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Abstract
The concept of dependence among variables in a Bayesian belief network is well understood, but
what does it mean in an influence diagram where some of those variables are decisions? There are
three quite different answers to this question that take the familiar concepts for uncertain variables
and extend them to decisions. First is responsiveness, whether the choice for a decision affects
another variable. Second is materiality, whether observing other variables before making a deci-
sion affects the choice for the decision and thus improves its quality. Third is the usual notion of
dependence, assuming that all of the decisions are made optimally given the information available
at the time of the decisions. There are some subtleties involved, but all three types of decision
dependence can be quite useful for understanding a decision model.
Keywords: Influence diagrams; dependence; responsiveness; materiality; requisite sets; policy
diagrams.

1. Introduction

Students learning how to construct even simple influence diagrams can be overwhelmed by the
question “What does that decision depend on?” and soon find themselves drawing arcs into that
decision node from almost every other node in the diagram. Of course, the parents of the decision
represent the variables that will have been observed by the time that decision is made, and the value
nodes in the model represent the criteria for making that decision. But the question remains, what
does that decision depend on?

The concept of dependence among the variables in a Bayesian belief network has been studied
and characterized well, but not so in an influence diagram where some of the variables are decisions.
In this paper we present three complementary answers to the question, building on the familiar
concepts of dependence among uncertain variables in belief networks.

First is responsiveness, whether the choice for a decision affects other variables. Second is ma-
teriality, whether observing additional variables before making a decision affects the choices made
for the decision and thereby improves its quality. Closely related to materiality is a requisite set of
variables, sufficient to determine an optimal choice. Third is the usual framework of independence
applied to the belief network obtained by replacing each decision by its optimal policy as a function
of variables that will be observed by the time of the decision. Together these three types of decision
dependence help us better understand the decision problem represented by an influence diagram.

We will show in this paper how to answer the three questions, but the answers are not as straight-
forward as they might first appear. For example, consider the different influence diagrams shown in
Figure 4. For which of these might the value V or the choice for D2 depend on D1? In 4a1, 4b1,
4c1, 4d1, 4e1, and 4f1, D1 is an ancestor of V , but, of these, only in 4d1 and 4e1 is there a path
from D1 to V along conditional arcs, the condition proposed by Nilsson and Jensen (1998). We
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will see that D1 might affect V and the choice for D2 not only in those diagrams but also in 4a1.
However, in 4b1, 4c1, and 4f1, it could not possibly affect either V or the choice for D2. Although
we can recognize these properties for the latest decision in an influence diagram, such as D2, to
recognize these properties for earlier decisions, such as D1, we need to construct belief networks
with optimal policies replacing decisions, as shown in 4a2, 4b2, 4c2, 4d2, 4e2, and 4f2.

In the following sections: we explain our notation and framework; we consider responsiveness;
we examine materiality and requisite sets; we generalize the framework of dependence to models
with decisions; we provide a number of examples to illustrate these concepts; and we offer our
conclusions and opportunities for future research.

2. Bayesian Belief Networks, Influence Diagrams, and Policy Diagrams

In this section we define Bayesian belief networks, influence diagrams, and policy diagrams, and
introduce their associated notation.

A Bayesian belief network (BBN) graph is comprised of nodes, corresponding to uncertain
variables U and value variables V 1, and directed conditional arcs without cycles. We denote single
nodes by upper-case letters, such as X , and sets of nodes by bold letters, such as X, and often refer
interchangeably between nodes and their corresponding variables. We represent uncertain variables
as ovals and value variables as rounded rectangles, as in the BBN shown in Figure 1b. If there is
an (S,X) arc, then S is a parent of X , denoted S ∈ Pa(X), and X is a child of S. If there is a
directed path from S to D′, then S is an ancestor of D′ and D′ is a descendant of S.
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V

X S

V

b)

D’

X S

V

c)

D*

Figure 1: ID and corresponding PPD and DPD with imperfect observation X of state S

The structure of the BBN represents that X must be independent of its ancestors given its par-
ents. This is generalized by d-separation, that X must be independent of Y given Z if there is no
active trail between (X \ Z) and (Y \ Z), where an active trail given Z is a sequence of adjacent
nodes such that each intermediate node has both arcs directed toward it if and only if it is in Z. In
that case, we say that X is d-separated from Y by Z (Pearl, 1988).

Some of the variables in the BBN can be deterministic variables, known with certainty when
their parents are known. Deterministic variable X is said to be functionally determined by Z when
each parent of X is either in Z or itself functionally determined by Z. We represent deterministic
variables as double ovals or double rounded rectangles, as in the BBN shown in Figure 1c, where
D* is functionally determined by X . The set of variables functionally determined by Z is denoted
by F (Z), and d-separation can be generalized to D-separation: X is D-separated from Y by Z if
(X \ F (Z)) is D-separated from (Y \ F (Z)) by F (Z) (Geiger et al., 1990a).

1. Expected utility is usually represented by deterministic value nodes and only in influence diagrams, but we are
including uncertain value variables in our BBNs for several reasons. First, we can test them for independence at the
graphical and numerical levels. Second, the expectation of value variables yields deterministic utility functions and
we can assume that value variables are binary without loss of generality. Finally, we will be converting influence
diagrams that include these value nodes into BBNs where they will continue to be value nodes.
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Finally, to fully specify the BBN, we need to have a finite set of states for each variable and a
probability distribution P . Probability distribution P is consistent with the BBN if

P{U ∪V} =
∏

X∈U∪V
P{X|Pa(X)},

and P{X|Pa(X)} is a deterministic distribution for any deterministic variables X ∈ U ∪V. The
following is a seminal result that we state as a proposition here because it is fundamental to the
paper (Geiger et al., 1990a).

Proposition 1 (D-Separation is Sound and Complete) Variables X and Y are D-separated by Z
in a BBN graph if and only if X and Y are independent given Z for all probability distributions P
consistent with the BBN.

An influence diagram (ID) graph is comprised of nodes, corresponding to U, V, and decision
variables D, and directed arcs without cycles. The arcs into decisions are informational rather
than conditional, and indicate that the parents of the decision will be observed by the decision
maker (DM) at the time DM will choose an optimal alternative to maximize the expected sum of
the value variables. We represent decision variables as rectangles, as in the ID shown in Figure 1a,
where uncertain X will be observed before decision D. To fully specify the ID we need a finite
set of alternatives for the decisions, states for the other variables, and probability distribution P for
P{U ∪V|D} consistent with the ID.

There are several standard assumptions we make about IDs throughout this paper.

• We assume that the decisions are totally ordered, that is, there is a single directed path con-
taining all of the decision nodes, and no-forgetting, that any observations and choices made
in the past will be known for subsequent decisions. These ensure that there is no ambiguity
about the information available to DM at the time of any given decision.

• We assume that there are no directed cycles. As a result, there can be no descendants of
decision D known at the time the choice for D is made. (There are circumstances where this
might be desirable, such as deterministic constraints on the sets of alternatives, but they could
be represented instead with penalty value nodes.)

• We assume that there is at least one value node and that none of them have children. If one
did, it could be replaced by an uncertain node with an equivalent value node child.

A policy diagram corresponds to an ID where each decision node is replaced by an uncertain
policy node (Cooper, 1988; Shachter and Kenley, 1989). The policy diagram is determinisitic (DPD)
if the policy nodes are deterministic and probabilistic (PPD) otherwise. The parents of each policy
node initially include all of the explicit decision parents and implicit (no-forgetting) nodes that will
be observed before the decision. For efficiency and understanding, we want to prune as many parents
of the policy nodes as possible, while maintaining a sufficient set to represent optimal decisions.

We replace the decision node D in the ID with probabilistic node D′ in the PPD and with deter-
ministic node D* in the DPD, as in the diagrams shown in Figure 1. As a convention, we assume
that a PPD is not fully specified and our focus is on its graph, but that in a DPD the underlying
states and probability distribution have been fully specified and all of the optimal deterministic poli-
cies have been computed. Thus, a DPD represents the optimal choices for DM but those are yet
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to be determined in a PPD. Surprisingly, it is necessary to have the PPD represent the policies as
non-deterministic nodes. To understand why, consider the diagrams shown in Figure 1. In the DPD
shown in 1c, where the optimal choice D* is determined by X and therefore X D-separates D*
from V , we can not recognize any possible direct effect of the choice of D* on V given X . On the
other hand, in the PPD shown in 1b where non-deterministic D′ is not D-separated from V by X ,
we can recognize whether V might depend on the choice of D′ given X .

Computing the optimal policies is not the focus of this paper. It can be computationally chal-
lenging but it is well understood and there are many methods that could be used for it (Shachter,
1986; Cooper, 1988; Shenoy and Shafer, 1988; Tatman and Shachter, 1990; Shachter and Peot,
1993; Jensen et al., 1994; Bhattacharjya and Shachter, 2007; Luque and Diez, 2010; Nilsson and
Lauritzen, 2013).

Multiple alternatives for a decision can be optimal given the information available. In that case,
we assume that ties are broken by some arbitrary, but consistently applied, order of the alternatives.

3. Responsiveness

A variable X (not observable at the time of a decision D) is responsive to D if its value is affected
by the choice for D (Heckerman and Shachter, 1995), that is, if there is a positive probability
that a different choice for D would have led to a different value for X . While this definition is
powerful for thinking about causality, it is subtle and complex. For example, consider the IDs
shown in Figure 2. Suppose DM will Call “heads” or “tails” for a coin flip, will Win if the call
is correct, and believes that either Coin face is equally likely and unaffected by Call. Therefore,
P{Win|Call} = P{Win} = 0.5. Although all three diagrams are valid for this situation, the
diagram in 2c does not adequately represent that Win is responsive to Call. That is, while Win and
Call are independent, if DM had chosen a different Call with the same Coin result (because Coin is
not responsive to Call) then Win would have had a different realization.

Win

Call

Coin

Call Calla) b) c)

Win Win

Figure 2: Influence diagrams for the decision to call “heads” or “tails” for a coin flip

To resolve dilemmas like this, we introduce a more limited notion of responsiveness. An uncer-
tain or value variable X , not observable before a decision D is chosen, is strongly responsive to D
if P{X|D,Pa(D)} varies with the choice of D, that is, X depends on D given Pa(D) probabilis-
tically. In the coin flip example, Win is responsive to Call but Win is not strongly responsive to Call,
because choosing a different Call changes whether DM wins but not the probability that DM wins.

Because strong responsiveness is defined in terms of dependence, we can use D-separation to
characterize when it is possible. We can do so for any policy in a PPD, but only for the latest
decision in an ID. Theorem 2 and Corollary 3 together show that X might be strongly responsive to
the latest decision D in an ID (or any policy D′ in a PPD) if and only if it is a descendant of D (or
D′). For example, S can not be strongly responsive to D in the ID shown in Figure 1a, Coin can not
be strongly responsive to Call in Figure 2a, nor can Win be strongly responsive to Call in Figure 2c.
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Theorem 2 (Strong Responsiveness in the PPD) Given any policy variable D′ and any uncertain
or value variable X in a PPD graph, the following statements are equivalent:
1. X is a descendant of D′;
2. X is not D-separated from D′ by Pa(D′); and
3. there is some probability distribution consistent with the PPD for which X is strongly responsive
to D, that is, D′ and X are dependent given Pa(D′).

Proof (1) and (2) are equivalent because the active trail can only descend but without directed cy-
cles there is nothing to block it. (2) and (3) are equivalent because of Proposition 1.

Corollary 3 (Strong Responsiveness in the ID) Given any decision D and any uncertain or value
variable X in an ID graph:
1. if D is the latest decision, there is some probability distribution consistent with the ID for which
X is strongly responsive to D if and only if X is a descendant of D;
2. there is some probability distribution consistent with the ID for which X is strongly responsive
to D if there is a path from D to X along conditional arcs; and
3. if X is strongly responsive to D then X must be a descendant of D.

We might be able to recognize when decision D1 made before D2 can not affect DM’s optimal
choice for D2, and, as a result, some descendants of D2 might not be strongly responsive to D1
even though they are descendants of D1 in the ID. In that case, we could prune D1′ from Pa(D2′)
in the PPD, and the probability distribution in Theorem 2 for the original unpruned PPD would not
correspond to an optimal policy. For example, in the ID shown in Figure 4f1, D1 is an ancestor of
V but V can not be strongly responsive to D1 because D1 can not affect DM’s choice for D2.

In the next section we will see how to recognize some observations that can not affect DM’s
choice for a decision and how to prune them from the PPD.

4. Materiality and Requisite Sets

Materiality arises when the observation of variables Y instead of variables X, X ⊂ Y, before mak-
ing decision D affects DM’s choice and thereby improves the quality of the decision. That is, DM’s
optimal choice given Y is sometimes different from DM’s optimal choice given X. Otherwise, we
can simplify DM’s decision problem by considering only X instead of Y.

More formally, given an ID with latest decision D (or any policy D′ in a PPD), we use the
corresponding fully specified DPD to compare sets of observations X and Y, X ⊂ Y ⊆ Pa(D*),
before DM makes the choice for D. Y is material for D relative to X if Y is not independent
of the corresponding optimal policy D* given X in the fully specified DPD. Put more simply, this
recognizes whether observing Y instead of X will change any of DM’s optimal decisions. When it
will not, variables (Y \X) have been called numerically redundant (Faguiouli and Zaffalon, 1998).

Requisite sets are a graphical property in the ID, PPD, or DPD closely related to materiality
(Shachter, 1988, 1998, 1999; Nielsen and Jensen, 1999; Luque and Diez, 2010; Nilsson and Lau-
ritzen, 2013). They are minimal subsets X of all observations Y available at the time of decision
D that are sufficient for DM to make the optimal choice for D. We can simplify DM’s decision
problem by considering only X instead of Y. This not only reduces the dimensions of the optimal
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policy but can also change which variables might be strongly responsive to and material for earlier
decisions. For example, in the ID shown in Figure 4b1, D1, X , and S will be observed before D2
but S is requisite for D2 and, as a result, V is not strongly responsive to D1.

More formally, given an ID with latest decision D (or any policy D′ in a PPD) and all observed
variables Y available to DM before before making the choice for D, X ⊆ Y is requisite for D if X
is a minimal set such that X ∪D D-separates Y from the value node descendants of D. The value
node descendants of D are DM’s decision criteria that might be strongly responsive to the choice
for D. As a result, when X is requisite for D, observing Y instead of X could not possibly change
any of DM’s choices for D given X for any probability distribution consistent with the ID. In that
case, variables (Y \X) have been called structurally redundant (Faguiouli and Zaffalon, 1998).

The following theorem and corollary capture the connection between materiality and requisite
sets, extending earlier results (Shachter, 1988, 1999; Nielsen and Jensen, 1999).

Theorem 4 (Materiality and Requisite Sets in the PPD) Given any decision D in an ID, the cor-
responding PPD and DPD with policies D′ and D* corresponding to D, and any X requisite for
D′ where X ⊂ Y ⊆ Pa(D′) = Pa(D*), then Y can not be material for D relative to X.

Proof Because X is requisite for D′, every value node descendant of D′ is independent of Y given
X∪D′, and any other value nodes to be summed are independent of D′ by Theorem 2. Thus, given
any instance y of Y in which the elements corresponding to X take on the instance x, the optimal
policy D* given x must also be optimal given y. Therefore, D* must be independent of Y given
X, and Y can not be material for D relative to X.

Corollary 5 (Materiality and Requisite Sets in the ID) Given the latest decision D in an ID, the
corresponding DPD with policy D* corresponding to decision D, and any X requisite for D where
X ⊂ Y ⊆ Pa(D*), then Y can not be material for D relative to X.

In practice, materiality is often used to consider the expansion of the observation set, rather than
contracting it, including some variables that might only be observed with some effort or expense.
For example, the value of clairvoyance on an uncertain variable S before decision D will be zero
unless the observations with S are material for D relative to the observations without it (Howard,
1966). To implement the DPD test for materiality in that case requires determining an expanded
optimal policy for D* (and subsequent decisions) as a function of S ∪ Pa(D*), assuming that they
would actually be observed. On the other hand, the PPD test for requisite set X is simply performed
on the graph. For example, in the ID shown in Figure 1, if we could observe S before D then S
would be requisite for D instead of X . The theorem above shows how the simpler requisite test
on the graph might recognize when materiality is impossible for an expanded Pa(D*) in the ID or
PPD, without determining any policies or even specifying a distribution (Poh and Horvitz, 1996).

To determine the requisite PPD, the PPD with requisite sets, requires a single backward pass
through the PPD, as described by the following theorem and algorithm.

Theorem 6 (Requisite PPD) Given any two decision nodes D1 and D2 in an ID, where D1 pre-
cedes D2, and the corresponding PPD with policies D1′ and D2′ corresponding to D1 and D2,
eliminating non-requisite nodes for D1 from Pa(D1′) does not change the requisite set for D2′.
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Proof The issue is whether removing the arc from some X to D1′ can change the requisite set for
D2′. However, both X and D1′ were originally in Pa(D2′) by no-forgetting, so the presence of an
arc between them can not affect whether they are included in the requisite set for D2′.

Algorithm 7 (Requisite PPD) To obtain the requisite PPD from any PPD, consider each policy
node D′ in reverse order, find a requisite X for D′, a minimal X ⊆ Pa(D′) such that X ∪ D′

D-separates Pa(D′) from the value node descendants of D′, and then set Pa(D′) ← X (with a
corresponding change to Pa(D*) to obtain the requisite DPD).

The minimal requisite set for each decision or policy node is usually unique and can be found
efficiently (Geiger et al., 1990b; Shachter, 1998, 1999; Nielsen and Jensen, 1999). However, when
there are deterministic nodes, there might be multiple minimal requisite sets. For example, consider
the ID shown in Figure 3 where D1 is observed at the time of D2. Although X by itself is requisite
for D2, D1 by itself is also requisite for D2 because X is functionally determined by D1. In this
case, the diagram in 3b is preferred to the one in 3c because the alternative set for D1 is never
smaller than the set of states of X it maps into, and therefore it could generate a larger policy space.

D1

D2a)

S

V

X S

Vb)

D1’

D2’

X S

Vc)

D1’

D2’

X

OR

Figure 3: Requisite sets might not be unique when there are deterministic nodes in the ID

The requisite PPD now allows us to refine our test for strong responsiveness, building on The-
orems 2 and 6. For example, in the ID shown in Figure 4c, D1 is not requisite for D2 and thus V
can not be strongly responsive to D1.

Corollary 8 (Strong Responsiveness and Requisite PPD) Given any decision D in an ID and
corresponding requisite PPD graph with policy D′ corresponding to D, if any uncertain or value
variable X is strongly responsive to D then X must be a descendant of D′ in the requisite PPD.

5. Independence in the Policy Diagrams

Once the requisite PPD and/or fully specified DPD have been constructed for a given ID, we have
seen how we can use established concepts and techniques to confirm any independence statements
among the variables. Usually this check takes the form of D-separation in the requisite PPD graph
or actual verification of independence in the fully specified DPD, and can be used to check for
possible strong responsiveness, requisite sets, and materiality.

We can also use the PPD and DPD to answer queries from three different perspectives.
The first perspective explores the prospective implications of DM’s optimal policy. For exam-

ple, DM might want to understand the effect of the optimal policy on arbitrary variables, such as
separate value variables when there are multiple value nodes. In general, the optimal policies are
deterministic functions of the requisite sets of variables, some of which can be uncertain, so the

468



DECISIONS AND DEPENDENCE IN INFLUENCE DIAGRAMS

Table 1: Possible Strong Responsiveness and Requisite Sets for the Example IDs
Poss. Strong Requisite Poss. Strong Requisite

Fig. Decn. Responsiveness Set Decn. Responsiveness Set
1 D V X

3 D1 {X,S,D2, V } ∅ D2 V D1 or X
4a D1 {X,D2, V } ∅ D2 V {D1, X}
4b D1 X ∅ D2 V S
4c D1 X ∅ D2 V ∅
4d D1 {X,S,D2, V } ∅ D2 V D1
4e D1 {X,S,D2, V } ∅ D2 V X
4f D1 X ∅ D2 V ∅
5 D1 all but {S1, D1} S1 D3 {V 3, S4} S3

D2 {V 2, S3, D3, V 3, S4} S2

6 D1 all but {A,B,C,D1} B D3 {V 4,K, V 3} F
D2 {I,D4, L, V 2} E D4 {L, V 2} {G,D2}

optimal choices that will be made following those policies can therefore be uncertain, too (Nilsson
and Jensen, 1998). For example, consider the ID shown in Figure 1a. DM might not know in ad-
vance which choice DM will make for D as it could depend on the realization of X . If DM could
also observe S before making decision D then S would be requisite for D and D would depend
instead on the realization of S. At any point in time DM can think about the probability of future
decisions and their requisite observations using either the DPD at the numerical level or the PPD at
the graphical level.

The second perspective assumes DM has designed and fielded an agent and can observe some
of its actions. For example, if DM observed that the agent took a particular action, DM could infer
something about its earlier actions and observations, as well as its actions and observations going
forward.

The third perspective models the actions of an independent third party, another person or an
agent that DM did not design. If we assess our beliefs about the other’s ID, then we can predict
its behavior and response to new observations as in the case above of the agent DM designed, al-
beit with considerably more uncertainty. This is the situation when we model a multi-player game
(Koller and Milch, 2003) and it allows us to predict the effects of our actions on another player’s
behavior, or perhaps better understand which observations might be requisite for that player’s re-
sponse.

6. Examples

In this section we consider a number of example IDs to see which variables are independent of
the decisions and which are not, in the sense that we have developed those concepts in earlier
sections. The variables that might be strongly responsive to the decisions and the requisite sets for
the decisions are summarized in Table 1.

Consider the ID shown in Figure 1, along with its corresponding requisite PPD and DPD. Note
that D is the latest decision, V is its only descendant, and X is not D-separated from V by D.
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Therefore, V might be strongly responsive to D, S can not be strongly responsive to D, and X is
requisite for D, leading to an optimal policy D* as a function of X . Based on the PPD, D′ might
depend on S but S is independent of D′ given X . If S were to be observed before D, it would be
requisite for D instead of X , the optimal policy D* would be a function of S instead of X , and
{S,X} could not be material for D relative to S.

Consider the ID shown in Figure 3, along with its two possible requisite PPDs. D2 is the latest
decision and V is its only descendant. There is an earlier decision D1 and it has descendants X , D2,
S, and V in both PPDs. Therefore, V might be strongly responsive to D2, and X , S, D2, and V
might be strongly responsive to D1. D1 and X will be observed before the choice for D2, but each
is D-separated from V by D2 and the other, so D1 and X are each requisite for D2 but {D1, X} is
not. Therefore, {D1, X} is not material for D2 relative to either X or D1. S is independent of D2′

given either D1′ or X in either PPD.
Consider the IDs shown in Figure 4, along with their requisite PPDs. In all of them, D2 is

the latest decision and V is its only descendant, so V might be strongly responsive to D2. In the
PPD shown in 4a2, neither D1′ nor X can be D-separated from V by either D2′, {D2′, D1′} or
{D2′, X}, so {D1, X} is requisite for D2, and X , D2, and V might be strongly responsive to D1.
In the PPD shown in 4b2, both D1′ and X are D-separated from V by {D2′, S}, so S is requisite
for D2, {D1, X, S} is not material for D2 relative to S, and only X could be strongly responsive
to D1. In the PPD shown in 4c2, D1′ is D-separated from V by D2′, so ∅ is requisite for D2, and
D1 is not material for D2 relative to ∅. If X were to be observed before D2, we would obtain the
ID in 4a1. For the ID shown in 4d1, if X were to be observed before D2 we would obtain the ID
in 4e1, and X instead of D1 would be requisite for D2. For the IDs shown in 4a1, 4c1 or 4f1, if S
were to be observed before D1 or D2, we would have a PPD similar to 4b2, so {D1, X, S} could
not be material for D2 relative to S in any of those IDs. In the PPDs shown in Figure 4, S and D2′

are independent in 4c2 or 4f2, and they are independent given D1′ in 4c2, 4d2, and 4f2.
In the Markov Decision Process example (Tatman and Shachter, 1990) ID and corresponding

requisite PPD shown in Figure 5, the no-forgetting arcs implicit in the ID, such as (S1, D3) and
(D1, D3), are coincidentally eliminated in the requisite PPD. {S1, D1′, S2, D2′} is D-Separated

D1 X

D2a1)

D1 X

D2b1)

D1 X
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D1 X

D2d1)

S

V

X S

Va2)
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S
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S
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X S

Vb2)
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X S

Vd2)

D1’
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D2’
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S
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D2’

X X S

V

D1’
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Figure 4: Influence diagram variations and their corresponding requisite PPDs

470



DECISIONS AND DEPENDENCE IN INFLUENCE DIAGRAMS

from V 3 by {D3′, S3}, so S3 is requisite for D3, and {S1, D1, S2, D2, S3} can not be material for
D3 relative to S3. Similarly, {S1, D1′} is D-Separated from V 3 by {D2′, S2}, so S2 is requisite
for D2. {S1, D1′, V 1} must be independent of {D3′, V 3, S4} given either S2 or S3.

D1 D2
a)

S1

V1

S2

V2

S3

D3

V3

S4

D1’ D2’

S1

V1

S2

V2

S3

b)
D3’

V3

S4

Figure 5: Markov Decision Process ID and its corresponding requisite PPD

In the ID example (Jensen et al., 1994) and corresponding requisite PPD shown in Figure 6 there
are four decisions, D1, D2, D3, and D4, and four value nodes, V 1, V 2, V 3, and V 4. {D4′, G,D2′}
D-separates V 2 from {B,D1′, E, F,D3′} so {G,D2} is requisite for D4. If I were also observed
before D4 then it would be requisite for D4, and {B,D1, E, F,G,D2, D3, I} could not be material
for D4 relative to I . F is requisite for D3 but if H were also observed before D3 then H would
be requisite for D3. E is requisite for D2 but if G were also observed before D2 then G would
be requisite for D2. B is requisite for D1 but if {A,B,C} were observed before D1 then {B,C}
would be requisite for D1. D3′ and {D2′, D4′}might be dependent, but they would be independent
given either {C,D}, F , or E.
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Figure 6: Jensen et al. (1994) ID example and its corresponding requisite PPD

7. Conclusions

Independence among uncertain variables in a Bayesian belief network is well understood, and we
have extended that understanding to include decision variables in influence diagrams. Our focus
has been on three types of relationships: variables affected by, or strongly responsive to, the choice
for a decision; variables observed before a decision is made that affect the optimal choice, or are
material for the decision relative to a subset of those observations; and arbitrary independence
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relationships in a policy diagram, a belief network obtained by substituting optimal policy variables
for the decisions in the influence diagram.

In the original influence diagram we can only recognize which variables might be strongly re-
sponsive to the latest decision and a minimal, or requisite, set of observations sufficient to determine
the optimal choice for the latest decision.

From the influence diagram we construct a probabilisitic policy diagram with probabilistic pol-
icy nodes replacing decision nodes. Its graph allows us to recognize which variables might be
strongly responsive to each of the decisions, requisite sets for each of the decisions, and indepen-
dence relations using D-separation. We use the probabilisitic policy diagram to recognize as much
independence as possible at the graphical level.

Finally, we construct a fully specified deterministic policy diagram, including all states and
probabilities, and optimal policies determined as functions of the requisite sets of variables for each
decision. In that deterministic policy diagram we can test for materiality and other independence
queries at the numerical level.

This work could be extended in a number of ways. In particular, if we did not assume no-
forgetting then we could apply limited information IDs (Lauritzen and Nilsson, 2001; Nilsson and
Lauritzen, 2013) or if we assumed some monotonicity of the value distributions we might be able
to recognize even smaller requisite sets (Luque and Diez, 2010).
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