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Abstract
Causal discovery provides an opportunity to infer causal relationships from purely observational
data and to predict the effect of interventions. Constraint-based methods for causal discovery ex-
ploit conditional (in)dependencies to infer the direction of causal relationships. They typically
work through forward chaining: given some causal statements, others can be inferred by applying
relatively straightforward causal logic such as transitivity and acyclicity. Starting from the premise
that we can estimate reliabilities for base causal statements, we propose a novel approach to esti-
mate the reliability of novel statements inferred by forward chaining. Since reliabilities for base
statements are clearly dependent, if only because inferred from the same data, exact computation is
infeasible. However, lending ideas from the area of imprecise probability theory, we can compute
bounds on the reliabilities on inferred statements. Specifically, we make use of the good old Fréchet
inequalities and discuss two different variants: greedy and delayed. In simulation experiments, we
show that the delayed variant, at the expense of more bookkeeping and computation time, does
provide slightly tighter intervals. We illustrate our method on a real-world data set about attention
deficit/hyperactivity disorder.
Keywords: Causal discovery; Fréchet inequalities; constraint-based methods.

1. Introduction

The use of causal discovery algorithms has become increasingly popular in recent years. Causal
discovery algorithms are able to predict the result of an intervention under some reasonable as-
sumptions, purely from observational data. Causal relationships between variables are typically
represented through a causal directed acyclic graph (DAG), where a directed path from variable X
to Y represents a causal path from X to Y .

One of the most common approaches to learn a causal DAG from data is the so-called constraint-
based approach. This approach employs a statistical independence test and typically consists of two
steps. In the first step, the skeleton of the graph is learned based on conditional independencies
inferred from the data. In the second step, edges of the graph are oriented. This orientation is based
on the presence of so-called V-structures (or colliders). A V-structure is a triple (X,Y, Z), where
Z is a common child of X and Y , variables X and Y are independent, but they become dependent
when we condition on variable Z. Based on the V-structures, causal statements are inferred, which
determine the orientation of the edges. By combining causal statements, new statements can be
inferred to orient other edges in the graph. Examples of popular constraint-based approaches are
IC (Pearl and Verma, 1991) and PC/FCI (Spirtes et al., 2000).
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If a causal statement is estimated incorrectly, this mistake may propagate through the whole
graph, leading to many erroneous orientations. A potential remedy, suggested by, e.g., Triantafilou
et al. (2014); Claassen and Heskes (2012a), is to keep track of the reliability of the inferred causal
statements. Standard constraint-based methods consecutively apply hypothesis tests for conditional
independence that provide a p-value as output. Triantafilou et al. (2014) propose to translate these
p-values into probabilities, following the generic approach of Sellke et al. (2001), and use these
probabilities to estimate the reliability of the skeleton. Claassen and Heskes (2012a) estimate the
reliability of conditional independence statements by computing Bayesian scores on DAGs over
subsets of variables, and combine these into reliabilities of both edges and orientations.

In constraint-based methods causal statements are typically inferred using forward chaining:
consecutively combining earlier inferred statements. The causal statements themselves are clearly
dependent, since inferred from the same data, which makes combination of their reliabilities highly
nontrivial. In this paper we propose to apply ideas from the theory of imprecise probabilities (Wal-
ley, 1991) or interval probabilities (Weichselberger, 2000) to keep track of reliability intervals in-
stead of point estimates. We develop a new method that estimates these probability intervals using
the so-called Fréchet inequalities (Fréchet, 1935) and prove that a particular form of the logical
statement gives the best lower and upper bound using Fréchet inequalities. Although in this paper
we focus on Bayesian Constraint-based Causal Discovery (BCCD) (Claassen and Heskes, 2012a),
in principle our method can be applied to any constraint-based causal discovery algorithm that in-
fers causal statements. We also propose an approximation of our algorithm that provides similar
accuracy but requires lower computational complexity.

The rest of this paper is organized as follows. In Section 2, we give the background and derive
our methods for computing reliability intervals. In Section 3, we apply these methods to simulated
and real-world data. In Section 4 we provide our conclusions and discuss future work.

2. A Method for Computing Causal Reliability Intervals

2.1 Constrained-Based Causal Discovery

In order to infer a skeleton and causal statements from data, we use the BCCD algorithm (Claassen
and Heskes, 2012a). BCCD is a state-of-the-art algorithm for estimating causal relationships be-
tween variables that also provides a reliability measure for inferred statements and can handle both
potential confounding (i.e., does not assume causal sufficiency) and selection bias. By selection
bias we mean a process of data selection that introduces dependencies between variables that are
not representative of the population. Confounding refers to an unobserved common cause between
several variables. The output of BCCD is a so-called partial ancestral graph (PAG) (Richardson
and Spirtes, 2003) that is used to represent DAGs with latent variables. Due to space limitation we
provide only a short description of BCCD, a more detailed description can be found in (Claassen
and Heskes, 2012a).

The BCCD algorithm consists of two main stages.
1. Inference of the skeleton and base causal statements. BCCD considers subsets of maximum
K variables. For each subset, it computes a Bayesian score (Dawid, 1984) for every directed acyclic
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graph. Each directed acyclic graph implies particular causal statements of the form

no collider: (Z ⇒ X) ∨ (Z ⇒ Y ) ∨ (Z ⇒ S)
no causal path: (Z ⇒� X) ∧ (Z ⇒� S)

causal path: (Z ⇒ X) ∧ (Z ⇒� S)
(1)

where statement (Z ⇒ S) indicates a selection bias S on variableZ. The first line follows from a so-
called minimal conditional independence: if conditioning upon a variable Z breaks the conditional
dependence between two variables X and Y , Z must have a causal path to X , Y , or both (more
details can be found in (Claassen and Heskes, 2012b)). The second line follows from a minimal
conditional dependence: if adding Z to the conditioning set makes a variable X dependent of
another variable, say Y , there cannot be a causal path from Z to X (nor from Z to Y ) and there
can be no selection bias (S) on Z. This corresponds to the V-structure mentioned before. The first
line is in a sense the negation of the second line: it states that Z must be on a path between X and
Y , but cannot lead to a V-structure, so cannot be a collider on this path. BCCD infers the reliability
for each causal statement by combining the Bayesian scores for all DAGs that match this statement.
This reliability gives a conservative estimate of the probability of a causal relation (Claassen and
Heskes, 2012a). We interpret it as an estimate for the probability that the causal statement is true.
2. Combination of causal statements. In the second stage, BCCD infers new causal statements by
combining causal statements and applying rules from standard causal logic:

irreflexive: (X ⇒ X) ` false
acyclic: (X ⇒ Y ) ` (Y ⇒� X)

transitive: (X ⇒ Y ) ∧ (Y ⇒ Z) ` (X ⇒ Z)
(2)

The system of causal statements is closed, in the sense that all newly inferred causal statements can
also be written in the form (1), with special cases (Z ⇒ X) ∨ (Z ⇒ S) (causal path or selection
bias; first line, when Y equals X) and (Z ⇒� S) (no selection bias; second line, when X equals Z).

The output of the BCCD algorithm is a list of statements of the form (X ⇒ Y ), (Y ⇒� X),
or (X ⇒ S). Given a skeleton, these statements can be used to determine the directions of edges,
e.g., a combination of two statements (X ⇒ Y ), (Y ⇒� X) suggests a causal effect of X on Y
that is represented as X → Y in a PAG. Statements (X ⇒ Y ), and (Y ⇒ X) indicate a selection
bias between X and Y and is represented with X − Y in a PAG. If a list of statements contains
(X ⇒� Y ), (Y ⇒� X) then there is a latent confounding between two variables that is represented as
X ↔ Y in a PAG. Circle marks are used to mark edges which directions cannot be fully determined,
e.g., if only statement (X ⇒ Y ) was inferred, it is either a causal effect X → Y or a selection bias
X − Y , which will be represented as X −◦Y in a PAG.

The parameter K, which determines the subsets of variables considered by BCCD to infer
causal statements, plays an important role in the BCCD algorithm. The higher K, the more causal
statements can be inferred directly, without the need to combine statements using causal logic.
On the other hand the complexity of the algorithm grows exponentially with K. For example the
number of possible causal models for which likelihoods should be estimated is 25 for K = 3 and
29.281 for K = 5. The default value of K is five variables, a fine compromise between complexity
and accuracy. In this paper, we will also considerK = 3, to better demonstrate the effect of different
strategies for combining causal statements.

Example 1 As a running example, we will consider a so-called Y-structure (Mani et al., 2012).
This structure, sketched in Figure 1(a), consists of four variables, where X1, X2, and X3 form a
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Figure 1: (a) Example of a Y-structure. (b) Different levels of representing the inference of the
statement θ that encodes an arrow between variable X4 and variable X3 in Figure 1(a).

V-structure and X4 is a child of X3. Given enough data generated from such a Y-structure, BCCD
with K = 3 would infer the base causal statements.

ψ1 : (X3 ⇒� X1) ∧ (X3 ⇒� S)
ψ2 : (X3 ⇒� X2) ∧ (X3 ⇒� S)
ψ3 : (X3 ⇒ X1) ∨ (X3 ⇒ X4) ∨ (X3 ⇒ S)
ψ4 : (X3 ⇒ X2) ∨ (X3 ⇒ X4) ∨ (X3 ⇒ S)

ψ1 and ψ2 follow from the minimal conditional dependence between X1 and X2 given X3, ψ3/ψ4

from the minimal conditional independencies between X1/X2 and X4 given X3. Applying the
causal rules (2), we can infer various new statements:

(ψ1 ∧ ψ3) ` γ1 with γ1 : (X3 ⇒ X4) ∧ (X3 ⇒� S)
(ψ2 ∧ ψ4) ` γ1
(ψ1 ∧ ψ3) ` γ2 with γ2 : (X4 ⇒� X1) ∧ (X4 ⇒� S)
(ψ2 ∧ ψ4) ` γ3 with γ3 : (X4 ⇒� X2) ∧ (X4 ⇒� S)

The derivation of γ1 is relatively straightforward; γ2 and γ3 are most easily proven by contradiction.
Note further that two combinations here lead to the same statement. Given these new statements γ1
through γ3, we can then also infer

γ1 ∧ γ2 ` θ1 with θ1 : (X4 ⇒� X3) ∧ (X4 ⇒� S)
γ1 ∧ γ3 ` θ1

Figure 1(b) gives the logic tree for deriving the causal statement θ1. The question we would like to
answer is: given probabilities of the base causal statements ψ1 through ψ4, what we can say about
the probability of the inferred statement θ1? Note that in this example, BCCD with K = 5 would
already give θ1 as a base causal statement with a corresponding reliability.

2.2 Estimation of Probability Intervals

The native version of BCCD estimates reliabilities from inferred statements by taking the product
when statements are combined with an AND (as if the underlying statements are independent) and
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taking the maximum when statements are combined with an OR (giving a conservative estimate).
Empirically, this appears to work fine in practice. Here, we propose to give up on estimating re-
liabilities on inferred statements, but instead derive an algorithm to compute reliability intervals
making use of the well-known Fréchet inequalities (Fréchet, 1935).

As should be clear from Figure 1(b), newly inferred statements are derived from a (potentially
complicated) mixture of conjunctions (ANDs) and disjunctions (ORs) of the base statements. Sup-
pose we have the conjunction ψconjunct a ψ1 ∧ ψ2 ∧ . . . ∧ ψn, then the Fréchet inequalities give

max

(
0,

n∑
i=1

P (ψi)− (n− 1)

)
≤ P (ψconjunct) ≤ min

i
P (ψi) ,

with P (ψi) the probability of the causal statement ψi. Similarly, applying Fréchet inequalities to a
disjunction ψdisjunct a ψ1 ∨ ψ2 ∨ . . . ∨ ψn gives

max
i
P (ψi) ≤ P (ψdisjunct) ≤ min

(
1,

n∑
i=1

P (ψi)

)
.

Using these inequalities, we can keep track of lower bounds and upper bounds on the probability
of inferred causal statements, indicated by

¯
P and P̄ , respectively. We will use shorthand notation

I(ψ) = [
¯
P (ψ), P̄ (ψ)] to refer to the probability interval for causal statement ψ. We will use lower

case Greek letters ψ, γ, θ to refer to causal statements and upper case Greek letters Ψ, Γ, Θ for
the corresponding formulae that have been used to derive the causal statements. We will write both
P̄ (Φ) and P̄ (φ), the interpretation of which should be clear from the context.

Specifically, we have the following rules for combining intervals of two causal statements:

¯
P (ψ1 ∧ ψ2) = max (0,

¯
P (ψ1) +

¯
P (ψ2)− 1) , P̄ (ψ1 ∧ ψ2) = min

(
P̄ (ψ1), P̄ (ψ2)

)
¯
P (ψ1 ∨ ψ2) = max (

¯
P (ψ1),

¯
P (ψ2)) , P̄ (ψ1 ∨ ψ2) = min

(
1, P̄ (ψ1) + P̄ (ψ2)

) (3)

We now propose two different algorithms: greedy and delayed. When two causal statements are
combined to derive a new one, the greedy algorithm immediately applies the rules (3) to compute a
new interval for the newly inferred statement. The delayed algorithm, on the other hand, delays the
computation of the intervals as much as possible. It keeps track of the propositional formula that
led to the causal statement of interest, attempts to simplify it, and only then computes the interval.

Example 2 We consider the logic tree of Figure 1(b). Suppose that the probabilities of the base
causal statements are P (ψ1) = 0.8, P (ψ2) = 0.85, P (ψ3) = 0.9, and P (ψ4) = 0.95.
The greedy algorithm sequentially applies (3) to yield I(γ2) = [max(0, P (ψ1) + P (ψ3) −
1),min(P (ψ1), P (ψ3))] = [max(0, 0.8 + 0.9−1),min(0.8, 0.9)] = [0.7, 0.8], I(γ3) = [0.8, 0.85],
I(γ1) = [0.8, 1], I(γ1 ∧ γ2) = [0.5, 0.8], I(γ1 ∧ γ3) = [0.6, 0.85], and, finally, I(θ1) = [0.6, 1].
The delayed algorithm, on the other hand, first expresses each of the inferred causal statements as
a formula in terms of the base statements ψ1 through ψ4. For γ1 and θ1, we arrive at

θ1 a Θ1, γ1 a Γ1 with Θ1 ≡ Γ1 = (ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ4) . (4)

Now applying the Fréchet inequalities, first on the conjunctions and then on the disjunction, we
obtain I(θ1) = I(γ1) = [0.8, 1]: a tighter bound than for the greedy algorithm.
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A causal statement combining more than two base causal statements can have various equivalent
formulae, each suggesting a different ordering in the application of the Fréchet inequalities. In the
above example, the formula (4) happens to be in disjunctive normal form (DNF): a disjunction of
clauses, each of which is a conjunction of literals. Instead, we could also write it in conjunctive
normal form (CNF), as a conjunction of disjunctive terms:

Θ1 = (ψ1 ∨ ψ2) ∧ (ψ1 ∨ ψ4) ∧ (ψ3 ∨ ψ2) ∧ (ψ3 ∨ ψ4) . (5)

Given this formula, we would first apply the Fréchet inequalities to the disjunctive clauses and only
then to their conjunction. This would give I(θ1) = [0.65, 1].

Each formula is monotone, i.e., only contains positive statements. Note that here we treat
(Z ⇒� X) ∧ (Z ⇒� S) and (Z ⇒ X) ∨ (Z ⇒ S) as two separate (positive) causal state-
ments, where one follows from the other because of the acyclicity condition. The minimal DNF
and CNF representations corresponding to a monotone formula are unique (Goldsmith et al., 2005).
Given a formula Γ, we now consider two ways of computing bounds: following the natural ordering
corresponding to its minimal DNF representation ΓminDNF or according to its minimal CNF repre-
sentation ΓminCNF. In the Appendix, we show that, when using Fréchet inequalities, the minimal
DNF representation is better for computing the lower bound, i.e.,

¯
P (ΓminDNF) ≥

¯
P (Γ), whereas the

minimal CNF representation is better for computing the upper bound, i.e., P̄ (ΓminCNF) ≤ P̄ (Γ).
This then suggests the following approach for the delayed algorithm. For each statement, we

keep track of its minimal DNF and CNF. Whenever we combine two statements γ1 and γ2 with
corresponding formulae Γ1 and Γ2 to derive a novel statement θ1 using a conjunction, we combine
the minimal CNFs of Γ1 and Γ2 into a CNF through Θ1 = (ΓminCNF,1 ∧ ΓminCNF,2), simplify that
to its minimal CNF, and convert this to a (minimal) DNF using Quine’s algorithm (Quine, 1955).
When it so happens that the novel statement θ1 coincides with an earlier derived statement θ2, we
keep only one statement and replace Θ1 and Θ2 by their disjunction (Θ1 ∨ Θ2) simplified into its
minimal DNF.

In practice, the total number of literals in the formulae may grow very fast. Since translat-
ing between CNF and DNF can produce expressions of exponential size, the delayed algorithm is
practically infeasible. In practice, we therefore restrict the number of literals in the minimal DNF
representation to a prespecified maximumM . That is, if combining two causal statements γ1 and γ2
with corresponding formulae Γ1 and Γ2 leads to a new formula ΘminDNF with in total more than M
literals, we choose to ignore how γ1 and γ2 were derived and switch to a greedy approximation at
this level, cutting the tree and treating γ1 and γ2 as new base statements with their respective lower
and upper bounds. In the experiments described in the next section, we set M = 13.

3. Results

3.1 Simulated Data

Through a simulation study, we aim to investigate to what extent the type of algorithm (greedy and
delayed) affects the tightness of the bounds. Furthermore, we will check whether any improvement
in the bounds then also leads to an improvement in the accuracy of the causal statements derived.

We generated data with sample sizes 500, 1500, and 3000 from random graphs with linear in-
teractions between 6, 9, and 12 Gaussian random variables and some other predefined properties
(adapted from (Melancon et al., 2000)). Each experiment is repeated 20 times. For the delayed
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algorithm, we set the maximum number of literals in any formula to M = 13, to obtain a compro-
mise between accuracy and computational complexity. Higher values do not lead to significantly
different results, but considerably increase the computational costs. We considered BCCD with two
different values, K = 3 and K = 5 (the default), for the parameter K that specifies the maximum
number of variables used to infer the base causal statements. Since with higher K, BCCD will
already find many causal statements without the need to explicitly combine statements using causal
logic, we expect the difference between the greedy and the delayed algorithm to be more distinct for
the smaller value of K. As in native BCCD, we process causal statements sequentially, going from
the most to least reliable (in terms of the lower bound reliability) and ignore any causal statements
with a (lower bound) reliability below 0.5.

We first focus on the lower bounds obtained by both variants for causal statements involving
only pairs of variables (and possibly selection bias), i.e., statements of the form Z ⇒ X (with
and without potential selection bias on Z) and Z ⇒� X . We will refer to these as pairwise causal
statements. Since for many such pairwise causal statements the greedy and delayed variants give the
exact same lower bound, we only consider those cases where the lower bounds are indeed different.
Because both variants ignore any causal statements with a lower bound reliability below 0.5, the
greedy variant will typically end up with less pairwise causal statements than the delayed variant.
When comparing the lower bound reliability for causal statements that are only inferred by the
delayed variant, we set the lower bound for the greedy algorithm to 0.5.

The plots on the top of Figure 2 give the mean difference between the lower bounds inferred by
both variants for different sample sizes, numbers of variables, and K = 3 (green, solid) or K = 5
(blue, dashed), averaged over 20 experiments. The errorbars give the 95% confidence interval of
the mean. With K = 3, the delayed algorithm indeed improves the lower bound, in particular for
larger sample sizes where base causal statements tend to have a higher reliability and more causal
statements can be combined before the reliability drops below the threshold of 0.5. The size of the
graph does not appear to have a serious effect. For K = 5, the improvement in the tightness of the
lower bound is smaller: most causal statements are directly derived as base causal statements.

Having access to the ground truth, we can compare the inferred causal structures, in PAG form,
with the true underlying PAG. Here, for each output PAG, we evaluate how many edges are correctly
oriented by each of the algorithms. The plots on the bottom of Figure 2 display the mean difference
between the PAG accuracy of the delayed and the greedy variant, over the same 20 experiments.
Errorbars again give the standard error of the mean. It can be seen that, for larger sample sizes,
the better bounds indeed appear to lead to a small improvement for the delayed over the greedy
algorithm. In conclusion, the more expensive delayed algorithm leads to better bounds: the greedy
algorithm is to be preferred when computational complexity is really an issue and then the greedy
algorithm still leads to acceptable bounds and PAG accuracies.

3.2 Real-World Data

To illustrate the estimate of the lower and upper bound by the delayed algorithm (K = 5) on real-
world data, we use the data described in (Hoogman et al., 2013, 2011) describing patients with
attention deficit-hyperactivity disorder (ADHD). The study included 164 participants, 87 patients,
and 77 control subjects from the Dutch chapter of the International Multicentre persistent ADHD
CollaboraTion (IMpACT). The goal of the study was to investigate the connection between can-
didate gene DAT1, brain functioning, and behavior characteristics associated with reward-related
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Figure 2: Results on simulated data. Top row: mean difference between the lower bound reliabili-
ties for pairwise causal statements computed using the delayed and the greedy variants as
a function of sample size. Bottom row: difference in PAG accuracy (% of edge marks in
PAG) for both variants as a function of sample size. Results for graphs with 6, 9, and 12
variables (from left to right) and K = 3 (green, solid) and K = 5 (blue, dashed). See the
main text for further explanation.

problems in ADHD. Two experiments were performed to learn these relationships. In the first ex-
periment brain activity during the reward anticipation phase of the Monetary Incentive Delay (MID)
task in a functional MRI paradigm was assessed. The MID task activates the ventral striatum, where
DAT1 is most highly expressed. In the second experiment a delay discount task (Dom et al., 2006)
was performed that aims to evaluate reward-related impulsivity.

To apply causal discovery using the BCCD algorithm, we selected ten variables from this data
set. The first seven variables (disease status, smoking behavior, hyperactivity/impulsivity symptom
score, attention-deficit symptoms score, medication status, presence of the DAT1 risk haplotype,
ventral-striatal brain activation) were previously described in (Sokolova et al., 2014). The extra three
variables that were added based on a delay discount task are: reward-related impulsivity behavior;
IQ level; education level. As prior information we incorporated the assumption that the DAT1
risk haplotype cannot be influenced by any other factor in the model, and that diagnosis is present
downstream of symptoms, i.e., that symptoms cannot be caused by diagnosis.

The resulting causal graph is presented in Figure 3. This figure includes only edges with a
reliability of a direct causal link higher than 50%. The edges inferred in the graph are in line with
several literature studies. The link between DAT1 risk haplotype and ADHD symptoms is also
found in (Gizer et al., 2009). The effect of the ADHD on brain functioning was shown in (Scheres
et al., 2007). The association between ADHD and smoking was described in (Milberger et al., 1997).
Correlation between ADHD and reward-related impulsivity was discussed in (Paloyelis et al., 2009).
Thus, we can conclude that BCCD has inferred a reliable skeleton from the data.

BCCD was also able to infer the directions of some edges in Figure 3. Here we used a lower
bound threshold of 30% to get a broader overview of possible edge directions. Combining causal
statements, BCCD was able to infer the lower and upper bounds for two arrows and two tails in the
graph. Other edge directions were directly inferred from the conditional independencies observed
in the data. The lower and upper bounds for the edge directions suggest that there is strong evidence
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Risk haplotype

–
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Hyperactiviy/Impulsivity

–/0.99/0.99

–/0.99/0.87
Inattention

0.93/0.99/0.99

Brain activation
–/0.63/0.55

Patient/Control

[0.89,0.99]
0.99

[0.78,1.00]

0.63
0.61
0.63

0.82/0.76/0.82

Medication Smoking Reward related impulsivity

[0.50,1.00]
0.85

[0.33,0.82]

Education
–/0.99/–

IQ

Figure 3: The causal graph representing causal relationships between variables for the ADHD data
set. The graph represents a PAG, where edge directions are marked with “−”and “>” for
invariant edge directions and with “◦” for non-invariant edge directions. The reliability
of an edge and its direction are depicted with a reliability score in the interval [0,1] near
each edge, in the following format: “the arrow or tail on the left/edge/arrow or tail on the
right”. In case the annotation is vertical then top row is the reliability of the top arrow or
tail and bottom row is the reliability of the bottom arrow or tail. Edge directions where
the reliability of the arrow or tail is lower than 30% are marked with “-”.

that ADHD status (patient/control) influences the medication status (reliability tail [0.78,1.0], arrow
[0.89,0.99]). On the other hand there is vague evidence that the association between reward-related
impulsivity and IQ goes from former to latter (reliability tail [0.5,1.0]). We compared these bounds
with bounds obtained by the default BCCD algorithm that estimates the probability of a causal
statement by taking the product of probabilities in case of a conjunction and maximum in case of a
disjunction. Using the default algorithm the probability of a tail between reward-related impulsivity
and IQ was 0.56 and the probability of an arrow was 0.46. Thus, both probabilities were slightly
higher than the lower bound obtained with the delayed algorithm. The probability of an arrow and
a tail between ADHD status (patient/control) and the medication status obtained with the default
BCCD algorithm coincided with the lower bound obtained with the delayed algorithm.

4. Conclusion and Discussion

In this paper we provided a method to estimate lower and upper bounds for the reliability of a
causal statement. Such bounds are valuable to convey the uncertainties involved in causal discovery
to practitioners. They help to provide guidelines for setting up new (intervention) experiments to
test causal hypotheses inferred from observational data.

We demonstrated how our approach can be integrated in the BCCD algorithm. However, any
other constraint-based algorithm that infers causal statements can be used potentially. We showed
that a full, “delayed” version of our algorithm gives the best bound and PAG accuracies. However,
it can be expensive for larger graphs, which is why we came up with a cheaper, “greedy” variant. In
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this paper we considered Fréchet inequalities to estimate the lower and upper bounds of causal state-
ments, but other approaches such as linear programming can also be used to compute the bounds.
For example, using SAT solvers in some cases it is possible to provide more accurate lower and
upper bound estimates than using Fréchet inequalities, as shown in (Hailperin, 1965).

Appendix A.

First we recall some well-known concepts from Boolean logic. Literals are variables and negated
variables. A conjunction of literals is a term, sometimes represented as a set of literals. A disjunction
of literals is a clause. Every Boolean function can be represented as a conjunction of clauses,
referred to as conjunctive normal form (CNF), as well as a disjunction of terms (DNF), referred
to as disjunctive normal form (DNF). A monotone Boolean function is one without any negated
variables. A term φ subsumes a term ψ iff φ ⊂ ψ.

Lemma 1 (Lower bound) Given any monotone formula Γ and its corresponding (unique) minimal
DNF representation ΓminDNF. When using Fréchet inequalities, the minimal DNF representation
gives the best possible lower bound, i.e.,

¯
P (ΓminDNF) ≥

¯
P (Γ).

Proof The proof is by induction on the number n of operators (∨,∧) in Γ. The base case n = 0
clearly holds. If n > 0 then Γ can be rewritten as a disjunction, Γ = Γ1 ∨ Γ2 or a conjunction,
Γ = Γ1 ∧ Γ2 of two formulae Γ1 and Γ2, with (n1, n2) < n. We assume that the lemma holds
for Γ1 and Γ2, and prove that it then also holds for Γ. Let us first consider the disjunction, i.e., we
suppose that Γ = Γ1 ∨ Γ2. Then, by definition of how we apply the Fréchet inequalities,

¯
P (Γ) =

¯
P (Γ1 ∨ Γ2) = max (

¯
P (Γ1),

¯
P (Γ2)) ≤ max (

¯
P (ΓminDNF,1),

¯
P (ΓminDNF,2)) ,

where the last step follows from the induction assumption. Now,

¯
P (Γ) ≤ max (

¯
P (ΓminDNF,1),

¯
P (ΓminDNF,2)) =

¯
P (ΓminDNF,1 ∨ ΓminDNF,2) =

¯
P (ΓminDNF) .

Since all formulae are monotone, ΓminDNF is unique and can be obtained by removing terms from
the disjunction of ΓminDNF,1 and ΓminDNF,2 such that it does not contain any subsumed terms (Quine,
1955). Clearly, removing subsumed terms does not change the lower bound, which gives the last
step in the disjunctive part of the proof. For the conjunction, we have

¯
P (Γ) =

¯
P (Γ1 ∧ Γ2) = max (0,

¯
P (Γ1) +

¯
P (Γ2)− 1)

≤ max (0,
¯
P (ΓminDNF,1) +

¯
P (ΓminDNF,2)− 1) ,

again with the first step by definition of how we compute a lower bound using the Fréchet inequali-
ties and the last step from the induction assumption. Now, since for probability values (a, b) ∈ [0, 1],
we have a+ b− 1 ≤ max(a, b), we get

¯
P (Γ) ≤ max (0,

¯
P (ΓminDNF,1) +

¯
P (ΓminDNF,2)− 1)

≤ max (
¯
P (ΓminDNF,1),

¯
P (ΓminDNF,2)) =

¯
P (ΓminDNF,1 ∨ ΓminDNF,2) =

¯
P (ΓminDNF) .
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Lemma 2 (Upper bound) Given any monotone formula Γ and its corresponding (unique) minimal
CNF representation ΓminCNF. When using Fréchet inequalities, the minimal CNF representation
gives the best possible upper bound, i.e., P̄ (ΓminCNF) ≤ P̄ (Γ).

Proof We follow exactly the same reasoning as in the proof of Lemma 1, but consider the upper
bound instead of the lower bound and minCNF instead of minDNF. For Γ = Γ1 ∧ Γ2 we now have

P̄ (Γ) = P̄ (Γ1 ∧ Γ2) = min
(
P̄ (Γ1), P̄ (Γ2)

)
≥ min

(
P̄ (ΓminCNF,1), P̄ (ΓminCNF,2)

)
,

and
P̄ (Γ) ≥ min

(
P̄ (ΓminCNF,1), P̄ (ΓminCNF,2)

)
= P̄ (ΓminCNF,1 ∧ ΓminCNF,2) = P̄ (ΓminCNF) .

For Γ = Γ1 ∨ Γ2 we have

P̄ (Γ) = P̄ (Γ1 ∨ Γ2) = min
(
1, P̄ (Γ1) + P̄ (Γ2)

)
≥ min

(
1, P̄ (ΓminCNF,1) + P̄ (ΓminCNF,2)

)
,

and

P̄ (Γ) ≥ min
(
1, P̄ (ΓminCNF,1) + P̄ (ΓminCNF,2)

)
≥ min

(
P̄ (ΓminCNF,1), P̄ (ΓminCNF,2)

)
= P̄ (ΓminCNF,1 ∧ ΓminCNF,2) = P̄ (ΓminCNF) .

References

T. Claassen and T. Heskes. A Bayesian approach to constraint based causal inference. In Proceed-
ings of the UAI Conference, pages 207–216. AUAI Press, 2012a.

T. Claassen and T. Heskes. A logical characterization of constraint-based causal discovery. arXiv
preprint arXiv:1202.3711, 2012b.

A. P. Dawid. Statistical theory: the prequential approach (with discussion). J. R. Statist. Soc. A,
147:278–292, 1984.

G. Dom, B. De Wilde, W. Hulstijn, W. van den Brink, and B. Sabbe. Behavioural aspects of impul-
sivity in alcoholics with and without a cluster-B personality disorder. Alcohol and Alcoholism,
41(4):412–420, 2006.
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