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Abstract

Expectation maximization (EM) is a popular algorithm for parameter estimation in situations with

incomplete data. The EM algorithm has, despite its popularity, the disadvantage of often converging
to local but non-global optima. Several techniques have been proposed to address this problem, for
example initializing EM from multiple random starting points and then selecting the run with the
highest likelihood. Unfortunately, this method is computationally expensive. In this paper, our
goal is to reduce computational cost while at the same time maximizing likelihood. We propose
a Genetic Algorithm for Expectation Maximization (GAEM) for learning parameters in Bayesian
networks. GAEM combines the global search property of a genetic algorithm with the local search
property of EM. We prove GAEM’s global convergence theoretically. Experimentally, we show that
GAEM provides significant speed-ups since it tends to select more fit individuals, which converge
faster, as parents for the next generation. Specifically, GAEM converges 1.5 to 7 times faster while
producing better log-likelihood scores than the traditional EM algorithm.

Keywords: Bayesian networks, parameter learning, expectation maximization, genetic algo-
rithms, age-layered evolutionary algorithms, probabilistic crowding.

1. Introduction

The expectation maximization (EM) algorithm (Dempster et al.l |[1977) is a prominent method for
estimating parameters in probabilistic models when there is missing or latent information. EM
alternates between an expectation step (E-step), which computes an expectation of the likelihood,
and a maximization step (M-step), which updates model parameters by maximizing the E-step’s
expected likelihood. The parameters computed by the M-step are then used to begin another E-step
and the process is repeated until convergence. The EM algorithm has been widely used in many
areas of artificial intelligence, engineering, and statistics, from estimating transition and emission
probabilities in hidden Markov models in speech recognition (Rabiner, [1989) to microarray gene
expression clustering in computational biology (Do and Batzoglou, 2008)).

The EM algorithm has three severe problems: local optima, computational cost, and slow con-
vergence. First, and unlike for the complete data case, when data are incomplete, parameter estima-
tion becomes a multi-modal problem and the EM algorithm can get stuck in local optima. Second,
the computational cost of each iteration of the EM algorithm can be high, especially because of
inference in the E-step. Third, the slow convergence of EM, in terms of the number of iterations
undergone, can also make the algorithm computationally expensive and time consuming.

In this paper, we address the local optima and slow convergence problems mentioned above by
adding stochasticity to EM. Stochasticity is introduced via a genetic algorithm (GA). GAs compute
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solutions to optimization problems in a black-box fashion, using techniques inspired by natural
evolution: populations, inheritance, selection, mutation, and crossover (Holland, |1975)).

We focus on the problem of using the EM algorithm for parameter estimation in discrete Bayesian
networks (BNs). A BN is a probabilistic graphical model that represents a set of random variables
and their conditional dependencies and independencies using a directed acyclic graph. Our contri-
butions are the following. First, we present and analyze a Genetic Algorithm for EM (GAEM). The
goal of GAEM is to reduce the number of iterations in a multiple random starting point EM setup
by selecting more fit individuals as parents for the next generation. The fitness of an EM run is
measured by its log-likelihood. Second, we classify BNs based on the hardness of their search land-
scapes. We experimentally study the role of different GAEM replacement techniques for BN search
landscapes of varying hardness. Third, we develop a new replacement mechanism, GAEM-ALEM
replacement, where the child EM run’s fitness is compared to that of a parent EM run during the
child’s EM optimization. If the child EM run is less fit than its parent, after a certain number of iter-
ations, then it is discarded and replaced by the parent. Fourth, we perform experiments to measure
GAEM'’s performance in terms of log-likelihood, total number of iterations, and CPU time for vary-
ing sample sizes and replacement mechanisms. We find that GAEM’s solution quality is generally
higher than of traditional EM. In addition, the GAEM-ALEM replacement mechanism provides a
GAEM speed-up of 1.5 to 7, in terms of the number of EM iterations, relative to traditional EM.

This paper is organized as follows. We discuss related work in Section 2] We present our
Genetic Algorithm for Expectation Maximization (GAEM) in Section 3| In Section {4 we derive
conditions on the parameters of GAEM which ensure its convergence to a global optimum. Section
[5|experimentally demonstrates GAEM’s ability to reduce the number of EM iterations and improve
solution quality. We conclude with a summary of contributions and future work in Section [6]

2. Discussion of Related Work

The EM algorithm has three problems: local optima, computational cost of the E-step and the M-
step, and slow convergence. Several variants of the EM algorithm have been proposed to address
these problems, as discussed in Section [2.1|below before comparing with GAEM in Section

2.1 Related Work

The most prevalent way to mitigate the local optima problem is the multiple restart strategy (Chick-
ering, 2002), in which the EM algorithm is initialized from n random starting points. After these n
EM runs have completed, the run that results in the highest log-likelihood is used as an estimate of
the global optimum.

The GA was introduced by Holland| (1975) based on Darwin’s principle of natural selection in
the evolution of species. [Jank (2006) reviewed some of the challenges of stochastic EM imple-
mentation and proposed a GA method for solving the local maxima problem in EM. |Pernkopf and
Bouchaffra (2005) combine a GA and EM for learning Gaussian mixture models. Their algorithm
escapes from local optima and identifies the number of Gaussian components more accurately than
traditional EM. |Zhao et al.|(2012)) propose a random swap EM algorithm for learning Gaussian
mixture models, where a randomly selected component is swapped to a new location in the feature
space. In summary, Jank| (2006)), [Pernkopf and Bouchaffra| (2005) and [Zhao et al.| (2012) all focus
on learning Gaussian mixture models from multivariate data. They show that a GA-based EM algo-
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rithm outperforms traditional EM, as it achieves the same fitness score while identifying the correct
number of Gaussian components more often.

The problem of the computational cost of the E-step and M-step has been addressed by many
EM variants (Delyon et al., [1999) (Meng and Rubin, |1993). For clustering of large datasets, there
are incremental EM and lazy EM speed-up methods (Thiesson et al.,|2001). Both these methods are
based on a partial E-step and provide encouraging results for Gaussian mixtures. In incremental EM,
the EM algorithm cycles through the samples in blocks and updates the parameters incrementally.
A method to determine the optimal block size is proposed. In lazy EM, at scheduled EM iterations,
only samples that cause significant changes in the parameters are used by EM.

Several methods have been developed to address the problem of slow convergence of the EM al-
gorithm. These methods use conjugate gradient, modified Newton Raphson techniques (Jamshidian
and Jennrich, |1997), or age-layered methods (Saluja et al., |2012). Most of these methods require
a modification to the original EM algorithm. This makes the overall method more complex, more
difficult to analyze, and hence not popular in practice. Age-layered EM has been extended to the
MapReduce framework (Reed and Mengshoel, 2012).

Other research, even though it does not study the EM algorithm directly, is also relevant to this
work. [Larranaga et al.| (2013) review the application of evolutionary algorithms for solving NP-
hard problems in BN inference and learning. [Larranaga et al.| (1996) developed a GA for learning
BN structures. This GA searches for the best ordering of the BN variables, where the score of an
order is the score of a single high-scoring BN structure (Cooper and Herskovits, |1992). Myers et al.
(1999) proposed an evolutionary Markov chain Monte Carlo (EMCMC) method, which combines
an evolutionary algorithm with a Markov chain Monte Carlo algorithm for learning BN structures
from incomplete data.

2.2 Comparison of GAEM to Related Work

We now compare GAEM to related methods. Unlike Jank (2006) and |Pernkopf and Bouchaffra
(2005)), GAEM uses converged EM runs as parents for the next generation. This allows GAEM to
explore close-to-optimal regions of the search space and helps the algorithm escape local optima.
GAEM does not modify the EM algorithm (Jamshidian and Jennrich! (1997), |Delyon et al.| (1999),
Thiesson et al.| (2001), Meng and Rubin| (1993))) or the training data (Elidan et al.| (2002)). Instead,
GAEM is as a wrapper around the EM algorithm and uses the full set of training data to learn the
parameters. Jank|(2006)), Pernkopf and Bouchaffra|(2005), and|Zhao et al.|(2012))) deal with learning
Gaussian mixture models using EM. Larranaga et al.|(1996) and [Myers et al.|(1999) are focused on
Bayesian network structure learning. GAEM is focused on parameter learning in discrete Bayesian
networks using the EM algorithm.

3. Genetic Algorithm for Expectation Maximization (GAEM)
3.1 Notation and Definitions

Let X = {X;, Xy,..., Xr} denote the set of random variables in a Bayesian network (BN). Each
random variable X, is associated with a conditional probability table (CPT). An individual p’ con-
sists of a vector of CPTs of random variables in a BN.

Definition 1 The CPT estimate of an individual i at generation t is denoted by ©}. An individual is
defined as vector consisting of CPTs: pt = (04,0}, ..,0%).
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A CPT is generated based on the constraint that the sum of probabilities for different states of the
random variable should be equal to 1 for a parent instantiation. A CPT is given by: @3 = (0,05, ..)
where 6} € [0, 1] denotes a probability value for a particular state given a parent instantiation.

3.2 GAEM: The Algorithm

1: procedure GAEM(p°, g, np, Pe, P, v, w, €) 32: p!"" —MutaTION(p! | pm)
§ 2‘0;14_ o de > Initialize population ~ 33. p e p" Ut
s P . t” t‘//

4: p' <+ p'Up; o P, Mt[,J,,TATI?,I,\Z(pJ »Pre)

5: end for 35: p —p Up;

6: p!" « POPEM(p?) > Compute learned individuals 3 end for o

7 repeat 37: return p

8: ptm - GA(pt/) 38: end procedure

9: if « = GAEM-ALEM & ¢ > 2 then 39: procedure GAEM-ALEM(p"")

10: p'™ « GAEM-ALEM(p'") 40:  p" " + STARTEM(p' )

11: else ") 41: while | p’ | #0do

g: de; « POPEM(p" ) 42: for pt’"" « pt"" do

. enal . . t‘////

14: if £ > 2 then 3 ifn(p: ) > n) then

15: PtV «— REPLACE(p' , p' ) a4 _STOPE%(,M )

16: end if ) 45: if f(/)i/ ) < f(Pz ) ) then
17: p* < SELECTBEST(p*tY, p*) 46: pt o ptt y ot
18: t F t + 1 47: pt//// (_ pt/”/ _ pzt'////
19: until ¢ >*ng 48: else o
20: return p 49: RESUMEEM(p! )
21: end procedure 50: end if
22: procedure POPEM(p") 51: else
23: for i < 1,n, do 52: if (k(p! ,w, €)) then
24: pl — EM(pZ,w €) > EM till convergence 53- pf+1 P pt+1 U pl””
25: p (_ p U pz 54: p //// F pt//// _ pg////
26: end for | 55: end if
27: return p’ 56: end if
28: end procedure 57: end for
29: procedure GA(p") 58:  end while

i ¢ ¢/ / . t+1/

30:  for pl ,’/pj /<— p' do o 59:  return p
31 (i ,p5 ) < CROSSOVER(p{ , pf , Pe) 60: end procedure

Figure 1: The GAEM algorithm, with inputs: initial bag of EM runs (p°), number of generations (n,),
population size (n,,), crossover probability (p.), mutation probability (p,,), iterations after which
comparison is performed in the GAEM-ALEM method (n), the name of the replacement method
(), iteration threshold (w), and LL tolerance (¢). We include pseudocode for GAEM-ALEM.
Other replacement methods are discussed in Section [3.3] The procedure PopEM runs EM on a
population until convergence; StartEM starts EM on a population; StopEM stops an EM run; and
ResumeEM resumes an EM run. The procedure s checks convergence of an EM individual. The
output of GAEM is the EM run with the highest LL found.

We now discuss GAEM, see pseudocode in Figure[l] An individual p is created by initializing
its random variables with randomly generated initial probabilities for the CPT, observing the sum
constraint. Let n, denote the population size, and p' denote the bag of n, individuals at the ¢-
th generation: p* = (pf, ph, .., pj, ). Let ny denote the number of generations. The number of
iterations reached by the i-th EM run is given by 7(p!). An EM run is converged when it has
the reached the maximum number of iterations w or when the relative difference in log-likelihood
between successive iterations is less than e. A learned individual pg/ is produced when the EM
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algorithm (line 24 in Figure is run on an individual p! until convergence. For each GA generation,
the learned individuals form a bag pt/ = ( pﬁl , pg, - pf;p). Crossover and mutation (lines 31, 32 and

34 in Figure |1 are applied to p! to create offspring p!”

Consider an example BN with R = 5 random variables. We now describe the crossover, muta-
tion, and replacement mechanisms of GAEM for this BN.

Crossover The GA selects two learned individuals randomly from the learned individual set
p! as parents. Let ,oa/ and pb/ be two individuals from the parent population: pa (@al, @a2,®a3,
954,92/ ) and pb = (G)b17 @b27 @b?n @b4v 6)2/5) We apply a single point crossover. Let ¢ € {1,2, 3,4}
be a random crossover point. Crossover happens with probability p.. The resulting individuals (pﬁ"
and ,02") are the children (line 31 in Figure Ib For instance, if ¢ = 2, then the children of pg and p};/
ae: ] = (011,613, 0110007 and o — (6f]. 011 013,01 0%

Mutation The purpose of mutation is to introduce diversity. Mutation helps to avoid premature
convergence and gives a broader exploration of the search space. Mutation alters the values of one
or more CPTs in an individual (lines 32 and 34 in Figure|l) ' For example, mutation in individual pb
happens with probability p,, at the CPT @t level. Mutation replaces the random variable’s CPT
e = (04,0, ..) with randomly chosen values. Specifically, ©F, is mutated by choosing random
values satisfying the probability constraint that the state probabilities sum to 1 for a given parent
instantiation. The mutated individual p} = (0,0, 0% ©L) O.). If mutation is applied on
all random variables, then the resulting EM individual will be similar to a new random starting point
and the EM algorithm will take more number of iterations to converge. Hence, it is useful to apply
mutation on only a few random variables.

Replacement The replacement mechanism picks individuals from two sets of learned indi-
viduals (pl and p ") to form parents for the next generation. The comparison is done using
the fitness f of learned individuals (line 45 in Figure [1). We deﬁne ﬁtness as f (pz) = LL(p;).

The learned individuals of the first generation (t = 1) are p! = (,01 ,p2 . ,pn ). The set of
learned individuals in p'’ undergo crossover and mutation as explained above and generate off-
spring p'"" = (p1"”', pb" .., p}{:). The EM algorithm is run on each individual in p!”’ to generate a

set of learned individuals plml. Now, the two sets of learned individuals (pll and pl””) will undergo
replacement and the parents for the third generation are selected (lines 9 and 14 in Figure [I).

3.3 Replacement Mechanisms

We studied four different replacement mechanisms: traditional replacement, deterministic replace-
ment, probabilistic replacement and ALEM-based replacement. We now explain each of them.

Traditional Replacement (GAEM-TRAD) Using this method, we compare the fitness of each
parent pf with its child pﬁ”” and select the individual that has higher fitness (during crossover, a
child is tied to the parent from which it gets the first part). Using the above example, we first
compare the fitness of p%’ with p%””, then compare the fitness of p%l with p%ml, and so on. If the
parent p}' is best, then it replaces its corresponding child p}””, otherwise we pick the child. This
method illustrates a competition within the family, where one parent competes with only one child.

Deterministic Replacement (GAEM-DETER) This method is based on deterministic crowd-
ing (Mahfoud 1992), where an offspring competes against its most similar parent. The distance
K L(Pa ) pa ) is computed using KL divergence (Kullback and Leibler, [1951). Under this replace-
ment scheme, each offspring competes for survival with its most similar parent. The winner is
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the individual with the highest fitness. This crowding scheme can be used to efficiently preserve
diversity in the population.

Probabilistic Replacement (GAEM-PC) Probabilistic crowding (Mengshoel and Goldberg,
1999) uses a non-deterministic rule to establish the winner of a competition between parent and

child. The probability that a parent (pg) replaces a child (pgm) is: Ppgf = W}()ﬁ"")
placement mechanism, the fitter individuals do not always win over the Weakeraindivi(clluals, they win
proportionally according to their fitness. This strategy helps to preserve diversity in the population.

ALEM based Replacement (GAEM-ALEM) This technique is inspired by the age-layered
EM (ALEM) technique (Saluja et al., [2012), where EM runs compete within age brackets. Age is
interpreted as the number of EM iterations. The assumption is that the probability of a “young” and
poorly performing EM run (relative to its age bracket) turning into an “old” but strongly performing
run (relative to its age bracket) is low. Such a “young” and poorly performing EM run can thus be
discarded early to save CPU cycles for other, better performing EM runs. After an initial n iterations
in GAEM, the fitness of a child EM run is compared with the fitness of its parent EM run at each
iteration (lines 43 and 45 in Figure([I)) . If the parent has a higher fitness than the child, then parent
replaces child. If the child has a higher fitness, then the child is allowed to iterate but the comparison
check takes place at each EM iteration of the child. The final set of individuals (pt“/) form the
parents for the next generation (line 59 in Figure|l).

. In this re-

4. Analysis

Using finite Markov chain theory, it has been shown that the canonical GA converges to the global
optimum when the best solution is maintained in the population (Rudolph| |1994). We will prove the
convergence of GAEM along similar lines as an earlier proof (Krishna and Murty,|1999), namely by
deriving conditions for the parameters so that the convergence to global optimum is feasible. Some
definitions from matrix theory are given below:

Definition 2 A square matrix A is positive if its elements a;; > 0 Vi,j € {1,2,...,m}. A square
matrix A is primitive if there exists a k € N such that A¥ is positive. A square matrix is column
allowable if there exists at least one positive entry in each column. If the elements of a square matrix
A a;; €10,1) and 377 a;; = 1, then it is a stochastic matrix.

In GAEM, the population of individuals at generation ¢ is denoted by p’ (see Section . A CPT
is generated based on the constraint that the sum of probabilities of the states of a random variable
should be equal to 1 for a given parent instantiation. We define the state space S of this problem
as the space of all possible random starting points satisfying the CPT constraint. The state space
can be numbered from 1 to |S|. In GAEM, the process of generating a population can be denoted
by a random variable Y, Y (t) = ptt>0 is dependent only on the previous population Y (¢t — 1) at
generation (¢ — 1). Hence Y () = p',~ is a Markov chain and is denoted by:

Pr(Y(t) = pllY (t—1) = p'L,...,Y(0) = p°) = Pr(Y(t) = pl¥(t —1) = p'L).

The transition probabilities p;; are defined as the probability of generating population p' from
P pii(t) = Pr(Y(t) = p'lY(t—1) = p’). These transition probabilities are independent of the
time instant, i.e., p;;(s) = p;;(t) for all p’, p/ € S and for all s,t > 1. Therefore, Y (t) = p’,~,
is a time-homogeneous finite Markov chain. Let P = {p;;} be the transition matrix of the process

Y(t) = p',~o. The entries of the matrix P satisfy p;; € [0,1] and Z‘j‘il pij = 1Vi € S. So

516



A GA FOR LEARNING PARAMETERS IN BNS USING EM

P is a stochastic matrix. For GAEM to converge to a global maximum, it is required that P be a
primitive matrix. We investigate the operators that make the matrix P primitive. The probabilistic
changes of the individuals during GAEM operation can be captured by the transition matrix P,
which can be decomposed into a product of stochastic matrices, P = C' « M x R % L, where C,
M, R, and L describe the intermediate transitions caused by crossover, mutation, replacement, and
local search (EM learning) respectively. Each element of the matrices C', M, R and L represent
the transition probability of generating a new individual pﬁ“l from a parent individual pf on the
application of crossover, mutation, replacement, and local search (EM) mechanisms respectively.
Since every positive matrix is primitive, it is therefore enough to find the conditions which make C

and M positive, and R and L column-allowable.

Proposition: Let C, M, R and L be stochastic matrices, where C' and M are positiveE] and R
and L are column allowable. Then the product P = C' * M % R x L is positive.

Crossover: An individual pﬁ” can be obtained from the individual pgl on application of the
crossover operator. Each state of .S is mapped probabilistically to another state, so C' is stochastic.

Mutation: The matrix M is positive if any individual pf" can be obtained from an individual pﬁ”
on application of the mutation operator. The mutation is done by taking into account the constraint
on CPT as discussed in Section 3

Replacement: The matrix R is column allowable, i.e., there is at least one positive entry in each
column of the matrix. The replacement process does not alter the CPTs of the individual. This
matrix takes into account the probability of survival of each individual in the current population,

which depends on the fitness (log likelihood) value of the individual. So there is only one positive
f(ph)

ZzNzl f (pf) -

0, Vi € S. Even though this bound changes with the generations, it is always strictly positive.

Hence, R is column allowable.

entry, r;; when ¢ = j. The survival probability can be bounded as shown: r;; >

Local search: The matrix L is column allowable, i.e., there is at least one positive entry in the
matrix. The local search is done by applying the EM algorithm, which is a deterministic procedure.
When an individual p} undergoes EM learning, it will always converge to the same new individual
pgl. So there is only one positive entry per column, /;; = 1.

Theorem: Let X (t) = max{f(p})|i = 1,...,n,} be a sequence of random variables represent-
ing the best fitness within a population p' at generation ¢. Let the matrices C' and M be positive and
R and L be column allowable as described above. Then,

limy_oo Pr({X(t) = f*}) = 1,

where f* = max{f(pl) |pt € S} is the global optimum.

Proof Sketch: 1t is proved that a canonical genetic algorithm, which maintains the best solu-
tion found so far, converges to the global optimum (Rudolphl {1994). Under the hypothesis of the
theorem, the transition matrix P of GAEM is primitive as discussed above. From the pseudocode
in Figure (1] it can be seen that the best solution found in the generation is maintainedE] Thus, the
theorem follows from Rudolph| (1994, Theorem 6). ]

1. The crossover and mutation probabilities are assumed to be greater than zero (p. > 0 and p,, > 0).
2. The best solution is different for different replacement mechanisms.
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Figure 2: Box plots (or box and whisker diagrams) reflecting the spread of log-likelihoods for different BNs.
For each BN, the plot is for n,, = 100 runs, at convergence, of the traditional EM algorithm.

5. Experimental Results
5.1 Methods and Data

We performed experiments on several BNs of different sizes and structures, see Figure 2l Most
of the experiments were done on Carstarts with 18 variables, Alarm with 37 variables, Hepar2
with 70 variables, and Win95pts with 76 Variablesrﬂ Through Gibbs sampling, we generated 500
samples with 19, 7, 35, and 38 hidden variables for the Alarm, Carstarts, Hepar2, and Win95pts
BNs respectively. For Alarm and Carstarts, we chose hidden variables such that traditional EM
was known to need many iterations to converge (Saluja et al.l 2012). For Win95pts and Hepar2,
we randomly hid 50% of the variables. The hidden variables are fixed for a BN, and do not vary
between experiments.

We implemented GAEM by using the libDAI graphical models C++ library (Mooij, 2010),
which contains an EM implementation oriented towards parameter estimation in Bayesian networks,
and the Boost multithreading library to process the EM runs in parallel, on a multi-core computer. In
experiments, we set the maximum number of iterations that the EM algorithm can undergo to w =
1000 iterations, and the log-likelihood difference tolerance (i.e., if the difference in log-likelihood
between two iterations is less than this tolerance, then we say the EM run has converged) to € =
0.00001. We generated EM runs by randomly choosing starting points for each BN.

5.2 Search Space Analysis

To better understand the structure of the BN parameter search spaces, we first study the spread of
LL values for the traditional EM algorithm at convergence. In this experiment, we used eight BNs:
Carstarts, Child, Sprinkler, Insurance, Win95pts, Alarm, Hepar2, and Hailfinder. For each BN, we
executed n, = 100 traditional EM runs and used a sample size of 500. Distances are calculated
using d; = LL* - LL;, where LL* is the maximum LL (max_LL) seen among the 100 EM runs and
LL; is the LL of the ¢-th EM run. Figure [2| shows the spread of distances for the experimental BNs.

The red line in Figure 2]denotes the median; everything above or below it represents the distance
of 50% of the EM runs. The size of the box denotes the spread of the LL distances around the
median. For Carstarts, Child, Sprinkler, and Insurance, the median is close to the max_LL. In
Win95pts, the spread above the median is low, implying that 50% of EM runs are closer to the
max_LL. Thus, we consider Carstarts, Child, Sprinkler, Insurance, and Win95pts as easy search
spaces. For Alarm, Hepar2, and Hailfinder, the spread above the median is high and 50% of the EM
runs are away from the max_LL. Thus, we consider these BNs as hard search spaces.

3. http://www.bnlearn.com/bnrepository/
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5.3 Role of Replacement

We now study the impact on GAEM of four different replacement mechanisms: traditional (GAEM-
TRAD), deterministic crowding (GAEM-DETER), probabilistic crowding (GAEM-PC), and ALEM
based (GAEM-ALEM). We investigate Alarm and Carstarts, representing the hard and easy search
spaces respectively. We carefully optimized GAEM input parameters (such as ng, 1y, py, and p.)
in pilot experimentsﬂ For Alarm, we use ny = 100, n, = 4, p,, = 0.1, and p. = 0.1. For Carstarts,
we use ng = 200, n, = 2, pp, = 0.05, and p. = 0.5. The results, shown in Figure are taken as
an average over 10 independent GAEM runs.
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Figure 3: Role of replacement techniques on Alarm and Carstarts BN. The two leftmost panels show n; as
a function of ng4. The two rightmost panels show max_LL as a function of ng

From the two leftmost panels of Figure[3] we see that GAEM-ALEM uses few iterations for both
Alarm and Carstarts. From the two rightmost panels of Figure [3 we see that GAEM-PC produces
a better solution quality for Alarm, while GAEM-ALEM produces a better solution quality for
Carstarts. From this experiment, we conclude that GAEM-ALEM is faster than other techniques.
Though for Alarm the solution quality of GAEM-ALEM is worse than that of other replacement
techniques, GAEM-ALEM still beats the traditional EM algorithm (see Table|1).

5.4 Processor Time Comparison

The goal of this experiment is three-fold. First, we want to measure the solution quality (max_LL)
obtained by GAEM versus EM. Second, we want to compare the processor time (CPU time) taken
by GAEM and EM. Third, we want to understand the speed-up in terms of the total number of
iterations taken by GAEM (denoted as ngagas) versus traditional EM (denoted as ngps). We
consider Alarm and Carstarts representing the hard and easy search spaces, respectively. For Alarm,
we let p. = 0.1, p,, = 0.1, ny, = 4, and ny = 50, resulting in a total of 4 x 50 = 200 EM runs. For
Carstarts, we let p. = 0.5, p,,, = 0.05, n, = 2, and ny = 100, resulting in a total of 2 x 100 = 200
EM runs. For apples-to-apples comparison, we transfer the concept of generation from GAEM to
traditional EM. In GAEM, we have n,, EM runs in the first generation and use the learned individuals
as parents in subsequent generation, also with n,, EM runs. Similarly, in traditional EM, we start
with 7, EM runs in the first generation and use a new set of n, EM runs in subsequent generationsﬂ
We tried traditional replacement (GAEM-TRAD), PC based replacement (GAEM-PC) and ALEM
based replacement (GAEM-ALEM) and varied the sample sizes from 500 to 3000 for both BNSE]
For Alarm, Table |I{shows that the solution quality for GAEM-TRAD is higher for most of the
sample sizes compared to GAEM-PC and GAEM-ALEM. But all the three replacement methods

4. The results of these pilot experiments are not reported here due to limited space.

5. We keep the total number of EM runs as 200 in both BNs because we assume that a new user who wants to compare
GAEM with traditional EM would allot time based on the time taken by traditional EM per EM run.

6. The results for GAEM-DETER is found to be similar to GAEM-PC in terms of the number of iterations and solution
quality hence it is not shown in the Tables|T|and 2}
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Carstarts Alarm

Samples GAEM-TRAD GAEM-PC GAEM-ALEM EM GAEM-TRAD GAEM-PC GAEM-ALEM EM

|
500 -3169.40 -3169.55 -3169.31 -3169.96 -3936.93 -3936.69 -3937.31 -3937.44
1000 -6924.56 -6924.56 -6924.54 -6924.80 -16047.15 -16048.18 -16048.6  -16050.20
1500 -8646.85 -8646.85 -8646.85 -8646.85 -229717.85 -22977.89 -22979.56 -22981.7
2000 -13743.87 -13744.50 -13743.84  -13743.85 -31217.09 -31217.02 -31217.90  -31218.10
2500 -14504.44 -14504.46 -14504.43  -14504.40 -40550.40 -40550.97 -40552.73  -40556.00
3000 -18888.15 -18887.61 -18887.84  -18887.90 -51210.45 -51211.13 -51217.46  -51220.50

Table 1: Comparing max_LL for the GAEM-TRAD, GAEM-PC, and GAEM-ALEM methods with the tra-
ditional EM method for Carstarts and Alarm. The highest max_LL are in bold. The total number
of iterations taken to reach the max_LL is shown in Table 2l

Carstarts Alarm

Samples GAEM-TRAD GAEM-PC GAEM-ALEM || GAEM-TRAD GAEM-PC GAEM-ALEM

500 2049 (4.1) 2757 (3.1) 1397 (6.0) 3062 (4.6) 3172 (4.5) 2322 (6.1)
1000 1227 (4.6) 1765 (3.2) 1016 (5.6) 1659 (3.5) 1631 (3.6) 1386 (4.2)
1500 624 (1.5) 624 (1.5) 624 (1.5) 2515 (4.2) 2522 (4.2) 1940 (5.5)
2000 1282 (4.4) 1231 (4.6) 989 (5.8) 1097 (3.6) 1107 (3.6) 997 (4.0)
2500 688 (2.0) 683 (2.1) 684 (2.1) 2507 (3.8) 2499 (3.8) 1774 (5.4)
3000 1214 (5.2) 1208 (5.2) 977 (6.5) 4082 (4.0) 4002 (4.1) 2353 (7.0)

Table 2: Comparing total iterations for GAEM-TRAD, GAEM-PC and GAEM-ALEM methods with tradi-
tional EM method. Speedups are shown in parentheses, with the highest speedups in bold. These
results corroborate the CPU-time experiments in Figure 4]

have a higher solution quality than EM. For Carstarts, all three replacement techniques achieve
better solution quality than traditional EM (see Table|l)) in all cases except for sample size = 2500,
where the difference in log-likelihood is very small (0.0002%).

We now consider the number of iterations until convergence, as well as the speed-up, for the
replacement methods. The speed-up is calculated as sy = "nE—;{” where X reflects the replacement
method. In Table 2] for Alarm, we can see a speed-up of 3.5 < sx < 4.6 (as shown in the
parentheses) for all sample sizes using GAEM-TRAD and GAEM-PC techniques and a much higher
speed-up 4.0 < sarpym < 7.0 for GAEM-ALEM. For Carstarts, GAEM-TRAD and GAEM-PC
show a speed-up 1.5 < sx < 5.2 for all sample sizes (see Table[2). But GAEM-ALEM has a higher
speed-up 1.5 < sarpnm < 6.5. These results suggest that GAEM can achieve a better solution
quality in a shorter time, measured by the number of EM iterations, compared to the traditional EM
for given set of random starting point configurations.

Figure [] shows the results of comparing processor time for Carstarts and Alarm. All GAEM-
based methods take less time than traditional EM for both BNs across all sample sizes. For both
Alarm and Carstarts, we can see that the processor time consumption for GAEM-PC and GAEM-

Time in minutes
Time in minutes

100
600
80
500 = GAEM-ALEM ® GAEM-ALEM
GAEM-PC GAEM-PC
4
00 m GAEM-DETER A m GAEM-DETER
300 = GAEM-TRAD o = GAEM-TRAD
200 mEM =EM
I 20 T
100 = I =
0 -—J -—_I al -—J | ° ="isll m ausll | J i

500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000

Sample size Sample size

Figure 4: Processor time comparison for EM and GAEM on Alarm (left) and Carstarts (right) for 200 EM
runs. The corresponding max_LL for these configurations are shown in Table[T]
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DETER is almost the same. Among the methods, GAEM-ALEM is the fastest. For Carstarts,
GAEM-ALEM is the most suitable since there is an improvement both in solution quality and
compute time. For Alarm, GAEM-ALEM shows a decrease in the total number of iterations which
in turn shortens CPU time. The solution quality, though poorer than for GAEM-TRAD and GAEM-
PC, is better than for traditional EM. We conclude that GAEM-ALEM obtains better solution quality
(LL) in less time, relative to traditional EM, for both BNss.

6. Conclusion

In this work, we develop a Genetic Algorithm for EM (GAEM) for parameter learning from in-
complete data in Bayesian networks. From experiments, we find that GAEM achieves better log-
likelihoods in most cases compared to the traditional EM algorithm. A key component of GAEM
is a novel replacement technique, GAEM-ALEM. Using GAEM-ALEM, poorly performing EM
runs, in terms of their log-likelihoods, are discarded early during the progress of EM optimization.
In experiments, GAEM-ALEM produced a speed-up of 1.5 to 7, along with better solution quality,
compared to the traditional EM algorithm. These results suggest a general capability of GAEM to
produce better solutions in shorter time relative to traditional EM. We also prove the global con-
vergence of GAEM theoretically. For future work, we will explore other evolutionary methods and
compare their performance to that of GAEM. We will also investigate other ways of characterizing
the structure of the BN parameter search spaces.
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