) ln

p̂(y)− γp̂(y|x̃ = 1)

p̂(y) (1− γ)

)
.

To prove that the estimator is consistent is straightforward, since when γ = p(x = 1), by using (2),
(3) it holds that Iγ(X̃;Y ) = I(X;Y ). Proving only the consistency of the corrected estimator is
not so useful, and we need to capture also the variance that it has in the finite sample size. We do so
by the following theorem.

Theorem 3 (Corrected ML-MI estimator, asymptotic distribution)
For the estimator Îγ(X̃;Y ) it holds that:

√
n
(
Îγ(X̃;Y )− I(X;Y )

)
D−→ N

(
0, σ2MIγ

)
, when we

have perfect prior knowledge γ = p(x = 1). The standard error is:

SE
[
Îγ(X̃;Y )

]
=
σMIγ√
n

=
1√
n

∑
x̃∈X̃ ,y∈Y

(
p(x̃, y)φ2x̃,y

)
−

∑
x̃∈X̃ ,y∈Y

(
p(x̃, y)φx̃,y

)2
1
2

, (4)

φx̃=0,y = ln p(y)−γp(y|x̃=1)
p(y) , φx̃=1,y = φx̃=0,y+

γ
p(x̃=1)

∑
y′∈Y

(
p(y′|x̃ = 1)− δyy′

)
ln p(y′)−γp(y′|x̃=1)

γp(y′|x̃=1) .

Proof sketch: This result can be proved by using delta methods.

Furthermore, we can use our corrected estimator to estimate conditional effects under non-
differential UR (Figure 1b). For example we can consistently estimate I(X;Y |Z) by using the
estimator:

∑
z∈Z p̂(z)Îγ′(X;Y |z), where γ′ = p(x = 1|z). To estimate γ′ we need only knowledge

of γ = p(x = 1), since under the model of Figure 1b it holds that:

γ′ = p(x = 1|z) = p(z|x = 1)p(x = 1)

p(z)
=
p(z|x̃ = 1)

p(z)
γ

and both p(z|x̃ = 1) and p(z) can be consistently estimated by the observed data. The conditional
sampling distribution remains normal with similar parameters to the one described in Theorem 3,
but also converges more slowly because γ′ is estimated.

3. Using prior knowledge over p(x=1) is equivalent to using prior knowledge over the sensitivity, an approach that is
followed to correct the misclassification bias of epidemiological effect sizes (Greenland, 2014). This can be shown by
the fact that in the non-differential under-reporting it holds that: Sensitivity = p(mx = 1|x = 1) = p(mx=1,x=1)

p(x=1)
=

p(x̃=1)
p(x=1)

, and the p(x̃ = 1) can be estimated by the observed data.
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5. Experiments with Synthetic Data: Perfect Prior Knowledge

As a “sanity check” for our theoretical results we generated synthetic random variables X and Y
with different degrees of dependency. To create the data, firstly we generate the values of X , by
taking N samples from a Bernoulli distribution with parameter p(x = 1). Then, we randomly
choose the parameters p(y|x) that guarantee the desired degree of dependency, expressed in terms
of I(X;Y ), and we use these parameters to sample the values of Y. To create the under-reported
variable X̃ we sample with Sensitivity= p(x̃ = 1|x = 1) the examples with x = 1. We estimate
mutual information using five different methods:
• Ideal: using the unobservable estimator Î(X;Y ) and eq. (1) for standard error,
• No correction: using the under-reported estimator Î(X̃;Y ) and eq. (1) for standard error,
• Single imputation: using a model to impute possible misclassified data and then estimate MI and

standard error by eq. (1),
•Multiple imputations: using a model to impute multiple4 times and then average MI across the

imputed datasets and using Rubin’s rule (Allison, 2001) for standard error.
• Our correction: using our corrected estimator Îγ(X̃;Y ) and eq. (4) for standard error.
To get a fair comparison between the last three methods5, we used the same modelling assumptions
and γ is assumed to known and equal to p(x = 1).

Figure 2 compares the five methods in terms of their mean squared error. The three methods
that take into account the under-reporting (single/multiple imputation and our corrected estimator)
outperform the naive estimator, which is not consistent. As the sample size/sensitivity increases,
all of these three approaches tend to behave the same in a similar way to the ideal estimator. Our
corrected estimator outperforms the imputation-based approaches, especially in small sample sizes
and small levels of sensitivity – which are the most challenging situations. Interestingly, our method
clearly outperforms methods with the same complexity (no correction and simple imputation).
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Figure 2: Comparison in terms of mean (over 5,000 repetitions) squared error. In each repetition
we set I(X;Y )=0.01 and we randomly choose: |Y|∈{2−5}and p(x = 1)∈{0.1−0.5}.

4. To decide this number, we used the White et al. (2011) guideline that the number of imputations should be approx-
imately 100 times the fraction of missing information. In under-reporting this can be phrased as using 100×(1-
Sensitivity) imputations.

5. For the imputation-based approaches, we imputed the potentially misclassified examples by the following pos-
terior, which can be naturally derived by the model of Figure 1a: p(x = 1|y, x̃ = 0) = p(y,x̃=0|x=1)γ

p(y,x̃=0)
=

(p(y|x=1)−p(y,x̃=1|x=1))γ
p(y,x̃=0)

= p(y|x̃=1)(γ−p(x̃=1))
p(y,x̃=0)

. As we mentioned, we use perfect prior knowledge over γ, while
the rest of the parameters are estimated through ML from the observed data.
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Figure 3 verifies that the suggested standard error in Theorem 3 is correct, and that our method
is a valid way to derive interval estimates, similar to those derived using the ideal estimator. In
this figure we estimate the proportion of times that the 90% confidence intervals, derived by using
different standard errors for the different methods, contain the true value of the mutual information
I(X;Y ). Since the estimated coverage probability for the ideal and our proposed method are at the
nominal (user specified) level of 90% we can conclude that only these methods produce accurate
interval estimates.
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(a) Different levels of UR with N = 5k
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(b) Different sample sizes with Sensitivity = 0.50

Figure 3: Comparing in terms of coverage. We set the nominal level to be 0.90 (90% confidence
intervals) and we observe the proportion (over 5,000 repetitions) of the times that suggested intervals
contain the true value of the mutual information.

6. Experiments with Synthetic Data: Uncertain Prior Knowledge

Perfect prior knowledge, i.e. γ = p(x = 1), will not always be available. Therefore it is important
to explore ways to deal with uncertain prior knowledge and examine the behaviour with incorrect
priors – results are presented below for an artificial scenario where we can exert control over the
“quality” of prior knowledge.

Let us assume that birth weight of non-smoker births are drawn from a normal distribution with
µ = 3500g and σ = 500g, while birth weight of smoker births are drawn from a normal distribution
with µ = 3000g and σ = 500g. Birthweight was considered to be “low”, p(x = 1), if the weight
was < 2500g (Wright et al., 2013). We assume that in a cohort of N = 5000 pregnant mothers,
30% are smokers, so p(x = 1) = 0.3. However, only half of the mothers on average would admit to
this, so p(x̃ = 1) = 0.15. In a typical simulated draw from this simulation, the mutual information
is estimated with an under-reported variable. However, after using our corrected estimator and
by incorporating the prior knowledge that the X variable is non-differential under-reported, the
estimated mutual information increases by a factor of three (Figure 4a).

One way to handle uncertain prior knowledge is by performing a sensitivity analysis as Figure
4a shows. To do so we plot the interval estimates for the corrected MI, calculated by eq. (4), for
different values of our belief over the probability of smoking (γ). Interestingly, the 80% confidence
interval estimate for γ = p(x = 1) = 0.30 (perfect knowledge) contains the true (ideal) value of
the MI. A different way to handle uncertainty is through a simulation based analysis, where we
represent uncertainty over γ as a probability distribution, sample from this distribution many times,
and estimate the corrected MI for each value. For example, in Figure 4b we model γ as a generalised
Beta distribution (bounded between a minimum and a maximum value) and we explore the resultant
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uncertainty in the point estimate of the corrected mutual information. As we observe, the true value
of the mutual information is very close to the average over the simulations.
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(a) Sensitivity analysis.
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(b) Simulation based analysis.

Figure 4: Different ways to handle uncertain prior knowledge. (a) Sensitivity analysis. (b)
Simulation based analysis: [LEFT] the user’s prior belief over γ, [RIGHT] the resultant uncertainty
in the estimated mutual information through our correction. The dashed line shows the true (but
unknown) value, while the solid line the average over the simulations.

7. Applications in Real-world Datasets

In this section we present two applications of our results — ranking the risks factors that may lead
to adverse birth outcomes derived from a large real-world dataset, and feature selection when the
training/test distributions differ.

7.1 Risk Factors for Low Birth Weight Infants

To describe the usefulness of our theoretical findings we will use data from a prospective birth co-
hort, the Born in Bradford (BiB) study. BiB is a longitudinal multi-ethnic birth cohort study aiming
to examine the impact of environmental, psychological and genetic factors on maternal and child
health and well-being (Wright et al., 2013). Bradford is a city in northern England with high levels
of socio-economic deprivation and ethnic diversity. The full BiB cohort recruited 12,453 women
comprising 13,776 pregnancies between 2007 and 2010 and the cohort is broadly characteristic of
the city’s maternal population in terms of age, deprivation and ethnicity (Wright et al., 2013). Ethics
approval for the study was granted by Bradford Research Ethics Committee (Ref 07/H1302/112).

In our experiments we will focus on ranking several factors according to their association with
LBW. We focus on the following correctly-reported categorical variables: ethnicity XE (3 levels),
age XAg (3 levels), Body Mass Index (BMI) XB (4 levels), index of multiple deprivation XI (5
levels), gestational diabetesXG (binary), taken vitaminsXV (binary), passive smokingXP (binary)
and the following binary UR variables: any smoking X̃S and alcohol X̃Al consumption during
pregnancy. For the UR variables the observed priors are that 16% of the women smoked during
pregnancy, while 31% drunk alcohol. Using domain knowledge we correct the priors to be 25% and
40% respectively, in other words we assume that 9% of the overall women UR these two habits, and
we assume non-differential UR.

In Figure 5(a) we observe the ranking by using the unconditional MI of the observed covariates
and the target variable (LBW). Due to the multi-ethnic characteristic of the sample, it is important
to control (adjust) for ethnicity. In Figure 5(b) we see the derived ranking by using the conditional
MI between the observed covariates and the target, conditioning over the ethnicity variable. Inter-
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estingly, in this ranking Alcohol is the least significant factor, while in the overall population it was
second. Finally, to correct the two UR variables, we use prior knowledge and our corrected condi-
tional estimators presented in Sect. 4, and we derive the ranking of Figure 5(c). After the correction
we see that the dominant factor is Smoking, even above BMI, while Alcohol moves back up.
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An Information Theoretic Solution to Under-reported Variables
BMI: Î(XB ;Y |XE) = 3.4 **
Smoking: Î(X̃S ;Y |XE) = 2.5 **
IMD: Î(XI ;Y |XE) = 0.9 **
P. smoking: Î(XP ;Y |XE) = 0.7 **
Age: Î(XAg ;Y |XE) = 0.5 **
Vitamins: Î(XV ;Y |XE) = 0.4 **
G. diabetes: Î(XD;Y |XE) = 0.2 **
Alcohol: Î(X̃Al;Y |XE) = 0.2 **

(b) Under-reported adjusted on ethnicity

BMI: Î(XB ;Y ) = 3.2 **
Alcohol: Î(X̃Al;Y ) = 1.9 **
IMD: Î(XI ;Y ) = 1.2 **
Smoking: Î(X̃S ;Y ) = 1.1 **
G. diabetes: Î(XD;Y ) = 0.6 **
P. smoking: Î(XP ;Y ) = 0.2 **
Vitamins: Î(XV ;Y ) = 0.2 **
Age: Î(XAg ;Y ) = 0.1 **
(a) Under-reported unadjusted

Smoking: ÎC(X̃S ;Y |XE) = 5.8 **
BMI: Î(XB ;Y |XE) = 3.4 **
IMD: Î(XI ;Y |XE) = 0.9 **
P. smoking: Î(XP ;Y |XE) = 0.7 **
Alcohol: ÎC(X̃Al;Y |XE) = 0.6 **

Age: Î(XAg ;Y |XE) = 0.5 **

Vitamins: Î(XV ;Y |XE) = 0.4 **

G. diabetes: Î(XD;Y |XE) = 0.2 **

(c) Corrected adjusted on ethnicity
Figure 7. Exploring variable ranking by their association with the LBW. (a) Ranked by mutual information, uncorrected.
(b) Ranked by mutual information condition on ethnicity, uncorrected. (c) Ranked by mutual information condition on
ethnicity, corrected. Units are milli-nats. The single star * means the null is rejected at α = 0.1, while double stars **
at α = 0.01. It should remembered that failure to reject the null does not imply insignificance as the test may not have
sufficient power, which is likely the case in an under-reported test as we showed in Section 5.

variable. Interestingly, in this ranking Alcohol is the least
significant factor, while in the overall population it was
third. Finally, to correct the two under-reported variables,
we use prior knowledge and our corrected conditional esti-
mators presented in Section 4.3, and we derive the ranking
of Figure 7(c). After the correction we see that the dom-
inant factor is Smoking, even above BMI, while Alcohol
moves back up. The differences between the three rankings
present the importance of having techniques that are able to
produce estimates that are adjusted on some demographic
characteristics and that also able to correct under-reporting.

6.2. Feature Selection with Event-level Covariate Shift

Covariate shift is when training/test distributions differ,
in that ptest(x) 6= ptrain(x), but we still have the same
posteriors ptest(y|x) = ptrain(y|x). The case of non-
differential under-reported features in training data can be
seen as an event-level covariate shift, since because of
equation (1) we have ptest(y|x = 1) = ptrain(y|x = 1)
but not for x = 0.

In Figure 8, we perform mutual information based feature
selection (Brown et al., 2012), and at the training stage,
during the feature selection procedure, some features are
under-reported, but at testing stage, all features are cor-
rectly reported. Results clearly show that by using perfect
prior knowledge and our estimator presented in Section 4.1
we achieve the same performance as by using the ideal un-
observable estimator.

7. Conclusions
In this work we have provided an information theoretic so-
lution to the problem of under-reported variables, by rein-
terpreting it as a missing data problem. Initially, we pre-
sented how we can use the tool of missingness graphs for
providing graphical representations of the different under-
reported scenarios. Then, by using these representations,
we derived ways for estimating mutual information quan-
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Figure 8. Average classification error over 30 random splits of the
data into 50% training and 50% testing. For each training data we
generate an UR dataset, by non-differential under-reporting each
feature with a Sensitivity randomly chosen in the range [0.25-
0.75]. The krvskp is 2-class, while the splice 3-class dataset. The
features in the krvskp are binary, while in splice are quaternary
and we binarized them through a one-vs-all approach. After se-
lecting the top-k most important features, we used a 3-nearest
neighbor classifier. Ideal means using the unobservable estima-
tor Î(X;Y ) to rank the features, No correction using the under-
reported estimator Î(X̃;Y ), while Our correction using the cor-
rected way to estimate mutual information through ÎC(X̃;Y ).

tities by incorporating simple prior knowledge over the
under-reporting. Furthermore, we explored valid ways to
test independence, and we derived a correction factor that
quantifies the power loss of the χ2-test. Our theoretical re-
sults, both in testing and estimation, are supported through
experiments with synthetic data. Finally, we shown how
we can use our findings in a health care application, rank-
ing the risk factors that may lead to adverse birth outcome,
and in a machine learning application, selecting important
features when training/testing distributions differ.

We have demonstrated that failure to correct for potential
under-reporting of exposure will lead to biased estimates
of the ranking of the relative effect between variables and
outcomes. Ascertainment of unbiased estimates is essen-
tial to ensuring that accurate decisions can be made when
faced with multiple competing risks, a situation commonly
encountered in health research (Engel et al., 2009).

Figure 5: Variable ranking by their association with the LBW. (a) Ranked by MI, uncorrected.
(b) Ranked by MI condition on ethnicity, uncorrected. (c) Ranked by MI condition on ethnicity,
corrected. Units are milli-nats. The single star * means the null hypothesis (independence between
the reported covariate and LBW) is rejected at α = 0.1, while double stars ** at α = 0.01. It
should remembered that failure to reject the null does not imply insignificance as the test may not
have sufficient power, which is likely the case in an UR test due to the power-loss (Greenland, 1988).

The differences between the three rankings illustrate the importance of having techniques that
are able to produce estimates that are adjusted on some demographic characteristics and that also
able to correct under-reporting. In the following section we present the merits of our analysis in a
machine learning application using UCI datasets for which we have access to the ground truth.

7.2 Feature Selection with Event-level Covariate Shift

Covariate shift (Quionero-Candela et al., 2009) is when training/test distributions differ, in that
ptest(x) 6= ptrain(x), but we still have the same posteriors ptest(y|x) = ptrain(y|x). The case of
non-differential UR features in training data can be seen as an event-level covariate shift, since,
because of eq. (2), we have ptest(y|x = 1) = ptrain(y|x = 1) but not for x = 0.

In the experiments of this section we perform mutual information based feature selection (Brown
et al., 2012), where some of the features are under-reported during the feature selection step. Then,
we build a model using the training data and estimate the classification error in the testing data.
We used three categorical UCI datasets with different characteristics6. As a classification model
we used a k-nearest neighbour (k = 3), this is chosen as it makes few assumptions about the data
and it treats all features equally, a desirable property when we compare different feature selection
methods. In Figure 6 we compare the three UR methods with the same complexity: no correction,
simple imputation and our correction (for a fair comparison we used perfect prior knowledge for
the last two approaches). Our suggested approach of selecting the features using the corrected
estimator (Section 4) outperforms the other approaches in most of the settings and achieves similar
performance as using the ideal (unobservable) estimator.

6. The data is available in UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/). Splice and Connect-4
are 3-class classification problems, while Chess is 2-class. Categorical attributes are expanded into several binary
attributes.
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Figure 6: Average testing error over 10 random splits of the data into 50% training and 50% testing.
For each training dataset we generate 10 UR datasets, by randomly non-differential under-reporting
ten of the features with sensitivities chosen in the range [0.25 − 0.75]. For each under-reported
method (no correction, simple imputation and our correction) we selected the most frequent features
across the UR datasets.

8. Conclusions and Future Work

In this work we showed how to estimate mutual information in under-reporting scenarios. Initially,
we presented how we can use the tool of missingness graphs to provide graphical representations
of the different under-reported scenarios. Then, by connecting under-reporting with the problem
of learning from positive and unlabelled data, we derived ways for estimating mutual information
quantities by incorporating simple prior knowledge. Our theoretical results are supported through
experiments with synthetic data. Finally, we showed how we can use our findings in a real-world
health care application, ranking the risk factors that may lead to adverse birth outcome, and in a
machine learning application, selecting important features when training/testing distributions differ.

Our future work is two-fold: theoretical extensions and empirical evaluations. Firstly, we will
extend our theoretical results to derive informed ways for testing independence in under-reported
scenarios, by controlling the two probabilities of errors: false positives and false negatives. Sec-
ondly, we will extend our findings to explore testing and estimation in differential under-reporting
(i.e. when there is a direct arc between the missingness mechanism MX and the variable Y in
Figure 1a). Furthermore, it will give more insight to explore more applications and different sim-
ulation studies. For example, we can explore how robust to misspecified prior knowledge are the
results of Section 7, or how we can select features that take into account both the relevancy and the
redundancy.

We believe these results are highly applicable in a wide variety of machine learning applications,
when we face the problem of under-reporting. Estimating mutual information, testing independence,
ranking sets of features according to their relevancy/rendundancy, learning Bayesian network struc-
tures and sample size determination for experimental design are some –but not all– of the possible
applications.
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