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Abstract
In recent years, several authors have described a hybrid discriminative-generative model for clas-
sification. In this paper we examine construction of such hybrid models from data where we use
logistic regression (LR) as a discriminative component, and naı̈ve Bayes (NB) as a generative com-
ponent. First, we estimate a Markov blanket of the class variable to reduce the set of features. Next,
we use a heuristic to partition the set of features in the Markov blanket into those that are assigned
to the LR part, and those that are assigned to the NB part of the hybrid model. The heuristic is based
on reducing the conditional dependence of the features in NB part of the hybrid model given the
class variable. We implement our method on 21 different classification datasets, and we compare
the prediction accuracy of hybrid models with those of pure LR and pure NB models.
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1. Introduction

Data classification is a very common task in machine learning and statistics. It is considered an in-
stance of supervised learning. For a standard supervised learning problem, we implement a learning
algorithm on a set of training examples, which are pairs consisting of an input object, a vector of
explanatory variables F1, . . . , Fn, called features, and a desired output object, a response variable
C, called class variable. The learning algorithm outputs a classifier that constitutes a function that
maps a data item into one of several pre-defined classes (Fayyad et al., 1996). Given new feature
values, the classifier can make a prediction of the values of the corresponding class variable. A
classification task is to find a subset of features and a classifier based on data in a training set that
maximizes the accuracy of prediction (using the classifier) of data in a test set.

Some classifiers, for example, logistic regression (LR) and naı̈ve Bayes (NB), are much easier
to understand and interpret than others (Langley et al., 1992). Because LR and NB models have
few parameters, they scale well to high dimensions, and can be trained very efficiently. These two
classifiers belong to the family of probabilistic classifiers.

LR is a robust classifier that estimates the probability of occurrence of the class variable directly.
It can handle both numeric and categorical features. Also, it is a conditional model (for the class
variable given the features) and not a full probability model. Given the observed values of all fea-
tures, the portion of the model for the features is irrelevant for computing the posterior distribution
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of the class variable. It assumes that the log odds of a class is a linear function of the features. A
disadvantage of LR is that it cannot predict if some of the features have missing values.

A NB classifier is a full probability model, including the prior distribution of the class variable,
that makes an assumption that all features are mutually conditionally independent given the class
variable (Friedman et al., 1997). An advantage of NB over LR is that it is capable of using features
that have missing data (Liu et al., 2005). While NB can handle numeric features with non-parametric
distributions, the number of parameters increases with the number of bins used to discretize the state
space of the numeric features, and the simplicity of NB is lost. A numeric feature discretized into 10
bins would result in 2 · (10− 1) = 18 parameters for a binary class variable. On the other hand, LR
classifiers can include numeric features without discretization using a single parameter per numeric
feature.

An outline of the remainder of the paper is as follows. In Section 2, we describe related work
on hybrid discriminative/generative classifiers, and state the contributions of our paper. In Section
3, we sketch the LR model. Section 4 describes the NB model. In Section 5, we describe the hybrid
model. Section 6 describes our method for construction of a hybrid model. Section 7 shows the
empirical results from our experiments using datasets from the UCI Machine Learning Repository.
Finally, in Section 8, we summarize and conclude.

2. Related Literature

Ng and Jordan (2001) do an empirical and theoretical study of LR and NB models for classification.
They find that a NB model has a lower asymptotic accuracy (as the number of training instances
becomes large) compared to LR, but that a NB model approaches its asymptotic error much faster
than a LR model. Thus, for large training instances, LR classifiers have higher accuracies, whereas
for small training instances, NB classifiers may have higher accuracies than LR. They ignore the
issue of missing values.

In recent years, several researchers have explored a hybrid model that combines discriminative
and generative models in one model (Rubinstein and Hastie, 1997; Raina et al., 2003; Kang and
Tian, 2006; Xue and Titterington, 2010; Fujino et al., 2007; Bishop and Lasserre, 2007).

Rubinstein and Hastie (1997) are among the earliest to suggest combining discriminative and
generative models. They suggest that features that satisfy the assumption of a generative model be
retained in the generative part, with the remaining moved to the discriminative part. They compare
linear discriminant analysis (LDA), a generative model, with LR, a discriminative model, for three
different simulated datasets, and discover that LDA does better than LR when the class densities
were Gaussian, and vice-versa. They also compare NB, a generative model, with generalized ad-
ditive model (GAM), a discriminative model, for a simulated dataset with log-spline density that
satisfies the assumptions of the GAM model. The GAM model has a lower error rate than the NB
model. However, when the training set is a small subset (25 observations) of the entire dataset, NB
models had a lower average error than GAM. While they propose combining the two approaches,
they do not describe any experimental results of a hybrid model.

Raina et al. (2003) investigate a hybrid model with LR as the discriminative component and
NB as the generative component for text classification problems. They run experiments using pairs
of newsgroups from a dataset of USENET new postings, where the documents have two disjoint
regions–a subject region, and a message body region. A NB model treats the two regions in exactly
the same way (due to the strong assumption of a NB model). A hybrid model treats the 2 regions
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differently using a different weight parameter for the two sections. As the subject region has fewer
words than the message body region, the words in the subject region are weighted higher than the
words in the message body region. Depending on how the weight parameters are estimated from
a dataset, the hybrid model reduces to a LR model. Experimental results show that hybrid models
can provide lower test error than either pure LR or pure NB. As the size (number of words) of the
training set increases the accuracy of the hybrid model is asymptotically equal to the accuracy of
the LR model. For small training sets, the hybrid model does much better than either NB or LR.

Kang and Tian (2006) introduce a hybrid discriminative-generative classifier where the discrim-
inative component is LR, and the generative component is NB or tree-augmented NB (TAN). They
learn a hybrid model that includes all features by starting with an empty generative component, and
then greedily add one feature at a time (that which results in the maximum accuracy gain) to the
generative component until the classification accuracy does not improve. They test their algorithm
for 20 different datasets, which are pre-processed so that there are no missing values and all fea-
tures are categorical. They measure classification accuracy using either 10-fold cross-validation (for
small datasets) or 3-fold cross-validation (for large datasets). This is done just once, so they get a
point estimate of the classification accuracy. The average point estimate of the classification errors
for all 20 datasets is lowest for the hybrid LR-NB model.

Xue and Titterington (2010) study hybrid discriminative-generative classifiers where the dis-
criminative component is LR, and the generative component is Fisher’s linear discriminant analysis
(LDA), which assumes that the features have a joint multivariate normal distribution with a covari-
ance matrix that does not depend on the class variable. They construct a hybrid model that consists
of all features in a dataset. They test all features for univariate normality (using the Shapiro-Wilk
test with 0.01 level of significance), and those that fail the test are assigned to the LR portion of the
hybrid model. They test their algorithm for 6 datasets that have only numeric features, where they
measure classification accuracy using a random split of a dataset into training and test set for six
different sizes of the training set, which is repeated 200 times. They find that for smaller sizes of
the training set, the hybrid model does better than the pure LR and pure LDA models.

Fujino et al. (2007) investigate hybrid discriminative-generative classifiers similar to Raina et al.
(2003) for text classification having multiple components (such as titles, hyperlinks, anchor text,
images, etc.). They use a generative classifier for each component that are then combined using
weights learnt using a maximum entropy principle. They do an empirical evaluation on four text-
classification datasets, and find that hybrid classifiers outperform NB and LR models.

Bishop and Lasserre (2007) investigate hybrid models that are a convex combination of gener-
ative and discriminative models. They apply their approach to object recognition in static images.
Each image has two sets of features—observable features, and latent patch labels—in addition to
class. Their training set consists of a total of 50 images in each class with 8 classes (for a total of 400
images), with 45 images in each class being unlabelled (missing values of patch labels). The test set
consists of 800 images (100 images in each class) with no missing values. They compare the per-
formance of hybrid models with different combination weights and find that the best performance
is obtained with a blend between generative and discriminative extremes.

The main contribution of this paper is to continue the investigations of hybrid models as first
suggested by Rubinstein and Hastie (1997). While Xue and Titterington (2010) do the same, they
investigate hybrid models with linear discriminant analysis as the generative component for datasets
with numeric features. Our focus is on datasets with NB as the generative component for datasets
with a mix of numeric and categorical features. Kang and Tian (2006) also investigate hybrid models

525



TAN, SHENOY, CHAN, AND ROMBERG

Figure 1: A LR Model as a Bayesian Network

with NB and TAN as generative components, but their heuristic for finding a hybrid model is based
on improvement of accuracies. Also, they provide only a point estimate of accuracy of hybrid and
other models based on cross-validation. Our strategy for constructing a hybrid model is based on
reducing the conditional dependence of features in the NB part of the hybrid model. Also, unlike
earlier studies, we do not use all features. Instead, we first estimate a Markov blanket of the class
variable to identify relevant features, and then use only these relevant features for constructing a
hybrid model. Finally, we find a distribution of the accuracy of the hybrid models (and not just a
point estimate) by repeating the experiments many times with different random seeds.

3. Logistic Regression

In this section, we discuss LR as a method for classification. Suppose C is the categorical class
variable, and F1, . . . , Fn are real-valued features used to predict C. The features can be numeric or
Boolean (with values 0 or 1). If we have a categorical feature with k distinct values, then we can
represent such a feature with k − 1 Boolean features.

The LR model assumes that the log odds for a class cj is a linear function of the features:

ln

(
P (C = cj | f)

1− P (C = cj | f)

)
= β0 j +

n∑
i=1

βi jfi (1)

Notice that for a dataset with a binary class variable (with 2 classes), and n real-valued features,
we have n+1 parameters. If we have a class variable with c classes, then we have (c− 1) · (n+1)
parameters. The small number of parameters is one reason for the simplicity and robustness of the
LR classifier. Using Eq. 1, we can compute the probability distribution of all classes in C. The
predicted class is the one with the highest probability.

Rijmen (2008) has modeled a LR model as a Bayesian network, where Eq. (1) constitutes the
conditional probability distribution for C given F = (F1, . . . Fn). LR assumes a parametric form for
the distribution P (C|F), and has its model structure as shown in Fig. (1). In this figure, the dotted
oval around the features denotes that the Bayesian network structure of the feature variables is not
represented, as it is irrelevant to C, assuming that we have observed values of all features.

4. Naı̈ve Bayes

In this section we discuss NB model as a method for classification. NB (Hand and Yu, 2001) is a
probabilistic classifier that is based on Bayes rule. It makes an assumption that features are mutually
conditionally independent given the class variable. This assumption reduces the complexity of the
model (number of parameters), which makes it a robust model. Suppose C is the binary class
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Figure 2: A NB Model as a Bayesian Network

variable, whose value we wish to predict based on observation of a subset of m features E =
(E1, . . . , Em). The features can be numeric or categorical. Fig. 2 is a Bayesian network depiction
of a NB classifier. Assuming C, E1, . . . , Em are all binary, the number of parameters is 2m+ 1.

Based on the assumption of a NB model, it can be shown that

odds(C = 1 | e1, . . . , em) = odds(C = 1)
m∏
i=1

lr(ei, C = 1), (2)

where lr(ei, C = 1) = P (ei|C=1)
P (ei|C=0) , the likelihood ratio for C = 1 based on the observed value

Ei = ei. In words, the posterior odds of C = 1 is equal to prior odds of C = 1 times the likelihood
ratios of observed features for C = 1. If a feature is not observed, we can regard its likelihood ratio
as equal to 1.

Missing data are common in real-life datasets. Depending on the amount of missing data, they
may significantly affect the efficiency and accuracy of classifiers. Simple methods for handling
missing data are either to delete the instances with missing data, or to impute the missing data using
expectation-maximization algorithms (Dempster et al., 1977) assuming that the data are missing at
random. Liu et al. (2005) analyze the impact of missing data to classification algorithms and show
that NB classifier is the least sensitive to missing data among six classifiers it considers.

5. A Hybrid LR-NB Model

In this section, we discuss a hybrid LR-NB model (hybrid, in short) as a method for classification.
The graphical structure of the hybrid model represented as Bayesian network is shown in Fig. 3.
Node C is the class variable, whose value we need to predict based on observation of two subsets
of features: {F1, . . . , Fn}, the parents of C in Fig. 3, called the LR part, and {E1, . . . , Em}, the
children of C, called the NB part.

The conditional independence assumptions of a hybrid model are as follows. First, the features
in the LR part of the model are conditionally independent of the features in the NB part of the
model given the class variable C. Second, the features in the NB part of the model are mutually
conditionally independent given C.

One implication of the first conditional independence assumption is that to learn the parameters
of the conditional distribution of C given the features in the LR part, the features in the NB part are
irrelevant for this task. Thus, one can use standard LR parameter estimation methods to learn these
parameters. Similarly, to learn the parameters of the NB part of the hybrid model, the features in the
LR part are irrelevant for this task, and thus, we can use standard NB parameter estimation methods
for learning these parameters.
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Figure 3: A Hybrid LR-NB Model as a Bayesian Network

Making inferences in a hybrid model is easy. For simplicity of exposition, we assume that C is
a Boolean variable. Using variable elimination, after we eliminate the observed features in the LR
part, the posterior distribution of the class variable C is given by the LR model:

ln(odds(C = 1|f)) = β0 +

n∑
i=1

βifi (3)

This gives the posterior odds of C = 1 given f = (f1, . . . , fn) as:

odds(C = 1|f) = exp(β0 +
n∑

i=1

βifi) (4)

After elimination of the features F in the LR part, what’s left is a NB model such that the
posterior distribution of C (given F = f ) is as given in Eq. (4). Thus, we can now compute the
posterior distribution of C given F = f and E = e using the NB model as follows:

odds(C = 1|e, f) = exp(β0 +
n∑

i=1

βifi)
m∏
j=1

lr(ej , C = 1) (5)

As mentioned earlier, if we are missing a value, say, of Ej , then we can assume that the corre-
sponding likelihood ratio lr(ej , C = 1) is equal to 1. Eq. (5) is the equation for making inferences
from a hybrid classifier, which estimates the probability that the binary-valued class variable C
will take the value of either 1 or 0 given the observed values of all features. The general hybrid
model where C is not binary-valued is a simple extension of binary hybrid model, which combines
multinomial LR and NB models. Hosmer and Lemeshow (2004) provide detailed discussions of
multinomial LR.

A hybrid model has many other advantages beyond relaxing the conditional independence as-
sumptions of a NB model. A hybrid model inherits the best features from both LR and NB models.
First, the hybrid model retains the simplicity of LR and NB models. If C is binary-valued, and if
all the features in the NB part of the model are binary-valued, then the number of parameters in the
hybrid model is n + 1 + 2m, where n is the number of features in the LR part of the model, and
m is the number of features in the NB part of the model. Second, if we have features with missing
values, we can restrict such features to the NB part as a NB model is able to easily handle miss-
ing values. Third, if we have numeric features with non-parametric distributions, we can restrict
such features to the LR part, as LR can easily handle numeric features using a single parameter
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without discretization. In a NB model, a numeric feature discretized into 10 bins would result in
2 · (10− 1) = 18 parameters assuming a binary class variable.

6. A Method for Constructing a Hybrid LR-NB Model

The main focus of this paper is on construction of a good hybrid model that predicts well. We ignore
the issues of continuous vs. categorical features, and missing values of features. Instead, we focus
on the assumptions of the NB model and try to find a hybrid model that satisfies these assumptions
as much as possible. This is the strategy suggested in Rubinstein and Hastie (1997), but has not been
implemented previously for the case of hybrid models with LR as the discriminative component, and
NB as the generative component.

As there are 3p possible hybrid model structures where p is the number of features, searching
the space of all possible hybrid models is computationally intractable for large values of p. To
narrow the search, we first select the initial set of features based on an estimated Markov bound-
ary of the class variable C. We used 4 constraint-based methods: (i) grow-shrink (gs) (Margaritis,
2003); (ii) incremental association (iamb) (Tsamardinos et al., 2003); (iii) fast incremental associ-
ation (fast.iamb) (Yaramakala and Margaritis, 2005); and (iv) interleaved incremental association
(inter.iamb) (Tsamardinos et al., 2003); with 3 different conditional independence tests (asymptotic
chi-square (mi), asymptotic chi-square with adjusted degrees of freedom (mi-adf ), and shrinkage
estimator for the mutual information (mi-sh)) for categorical features, and with 4 different condi-
tional independence tests (exact Student’s t-test (cor), Fisher’s Z-test (zf ), asymptotic chi-square
test (mi-g), and sequential Monte Carlo permutation test (mi-g-sh)) for numeric features, with sig-
nificance level of 0.05, all of which are implemented in an R package called bnlearn (Scutari and
Denis, 2014). For a dataset with some numeric features and some categorical features, we discretize
the numeric features so that all features are discrete, and the discretization of numeric features is
done only for the purpose of estimating a Markov boundary of C. Notice that a Markov blanket
of C can be learnt directly from a dataset without first estimating a graphical model. We estimate
the Markov boundary of C as the union of all the estimated Markov boundaries. The logic here
is that all methods unanimously agree that the features not in the estimated Markov boundary are
irrelevant to C given the features in the estimated Markov boundary.

Using only features in the estimated Markov boundary, we select the LR and NB parts of the
hybrid model using a heuristic that reduces the conditional dependence between the features in
the NB part given class variable C. The heuristic is as follows. We start with all features in the
estimated Markov boundary in the NB part, and none in the LR part. We compute the normalized
conditional mutual information (norMI) given class variable C (Strehl and Ghosh, 2002) for each
pair of features in the NB part, and select a pair of features with the highest norMI . For each of
these two features (in the selected pair), we compare their second highest norMI and remove the
one with higher value from the NB part and include it in the LR part. We continue with this process
until the norMI for each pair of features in the NB part is less than 0.05, or there is only one feature
left. When there is only one pair of features in the NB part that has norMI more than 0.05, we
select one at random to move to the LR part.

The cutoff value of norMI = 0.05 is ad-hoc. Lowering this cutoff value leads to more features
in the LR part, and raising this value leads to more features in the NB part of the hybrid model.
One alternative is to use a cutoff value that is statistically significant to some level as suggested by
a G-test (McDonald, 2014a) or a chi-square test (McDonald, 2014b) for independence.
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Algorithm 1 outlines the procedure that selects which features are in the LR part and which are
in the NB part.

Algorithm 1 Find structure of a hybrid model
input: A set of labelled instances.
output: A hybrid network structure with identified LR-part and NB-part.

1: Find the Markov boundary of class variable C using all 4 constraint-based method with all
different conditional independence tests.

2: Set NB-part = ∪MB(C) and LR-part = ∅
3: do while |NB-part| > 2
4: Let (Xi, Xj) denote the pair of features that maximizes norMI(Xi;Xj | C) whereXi, Xj ∈

NB-part
5: If maxnorMI ≥ 0.05 then
6: Let Xs ∈ NB-part \ {Xj} be the attribute that maximizes norMI(Xi;Xs | C)
7: Let Xt ∈ NB-part \ {Xi} be the attribute that maximizes norMI(Xj ;Xt | C)
8: If norMI(Xi;Xs | C) < norMI(Xj ;Xt|C), then NB-part = NB-part \ {Xj},
9: LR-part = LR-part ∪ {Xj}

10: If norMI(Xi;Xs | C) > norMI(Xj ;Xt | C), then NB-part = NB-part \ {Xi},
11: LR-part = LR-part ∪ {Xi}
12: else end do;
13: If |NB-part| = 2 and norMI(Xi;Xj | C) ≥ 0.05, then
14: pick one at random and add to LR-part.
15: else end algorithm

7. Experimental Analysis

To evaluate the performance of hybrid models, we conducted experiments on 21 different machine
learning datasets from the UCI Machine Learning Repository. A summary of these datasets is given
in Table 1.

In this section, we will describe the experimental setup and experimental results from our
method of construction of a hybrid model, and compare the prediction accuracies of the hybrid
model with pure LR and pure NB models using only features in the estimated Markov blanket.

7.1 Experimental Setup

Our goal is to evaluate the performance of hybrid classifier in terms of out-of-sample prediction
accuracy. We randomly divided each datasets into two parts, a training set with about 90% of the
instances, and a testing set with the remaining 10% of the instances. For datasets that have missing
values of features, instances with missing values were restricted to the training set. Using the
training set, we implemented the algorithm described in Section 6 to identify the model structure,
and trained the corresponding hybrid model. We compare the hybrid model with pure LR model
and pure NB model by their prediction accuracies (percent of instances in the test set correctly
classified).

To estimate the parameters of a NB model, we discretize the numeric features using an entropy-
based method (MDL method), proposed by Fayyad and Irani (1993). We carried out the discretiza-
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Dataset # Features # Numeric # Categorical # Instances # Classes Missing Values?
Pima Indians Diabetes 8 8 0 768 2 yes
Adult Census Income 14 6 8 48,842 2 yes
Credit Approval 15 6 9 690 2 yes
Glass Identification 10 10 0 214 6 no
Hypothyroid 19 7 12 3,163 2 yes
Statlog Vehicle Silhouettes 18 18 0 846 4 no
Wine 13 13 0 178 3 no
Bank Marketing 19 9 10 41,188 2 yes
Banknote Authentication 4 4 0 1,372 2 no
Car Evaluation 6 0 6 1,728 4 no
Chronic Kidney Disease 24 11 13 400 2 yes
Blogger 5 0 5 100 2 no
Breast Tissue 9 9 0 106 6 no
Congressional Voting Records 16 0 16 435 2 yes
Connectionist Bench 60 60 0 208 2 no
Default of Credit Card Clients 23 14 9 30,000 2 no
Ecoli 7 5 2 336 8 no
Mushroom 22 0 22 8,124 2 yes
Nursery 8 0 8 12,960 3 no
Qualitative Bankruptcy 6 0 6 250 2 no
EEG Eye State 14 14 0 14,980 2 no

Table 1: A Summary of 21 Bench-Mark Datasets

tion procedure using a filter in WEKA. Also, when we learn the parameters of the LR part of the
hybrid model, and the parameters of the pure LR model, using the training set, we disregard in-
stances with missing values.

We repeated the entire procedure (division of dataset, estimation of Markov blanket, identifica-
tion of model structure, and estimation of model parameters using the training set, and computation
of prediction accuracies using the test set) 100 times. For six datasets (Glass Identification, Breast
Tissue, Wine, Chronic Kidney Disease, Blogger, and Connectionist Bench) we repeated the proce-
dure 500 times (as the standard errors of accuracy were too large from 100 repetitions). In Table
2, we report the mean results for each datasets, in terms of number of features in Markov blanket,
number of features in the LR part of the hybrid model, number of features in NB part of the hybrid
model, and the prediction accuracies of all three classifiers (hybrid, LR, and NB) with their standard
errors in units of %.

7.2 Experimental Results

Table 2 shows the results from our experiment regarding the estimated Markov blanket, and the
average structure of the hybrid model found using our conditional independence based heuristic.
Notice that we are guaranteed to get at least one variable in the NB part of the hybrid model. On
an average for the 21 datasets, the Markov boundary consists of 62% of the features in the dataset.
Also, on an average for the 21 datasets, the hybrid model consists of 52% of the features in the
Markov blanket in the LR part, with the remaining 48% in the NB part.

Table 2 also describes the mean accuracies of hybrid, pure LR, and pure NB, models (with
standard errors) from 100 repetitions of our procedure (500 for six datasets). Using a paired t-test
with 0.05 significance level, the hybrid model has the highest accuracy or tied for highest for 6 of
21 datasets. The pure LR model has the highest accuracies or tied for highest for 15 of 21 datasets.
The pure NB model has the highest or tied for highest for 7 of 21 datasets.

531



TAN, SHENOY, CHAN, AND ROMBERG

Dataset # Features # MB # LR-part # NB-part Acc. Hybrid Acc. LR Acc. NB
Pima Indians Diabetes 8 4.47 0.89 3.58 80.80 (0.45) 77.95 (0.43) 80.89 (0.46)
Adult Census Income 14 9.87 3.14 6.73 82.12 (0.06) 84.68 (0.06) 80.73 (0.08)
Credit Approval 15 8.62 3.07 5.55 85.76 (0.49) 85.62 (0.49) 85.18 (0.47)
Glass Identication 10 5.47 3.49 1.98 66.49 (0.42) 62.36 (0.39) 63.14 (0.60)
Hypothyroid 18 4.46 1.30 3.16 98.24 (0.08) 97.85 (0.07) 98.59 (0.07)
Statlog Vehicle Silhouettes 18 17.15 14.48 2.67 78.74 (0.49) 80.35 (0.40) 65.15 (0.49)
Wine 13 9.82 5.84 3.98 96.52 (0.21) 95.03 (0.22) 97.90 (0.26)
Bank Marketing 19 12.92 7.91 5.01 88.24 (0.05) 88.84 (0.04) 83.57 (0.07)
Banknote Authentication 4 3.00 2.00 1.00 96.43 (0.20) 98.92 (0.08) 92.79 (0.19)
Car Evaluation 6 5.00 0.99 4.01 85.79 (0.30) 92.52 (0.20) 85.79 (0.30)
Chronic Kidney Disease 24 10.29 6.08 4.21 97.26 (0.36) 98.80 (0.10) 93.16 (0.69)
Blogger 5 2.04 1.04 1.00 68.24 (0.67) 69.64 (0.57) 66.48 (0.73)
Breast Tissue 9 7.09 5.42 1.67 66.90 (0.64) 67.80 (0.64) 66.00 (0.68)
Congressional Voting Records 16 7.39 4.58 2.81 94.06 (0.30) 95.24 (0.30) 92.76 (0.30)
Connectionist Bench 60 7.48 3.61 3.88 71.48 (0.44) 68.65 (0.45) 72.36 (0.44)
Default of Credit Card Clients 23 6.93 4.30 2.63 81.72 (0.06) 82.07 (0.06) 80.50 (0.06)
Ecoli 7 6.00 3.79 2.21 85.57 (0.57) 85.77 (0.53) 83.73 (0.66)
Mushroom 22 12.53 10.60 1.93 99.98 (0.009) 99.99 (0.003) 92.96 (0.099)
Nursery 8 8.00 1.00 7.00 90.29 (0.09) 92.45 (0.07) 90.29 (0.09)
Qualitative Bankruptcy 6 4.54 1.16 3.38 99.64 (0.10) 99.56 (0.10) 99.64 (0.10)
EEG Eye State 14 13.71 12.18 1.53 66.07 (0.30) 64.03 (0.20) 68.70 (0.20)

Table 2: Summary of Results: Average Est. Markov Blanket Size, Average Structure of Hybrid
Models, and Average Accuracies of Models, in units of % (SE in parenthesis). Highest
accuracies are in boldface.

In a pairwise comparison between hybrid and pure LR models for the 21 datasets (using a paired
t-test with 0.05 significance level), hybrid models outperform LR for 6 datasets, are tied with LR
for 3 datasets, and do worse than LR for 12 datasets. This is consistent with the findings of Ng
and Jordan (2001), who find that LR outperforms NB asymptotically. Thus, in very large datasets
relative to number of features (such as, e.g., Adult Census Income, Bank Marketing, Default of
Credit Card Clients), we would expect LR to predict better than NB and hybrid models.

In a pairwise comparison between hybrid and pure NB models for the 21 datasets, hybrid models
outperform NB for 12 datasets, are tied with NB for 5 datasets, and do worse than NB for 4 datasets.
This result may be the consequence of our heuristic in constructing hybrid models where we try to
reduce the conditional dependence between features in the NB part.

8. Summary and Conclusions

In this paper, we discuss construction of a hybrid LR-NB model from data. First, we restrict features
to the estimated Markov blanket of the class variable. Next, we use a heuristic that minimizes the
conditional dependence among features in the NB-part of the hybrid model. We test our method
on 21 datasets with wide diversity in number of features, number of instances, having a mix of
categorical and numeric features, and missing/non-missing values of features. We repeat our method
100 times (500 times for six datasets), and describe statistics on the structure of the hybrid models,
and the accuracies of the hybrid, pure LR, and pure NB models.

In a pairwise comparison (using a paired t-test with 0.05 significance level), hybrid models do
better than LR for 6 datasets, are tied with LR for 3, and do worse than LR for 12. In a similar
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comparison to NB, hybrid models do better than NB for 12 datasets, are tied with NB for 6, and do
worse than NB for 3.

The LR model assumes that the log odds of a class is a linear function of the features. If there is
an easy way to test this assumption, then we could develop heuristics that move features that violate
this assumption from the LR part to the NB part. This may result in a hybrid model that does better
than pure LR.

As discussed in Section 5, the hybrid model has several advantages over pure LR and pure NB
models, such as ability to use numeric and categorical features, and missing values of features.
These issues are not investigated in this paper. We are currently in the process of conducting sys-
tematic experiments with datasets that have these characteristics.
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