A Proofs

Proof of Lemma 8. We continue the proof.
Case 1.2, $\left|x_{2}-d\right|>\left|x_{2}-b\right|$:
$\overline{\overline{\text { Case 1.2.1 }},\left|c-x_{1}\right| \leq\left|x_{2}-d\right| \text { : We have that }\left|x_{2}-b\right|<\left|x_{1}-b\right| \leq R_{\epsilon}\left|x_{1}-c\right| \text {. Thus, }}$

$$
\begin{aligned}
\frac{A}{B} & \geq \frac{|a-b|\left|x_{1}-x_{2}\right|}{B R_{\epsilon}\left|a-x_{1}\right|\left|x_{1}-c\right|} \\
& =\frac{|a-b|}{R_{\epsilon}\left|a-x_{1}\right|} \cdot \frac{\left|d-x_{2}\right|}{|c-d|} \geq \frac{\left|d-x_{2}\right|}{R_{\epsilon}|c-d|} \\
& \geq \frac{\left|d-x_{2}\right|}{R_{\epsilon}\left(\left|d-x_{2}\right|+\left|x_{2}-x_{1}\right|+\left|x_{1}-c\right|\right)} \\
& \geq \frac{\left|d-x_{2}\right|}{R_{\epsilon}\left(\left|d-x_{2}\right|+\left(1+R_{\epsilon}\right)\left|x_{1}-c\right|\right)} \\
& =\frac{1}{R_{\epsilon}\left(1+\left(1+R_{\epsilon}\right) \frac{\left|x_{1}-c\right|}{\left|d-x_{2}\right|}\right)} \geq \frac{1}{R_{\epsilon}\left(2+R_{\epsilon}\right)} \\
& \geq \frac{1}{4 R_{\epsilon}\left(1+2 R_{\epsilon}\right)}
\end{aligned}
$$

Case 1.2.2, $\left|c-x_{1}\right|>\left|x_{2}-d\right|$: As before, we bound A and B separately:

$$
\begin{aligned}
B & \leq \frac{|c-d|\left|x_{1}-x_{2}\right|}{\left|c-x_{1}\right|\left|x_{2}-b\right|} \\
& \leq \frac{\left|x_{1}-x_{2}\right|}{\left|x_{2}-b\right|} \cdot \frac{\left|c-x_{1}\right|+R_{\epsilon}\left|c-x_{1}\right|+\left|x_{2}-d\right|}{\left|c-x_{1}\right|} \\
& \leq\left(2+R_{\epsilon}\right) \frac{\left|x_{1}-x_{2}\right|}{\left|x_{2}-b\right|}
\end{aligned}
$$

and

$$
A=\frac{|b-a|\left|x_{1}-x_{2}\right|}{\left|a-x_{1}\right|\left|x_{2}-b\right|} \geq \frac{\left|x_{1}-x_{2}\right|}{\left|x_{2}-b\right|}
$$

Putting these together,

$$
\frac{A}{B} \geq \frac{1}{2+R_{\epsilon}} \geq \frac{1}{4 R_{\epsilon}\left(1+2 R_{\epsilon}\right)}
$$

where the second inequality holds because $R_{\epsilon}\left(1+8 R_{\epsilon}\right) \geq 2 / 3$.
Case 2, $\left|x_{1}-b\right|>\left|x_{1}-a\right|$ and $\left|x_{2}-b\right|<\left|x_{2}-a\right|$: In this case, x_{1} and x_{2} are on opposite sides of the point $(a+b) / 2$. Let M be a positive constant. We will choose $M=4$ later.
$\underline{\underline{\text { Case 2.1 }},|c-d| \leq M\left|c-x_{1}\right| \text { : We bound }}$

$$
B \leq \frac{M\left|x_{1}-x_{2}\right|}{\left|x_{2}-d\right|} \leq \frac{M R_{\epsilon}\left|x_{1}-x_{2}\right|}{\left|x_{2}-b\right|}
$$

and conclude

$$
\frac{A}{B} \geq \frac{|a-b|}{M R_{\epsilon}\left|a-x_{1}\right|} \geq \frac{1}{M R_{\epsilon}} \geq \frac{1}{4 R_{\epsilon}\left(1+2 R_{\epsilon}\right)}
$$

Case 2.2,,$|c-d|>M\left|c-x_{1}\right|$:
$\overline{\text { Case 2.2.1 }},|c-d| \leq M|a-b|$: We have that

$$
\frac{A}{B} \geq \frac{1}{M R_{\epsilon}^{2}} \geq \frac{1}{4 R_{\epsilon}\left(1+2 R_{\epsilon}\right)}
$$

Case 2.2.2, $|c-d|>M|a-b|$: Let x_{0} be a point on the line segment $\left[x_{1}, x_{2}\right]$. Let β_{1} be the angle between line segments $\left[c, x_{1}\right]$ and $\left[x_{1}, x_{0}\right]$. We write

$$
\left|c-x_{0}\right|^{2}=\left|x_{1}-x_{0}\right|^{2}+\left|x_{1}-c\right|^{2}-2\left|x_{1}-c\right| \cdot\left|x_{1}-x_{0}\right| \cos \beta_{1}
$$

Figure 4: If two points are close to each other, they have similar views.

$$
\begin{aligned}
& \leq \frac{1}{M^{2}}|c-d|^{2}+\frac{1}{M^{2}}|c-d|^{2}+\frac{2}{M^{2}}|c-d|^{2} \\
& =\frac{4}{M^{2}}|c-d|^{2}
\end{aligned}
$$

By the triangle inequality,

$$
\left|d-x_{0}\right| \geq|c-d|-\left|c-x_{0}\right| \geq\left(1-\frac{2}{M}\right)|c-d|
$$

Let β_{2} be the angle between line segments $\left[d, x_{2}\right]$ and $\left[x_{2}, x_{0}\right]$. Let $w=1-2 / M$. We write

$$
\begin{aligned}
w^{2}|c-d|^{2} & \leq\left|d-x_{0}\right|^{2} \\
& =\left|x_{2}-x_{0}\right|^{2}+\left|x_{2}-d\right|^{2}-2\left|x_{2}-d\right| \cdot\left|x_{2}-x_{0}\right| \cos \beta_{2} \\
& \leq \frac{1}{M^{2}}|c-d|^{2}+\left|x_{2}-d\right|^{2}+\frac{2}{M}\left|d-x_{2}\right| \cdot|c-d|
\end{aligned}
$$

Thus,

$$
\left|x_{2}-d\right|^{2}+\frac{2}{M}\left|d-x_{2}\right| \cdot|c-d|+\left(\frac{4}{M}-\frac{3}{M^{2}}-1\right)|c-d|^{2} \geq 0
$$

which is a quadratic inequality in $\left|x_{2}-d\right|$. Thus it holds that

$$
\left|x_{2}-d\right| \geq\left(-\frac{1}{M}+\left|\frac{2}{M}-1\right|\right)|c-d|
$$

If we choose $M=4$, then $\left|x_{2}-d\right| \geq 0.25|c-d|$ and

$$
B \leq \frac{4\left|x_{1}-x_{2}\right|}{\left|x_{1}-c\right|} \leq \frac{4 R_{\epsilon}\left|x_{1}-x_{2}\right|}{\left|x_{1}-a\right|}
$$

yielding

$$
\frac{A}{B} \geq \frac{|a-b|}{4 R_{\epsilon}\left|b-x_{2}\right|} \geq \frac{1}{4 R_{\epsilon}} \geq \frac{1}{4 R_{\epsilon}\left(1+2 R_{\epsilon}\right)} .
$$

Finally, observe that Case 3 follows by symmetry from Case 1 .

Proof of Lemma 11. We say a line segment L is not fully visible from a point x if there exists a point on the line segment that is not visible from x. We denote this event by $L \notin \operatorname{VIEW}(x)$. Let L be a line segment chosen by Hit-and-Run from u. So, as the next point in the Markov chain, Hit-and-Run chooses a point uniformly at random from L. We know that

$$
P_{u}(\{x: x \notin \operatorname{viEW}(v)\}) \leq P_{u}(\{L: L \notin \operatorname{viEW}(v)\})
$$

So it suffices to show

$$
\begin{equation*}
P_{u}(\{L: L \notin \operatorname{VIEW}(v)\}) \leq \max \left(\frac{4}{\pi}, \frac{\kappa}{\sin (\pi / 8)}\right) \frac{\epsilon^{\prime}}{\epsilon} \tag{7}
\end{equation*}
$$

To sample the line segment L, first we sample a random two dimensional plane containing u and v, and then sample the line segment inside this plane. To prove (7), we show that in any two dimensional plane containing u and v, the ratio of invisible to visible region is bounded by $\max \left(\frac{4}{\pi}, \frac{\kappa}{\sin (\pi / 8)}\right) \frac{\epsilon^{\prime}}{\epsilon}$.
Consider the geometry shown in Figure $4(\mathrm{a})$. Let \mathcal{H} be the intersection of $\partial \Sigma$ and a two dimensional plane containing u and v. For a line ℓ and points q and u, we write $[q, \ell, u$] to denote that u and a small neighborhood of q on \mathcal{H} are on the opposite sides of ℓ. For example, in Figure $4(\mathrm{a})$, we have that $[x, \ell(v, x), u]$. Define a subset

$$
Q=\{q \in \mathcal{H}: \ell(v, q) \text { is tangent to } \mathcal{H} \text { at } q \text { and }[q, \ell(v, q), u]\}
$$

Any line $\ell(v, q)$ such that $[q, \ell(v, q), u]$ creates some space that is visible to u and invisible to v. If Q is empty, then the entire \mathcal{H} is in the view of v and $P_{u}(\{x: x \notin \operatorname{VIEW}(v)\})=0$. Otherwise, let x be a member of Q. Let $y \in \mathcal{H}$ be the closest point to x such that $[v, y]$ is tangent to \mathcal{H} at x. Let α_{1} be the angle between $[x, u]$ and $[u, y]$, and let α_{2} be the angle between $[y, v]$ and $[y, u]$. Because $|u-v| \leq|v-z| \leq|v-x|, \alpha_{1}+\alpha_{2} \leq \pi / 2$. Further, if the lengths of $|u-v|$ and $|v-x|$ are fixed, $\alpha_{1}+\alpha_{2}$ is maximized when $[v, u]$ is orthogonal to $[u, x]$. If x is the only member of Q, then maximum invisible angle is α_{1}, which can be bounded as follows:

$$
\sin \alpha_{1} \leq \sin \left(\alpha_{1}+\alpha_{2}\right) \leq \frac{|u-v|}{|v-x|} \leq \frac{|u-v|}{\epsilon}
$$

Otherwise, assume Q has more members. The same upper bound holds for members that are also on the line $\ell(v, x)$. So next we consider members of Q that are not on the line $\ell(v, x)$. Assume Q has only one such member and let x^{\prime} be that tangent point (see Figure 4(a). The same argument can be repeated if Q has more such members). We consider two cases. Case 1: $\left|v-x^{\prime}\right| \geq|v-y|$. Let α_{3} be the angle between $\left[v, x^{\prime}\right]$ and $\left[u, x^{\prime}\right]$. If $\alpha_{3} \leq \alpha_{2}$, then

$$
\sin \left(\alpha_{1}+\alpha_{3}\right) \leq \sin \left(\alpha_{1}+\alpha_{2}\right) \leq \frac{|u-v|}{\epsilon}
$$

Otherwise, $\alpha_{3}>\alpha_{2}$. Consider point $x^{\prime \prime}$ such that the angle between $\left[u, x^{\prime}\right]$ and $\left[u, x^{\prime \prime}\right]$ is α_{1}. We show that $\left|v-x^{\prime \prime}\right| \geq|v-x|$ by contradiction. Assume $|v-x|>\left|v-x^{\prime \prime}\right|$. Thus, $\left|x^{\prime}-x^{\prime \prime}\right|>|y-x|$ and $|u-x|>\left|u-x^{\prime \prime}\right|$. By law of sines, $|x-y| / \sin \alpha_{1}=|u-x| / \sin \alpha_{2}$ and $\left|x^{\prime \prime}-x^{\prime}\right| / \sin \alpha_{1}=\left|u-x^{\prime \prime}\right| / \sin \alpha_{3}$. Because $|u-x|>$ $\left|u-x^{\prime \prime}\right|$ and $\alpha_{3}>\alpha_{2}$, we have that $|u-x| / \sin \alpha_{2}>\left|u-x^{\prime \prime}\right| / \sin \alpha_{3}$, and thus $\left|x^{\prime \prime}-x^{\prime}\right| / \sin \alpha_{1}<|x-y| / \sin \alpha_{1}$. This implies $\left|x^{\prime \prime}-x^{\prime}\right|<|x-y|$, a contradiction. Thus,

$$
\sin \left(\alpha_{1}+\alpha_{3}\right) \leq \frac{|u-v|}{\left|v-x^{\prime \prime}\right|} \leq \frac{|u-v|}{|v-x|} \leq \frac{|u-v|}{\epsilon}
$$

Next we consider the second case. Case 2: $\left|v-x^{\prime}\right|<|v-y|$. Consider the arc on \mathcal{H} from y to x^{\prime}. Let y^{\prime} be the last point on this arc such that $\left|v-y^{\prime}\right|=|v-y|$. Let η be the change of angle between the tangent of \mathcal{H} at y^{\prime} and the tangent of \mathcal{H} at x^{\prime} (tangents are defined in clockwise direction), and let λ be the angle between $\left[v, y^{\prime}\right]$ and $\left[v, x^{\prime}\right]$. Angle η is minimized when the tangent at y^{\prime} is orthogonal to $\left[v, y^{\prime}\right]$. Thus $\eta \geq \pi / 2-\lambda$. If $\lambda<\pi / 4$, then $\eta \geq \pi / 4$. Angle λ is smallest when the arc from y^{\prime} to x^{\prime} changes with maximum curvature $\kappa / \mathcal{R}_{\mathcal{H}}$, i.e. it is a segment of a circle with radius $\mathcal{R}_{\mathcal{H}} / \kappa$. Figure $4(\mathrm{~b})$ shows this case, where $R=\mathcal{R}_{\mathcal{H}} / \kappa$ and $L=\left|v-y^{\prime}\right|$. We have that

$$
\frac{\sin (\lambda / 2)}{\sin (\eta / 2)} \geq \frac{h / L}{h / R}=\frac{R}{L}=\frac{\mathcal{R}_{\mathcal{H}}}{\kappa|v-y|}
$$

Thus,

$$
\frac{\lambda}{2} \geq \sin (\lambda / 2) \geq \frac{\mathcal{R}_{\mathcal{H}}}{\kappa|v-y|} \sin (\eta / 2)=\frac{\sin (\pi / 8) \mathcal{R}_{\mathcal{H}}}{\kappa|v-y|} \geq \frac{\sin (\pi / 8)}{\kappa}
$$

where the last step follows by $|v-y| \leq \mathcal{R}_{\mathcal{H}}$. Thus

$$
\lambda \geq \lambda_{0} \stackrel{\text { def }}{=} \min \left(\frac{\pi}{4}, \frac{\sin (\pi / 8)}{\kappa}\right)
$$

So for every $|u-v| / \epsilon$ invisible region, we have at least λ_{0} visible region. Thus,

$$
P_{u}(\{x: x \notin \operatorname{VIEW}(v)\}) \leq \frac{|u-v|}{\lambda_{0} \epsilon}=\max \left(\frac{4}{\pi}, \frac{\kappa}{\sin (\pi / 8)}\right) \frac{|u-v|}{\epsilon}
$$

Before proving Lemma 12 , we show a useful inequality. Consider points $u, v, w \in \Sigma$ that see each other. Let \mathcal{C} be the convex hull of

$$
\{a(u, v), b(u, v), a(u, w), b(u, w), a(v, w), b(v, w)\}
$$

Let i and j be distinct members of $\{u, v, w\}$. We use $a^{\prime}(i, j)$ and $b^{\prime}(i, j)$ to denote the endpoints of $\ell_{\mathcal{C}}(i, j)$ that are closer to i and j, respectively. Because $\left|a^{\prime}(i, j)-b^{\prime}(i, j)\right|$ is convex combination of two line segments that are inside Σ,

$$
\begin{equation*}
\left|a^{\prime}(i, j)-b^{\prime}(i, j)\right| \leq D_{\Sigma} \tag{8}
\end{equation*}
$$

Also $[a(i, j), b(i, j)] \subset\left[a^{\prime}(i, j), b^{\prime}(i, j)\right]$, and thus $|a(i, j)-i| \leq\left|a^{\prime}(i, j)-i\right|$ and $|b(i, j)-j| \leq\left|b^{\prime}(i, j)-j\right|$. We can write

$$
\begin{align*}
\ell_{\mathcal{C}}(i, j) & =\frac{|i-j| \cdot\left|a^{\prime}(i, j)-b^{\prime}(i, j)\right|}{\left|a^{\prime}(i, j)-i\right| \cdot\left|j-b^{\prime}(i, j)\right|} \\
& \leq \frac{|i-j| \cdot|a(i, j)-b(i, j)|}{|a(i, j)-i| \cdot|j-b(i, j)|} \cdot \frac{\left|a^{\prime}(i, j)-b^{\prime}(i, j)\right|}{|a(i, j)-b(i, j)|} \\
& \leq D_{\Sigma} \frac{\ell_{\Sigma}(i, j)}{d(i, \partial \Sigma)} \tag{9}
\end{align*}
$$

where the last inequality holds because $|a(i, j)-b(i, j)| \geq d(i, \partial \Sigma)$.

Proof of Lemma 12. Let $A \subset \Sigma$ be a measurable subset of Σ. We prove that

$$
P_{u}(A)-P_{v}(A) \leq 1-\frac{\epsilon}{8 e^{4} D_{\Sigma}}
$$

We partition A into five subsets, and estimate the probability of each of them separately:

$$
\begin{aligned}
& A_{1}=\{x \in A:|x-u|<F(u)\}, \\
& A_{2}=\left\{x \in A:\left|(x-u)^{\top}(u-v)\right|>\frac{1}{\sqrt{n}}|x-u| \cdot|u-v|\right\}, \\
& A_{3}=\left\{x \in A:|x-u|<\frac{1}{6}|u-a(u, x)|,\right. \\
&\text { or } \left.|x-u|<\frac{1}{6}|u-a(x, u)|\right\} \\
& A_{4}=\{x \in A: x \in \operatorname{VIEW}(u), x \notin \operatorname{VIEW}(v)\} \\
& S==A \backslash A_{1} \backslash A_{2} \backslash A_{3} \backslash A_{4} .
\end{aligned}
$$

The definition of $F(u)$ immediately yields $P_{u}\left(A_{1}\right) \leq 1 / 8$. Now consider A_{2} and let C be the cap of the unit sphere centered at u in the direction of v, defined by $C=\left\{x:(u-v)^{\top} x \geq \frac{1}{\sqrt{n}}|u-v|\right\}$. If $x \sim P_{u}$, then $P\left(x \in A_{2}\right)$ is bounded above by the probability that a uniform random line through u intersects C, which has probability equal to the ratio between the surface of C and the surface of the half-sphere. A standard computation to show

Figure 5: Illustration for Lemma 12 proof
that this ratio is less than $1 / 6$, and hence $P_{u}\left(A_{2}\right) \leq 1 / 6$. The probability that $x \in A_{3}$ is at most $1 / 6$, since x is chosen from a segment of a chord of length at most $|\ell(u, x)| / 6$. Finally, to bound $P\left(A_{4}\right)$, we apply Lemma 11:

$$
P_{u}(x \in A: x \in \operatorname{VIEW}(u), x \notin \operatorname{VIEW}(v)) \leq \max \left(\frac{4}{\pi}, \frac{\kappa}{\sin (\pi / 8)}\right) \frac{\epsilon^{\prime}}{\epsilon} \leq \frac{1}{6}
$$

The combined probability of A_{1}, A_{2}, A_{3}, and A_{4} is at most $1 / 8+1 / 6+1 / 6+1 / 6<3 / 4$.
We now turn to bounding $P_{u}(S)$ and show that $P_{u}(S) \leq 2 e^{4}\left(D_{\Sigma} / \epsilon\right) P_{v}(S)$. Because points in S are visible from both u and v, by (2)

$$
P_{v}(S)=\frac{2}{n \pi_{n}} \int_{S} \frac{1}{\ell_{\Sigma}(v, x)|x-v|^{n-1}} .
$$

Now, any $x \in S$ must respect the following

$$
\begin{align*}
|x-u| & \geq F(u) \geq \frac{\sqrt{n}}{2}|u-v| \tag{10}\\
\left|(x-u)^{\top}(u-v)\right| & \leq \frac{1}{\sqrt{n}}|x-u| \cdot|u-v| \tag{11}\\
|x-u| & \geq \frac{1}{6}|u-a(u, x)|, \text { and } \tag{12}\\
|x-u| & \geq \frac{1}{6}|u-a(x, u)| \tag{13}
\end{align*}
$$

As illustrated in Figure 5, we define the points $y=a(u, v), z=a(v, u), p=a(u, x), q=a(x, u), i=a(v, x)$ and $j=a(x, v)$ with convex hull \mathcal{C}. Also let p^{\prime} and q^{\prime} be the endpoints of $\ell_{\mathcal{C}}(u, x)$. If $p^{\prime}=p$ and $q^{\prime}=q$, we proceed with the argument in the proof of Lemma 9 of Lovász (1999) to get the desired result. Otherwise, assume $q^{\prime}=q$ and p^{\prime} is the intersection of the lines $\ell(u, p)$ and $\ell(y, i)$. (See Figure 5. A similar argument holds when $q \neq q^{\prime}$.) From (12) and (13), we get that

$$
2|x-u|>\frac{1}{6}|p-q| .
$$

We have that $|p-q| \geq \epsilon$, and by (8), $\left|p^{\prime}-q^{\prime}\right| \leq D_{\Sigma}$. Thus $\left|p^{\prime}-q^{\prime}\right| \leq\left(D_{\Sigma} / \epsilon\right)|p-q|$. Thus,

$$
\begin{equation*}
\frac{1}{6}\left|p^{\prime}-q^{\prime}\right| \leq \frac{2 D_{\Sigma}}{\epsilon}|x-u| \tag{14}
\end{equation*}
$$

To relate $P_{v}(S)$ to $P_{u}(S)$, we need to bound $|x-v|$ and $\ell(x, v)$ in terms of $|x-u|$ and $\ell(x, u)$:

$$
\begin{align*}
|x-v|^{2} & =|x-u|^{2}+|u-v|^{2}+2(x-u)^{\top}(u-v) \\
& \leq|x-u|^{2}+|u-v|^{2}+\frac{2}{\sqrt{n}}|x-u| \cdot|u-v| \tag{11}\\
& \leq|x-u|^{2}+\frac{4}{n}|x-u|^{2}+\frac{4}{n}|x-u|^{2} \tag{10}\\
& =\left(1+\frac{8}{n}\right)|x-u|^{2} .
\end{align*}
$$

Thus,

$$
\begin{equation*}
|x-v| \leq\left(1+\frac{4}{n}\right)|x-u| \tag{15}
\end{equation*}
$$

First we use convexity of \mathcal{C} to bound $\ell_{\mathcal{C}}(x, v)$ in terms of $\ell_{\mathcal{C}}(x, u)$, and then we use (9) to bound $\ell_{\Sigma}(x, v)$ and $\ell_{\Sigma}(x, u)$ in terms of $\ell_{\mathcal{C}}(x, v)$ and $\ell_{\mathcal{C}}(x, u)$. By Menelaus' Theorem (wrt triangle $u v x$ and transversal line $\left.[y, i]\right)$,

$$
\frac{|x-i|}{|v-i|}=\frac{|u-y|}{|v-y|} \cdot \frac{\left|x-p^{\prime}\right|}{\left|u-p^{\prime}\right|} .
$$

We have that

$$
\frac{|u-y|}{|v-y|}=1-\frac{|v-u|}{|v-y|}>1-d_{\mathcal{C}}(u, v)
$$

and thus

$$
\begin{aligned}
\frac{|x-v|}{|v-i|} & =\frac{|x-i|}{|v-i|}-1 \\
& \geq\left(1-d_{\mathcal{C}}(u, v)\right) \frac{\left|x-p^{\prime}\right|}{\left|u-p^{\prime}\right|}-1 \\
& =\frac{|x-u|}{\left|u-p^{\prime}\right|}\left(1-d_{\mathcal{C}}(u, v) \frac{\left|x-p^{\prime}\right|}{|x-u|}\right) \\
& >\frac{|x-u|}{\left|u-p^{\prime}\right|}\left(1-d_{\mathcal{C}}(u, v) \frac{\left|p^{\prime}-q^{\prime}\right|}{|x-u|}\right) \\
& >\frac{|x-u|}{\left|u-p^{\prime}\right|}\left(1-\frac{12 D_{\Sigma} \epsilon}{24 D_{\Sigma} \epsilon}\right) \\
& >\frac{1}{2} \frac{|x-u|}{\left|u-p^{\prime}\right|}
\end{aligned}
$$

where we have used (14) and $d_{\mathcal{C}}(u, v)=d_{\Sigma}(u, v)<\epsilon /\left(24 D_{\Sigma}\right)$ (the condition in the statement of the lemma); we conclude that

$$
\begin{equation*}
|v-i|<2 \frac{|x-v|}{|x-u|}\left|u-p^{\prime}\right| \tag{16}
\end{equation*}
$$

Next we prove a similar inequality for $|v-j|$. It is easy to check that

$$
\frac{|z-v|}{|u-z|}=1-\frac{|u-v|}{|u-z|}>1-d_{\mathcal{C}}(u, v)
$$

and combining with Menelaus' Theorem

$$
\frac{|v-j|}{|x-j|}=\frac{\left|q^{\prime}-u\right|}{\left|x-q^{\prime}\right|} \cdot \frac{|z-v|}{|u-z|}
$$

we can show

$$
\frac{|x-v|}{|x-j|}=\frac{|v-j|}{|x-j|}-1
$$

$$
\begin{aligned}
& \geq\left(1-d_{\mathcal{C}}(u, v)\right) \frac{\left|q^{\prime}-u\right|}{\left|x-q^{\prime}\right|}-1 \\
& =\frac{|x-u|}{\left|x-q^{\prime}\right|}\left(1-d_{\mathcal{C}}(u, v) \frac{\left|q^{\prime}-u\right|}{|x-u|}\right) \\
& >\frac{|x-u|}{\left|x-q^{\prime}\right|}\left(1-d_{\mathcal{C}}(u, v) \frac{\left|p^{\prime}-q^{\prime}\right|}{|x-u|}\right) \\
& >\frac{|x-u|}{\left|x-q^{\prime}\right|}\left(1-\frac{12 D_{\Sigma} \epsilon}{24 D_{\Sigma} \epsilon}\right) \\
& >\frac{1}{2} \frac{|x-u|}{\left|x-q^{\prime}\right|}
\end{aligned}
$$

where we have used (14) and $d_{\mathcal{C}}(u, v)=d_{\Sigma}(u, v)<\epsilon /\left(24 D_{\Sigma}\right)$. Thus,

$$
|x-j|<2 \frac{|x-v|}{|x-u|}\left|x-q^{\prime}\right|
$$

and combining this with the trivial observation that $|x-v| \leq 2 \frac{|x-v|}{|x-u|}|x-u|$, and Equation 16 yields

$$
\ell_{\mathcal{C}}(x, v)=|v-i|+|v-x|+|x-j| \leq 2 \frac{|x-v|}{|x-u|} \ell_{\mathcal{C}}(x, u) .
$$

Thus,

$$
\begin{align*}
\ell_{\Sigma}(x, v) & =\ell_{\mathcal{C}}(x, v) \\
& \leq 2 \frac{|x-v|}{|x-u|} \ell_{\mathcal{C}}(x, u) \\
& \leq \frac{2 D_{\Sigma}}{\epsilon} \frac{|x-v|}{|x-u|} \ell_{\Sigma}(x, u) . \tag{17}
\end{align*}
$$

Where the last step holds by (9). Now we are ready to lower bound $P_{v}(S)$ in terms of $P_{u}(S)$.

$$
\begin{align*}
P_{v}(S) & =\frac{2}{n \pi_{n}} \int_{S} \frac{d x}{\ell_{\Sigma}(x, v)|x-v|^{n-1}} \\
& \geq \frac{\epsilon}{n \pi_{n} D_{\Sigma}} \int_{S} \frac{|x-u| d x}{\ell_{\Sigma}(x, u)|x-v|^{n}} \tag{17}\\
& \geq \frac{\epsilon}{n \pi_{n} D_{\Sigma}}\left(1+\frac{4}{n}\right)^{-n} \int_{S} \frac{d x}{\ell_{\Sigma}(x, u)|x-u|^{n-1}} \tag{15}\\
& \geq \frac{\epsilon}{2 e^{4} D_{\Sigma}} P_{u}(S)
\end{align*}
$$

Finally,

$$
\begin{aligned}
P_{u}(A)-P_{v}(A) & \leq P_{u}(A)-P_{v}(S) \\
& \leq P_{u}(A)-\frac{\epsilon}{2 e^{4} D_{\Sigma}} P_{u}(S) \\
& \leq P_{u}(A)-\frac{\epsilon}{2 e^{4} D_{\Sigma}}\left(P_{u}(A)-\frac{3}{4}\right) \\
& =\frac{3 \epsilon}{8 e^{4} D_{\Sigma}}+\left(1-\frac{\epsilon}{2 e^{4} D_{\Sigma}}\right) P_{u}(A) \\
& \stackrel{(a)}{\leq} \frac{3 \epsilon}{8 e^{4} D_{\Sigma}}+1-\frac{4 \epsilon}{8 e^{4} D_{\Sigma}} \\
& =1-\frac{\epsilon}{8 e^{4} D_{\Sigma}}
\end{aligned}
$$

In the step (a), we used the fact that $D_{\Sigma} \geq \epsilon$ and $P_{u}(A) \leq 1$.

Proof of Lemma 13. Let $\left\{S_{1}, S_{2}\right\}$ be a partitioning of Σ. Define

$$
\begin{aligned}
& \Sigma_{1}=\left\{x \in S_{1}: P_{x}\left(S_{2}\right) \leq \delta\right\} \\
& \Sigma_{2}=\left\{x \in S_{2}: P_{x}\left(S_{1}\right) \leq \delta\right\} \\
& \Sigma_{3}=\Sigma \backslash \Sigma_{1} \backslash \Sigma_{2}
\end{aligned}
$$

Case 1: $\operatorname{vol}\left(\Sigma_{1}\right) \leq \operatorname{VOL}\left(S_{1}\right) / 2$. We have that

$$
\int_{S_{1}} P_{x}\left(S_{2}\right) d x \geq \int_{S_{1} \backslash \Sigma_{1}} P_{x}\left(S_{2}\right) d x \geq \delta \operatorname{VOL}\left(S_{1} \backslash \Sigma_{1}\right) \geq \frac{\delta}{2} \mathrm{VOL}\left(S_{1}\right)
$$

Thus,

$$
\frac{1}{\min \left\{\operatorname{VOL}\left(S_{1}\right), \operatorname{VOL}\left(S_{2}\right)\right\}} \int_{S_{1}} P_{x}\left(S_{2}\right) d x \geq \frac{\delta}{2}
$$

Case 2: $\operatorname{vOL}\left(\Sigma_{1}\right)>\operatorname{VOL}\left(S_{1}\right) / 2$ and $\operatorname{voL}\left(\Sigma_{2}\right)>\operatorname{VOL}\left(S_{2}\right) / 2$. Similar to the argument in the previous case,

$$
\int_{S_{1}} P_{x}\left(S_{2}\right) \geq \delta \operatorname{voL}\left(S_{1} \backslash \Sigma_{1}\right)
$$

and

$$
\int_{S_{1}} P_{x}\left(S_{2}\right)=\int_{S_{2}} P_{x}\left(S_{1}\right) \geq \delta \operatorname{vOL}\left(S_{2} \backslash \Sigma_{2}\right)
$$

Thus,

$$
\int_{S_{1}} P_{x}\left(S_{2}\right) \geq \frac{\delta}{2} \operatorname{VOL}\left(\Sigma \backslash \Sigma_{1} \backslash \Sigma_{2}\right)=\frac{\delta}{2} \operatorname{VOL}\left(\Sigma_{3}\right)
$$

Let $\Omega_{i}=g^{-1}\left(\Sigma_{i}\right)$ for $i=1,2,3$. Define

$$
(u(x), v(x))=\underset{u \in \Omega_{1}, v \in \Omega_{2},\{u, v, x\} \text { are collinear }}{\operatorname{argmin}} d_{\Omega}(u, v), \quad h(x)=(1 / 3) \min \left(1, d_{\Omega}(u(x), v(x))\right)
$$

By definition, $h(x)$ satisfies condition of Theorem 7. Let $\epsilon=\frac{r}{2 n}$ and notice that $\operatorname{VOL}\left(\Omega^{\epsilon}\right) \geq \operatorname{VOL}(\Omega) / 2$. We have that

$$
\begin{aligned}
\int_{S_{1}} P_{x}\left(S_{2}\right) & \geq \frac{\delta}{2} \operatorname{voL}\left(\Omega_{3}\right) \\
& \geq \frac{\delta}{2} \mathbf{E}_{\Omega}(h(x)) \min \left(\operatorname{voL}\left(\Omega_{1}\right), \operatorname{vOL}\left(\Omega_{2}\right)\right) \\
& =\frac{\delta}{4} \mathbf{E}_{\Omega^{\epsilon}}(h(x)) \min \left(\operatorname{voL}\left(\Sigma_{1}\right), \operatorname{vOL}\left(\Sigma_{2}\right)\right) .
\end{aligned}
$$

Let $x \in \Omega^{\epsilon}$. We consider two cases. In the first case, $|u(x)-v(x)| \geq \epsilon / 10$. Thus,

$$
d_{\Omega}(u(x), v(x)) \geq \frac{4}{D_{\Omega}}|u(x)-v(x)| \geq \frac{2}{5 n D_{\Omega}}
$$

In the second case, $|u(x)-v(x)|<\epsilon / 10$, then $|u(x)-x| \leq \epsilon / 10$ and $|v(x)-x| \leq \epsilon / 10$. Thus, $u, v \in \Omega^{\epsilon^{\prime}}$ for $\epsilon^{\prime}=9 \epsilon / 10$. Thus by Assumption $2, g(u), g(v) \in \Sigma^{\epsilon^{\prime \prime}}$ for $\epsilon^{\prime \prime}=9 \epsilon /\left(10 L_{\Omega}\right)$. By Lemma 10 ,

$$
d_{\Omega}(u(x), v(x)) \geq \frac{\tilde{d}_{\Sigma}(g(u(x)), g(v(x)))}{4 L_{\Sigma}^{2} L_{\Omega}^{2} R_{\epsilon^{\prime}}\left(1+2 R_{\epsilon^{\prime}}\right)}
$$

Next we lower bound $\widetilde{d}_{\Sigma}(g(u), g(v))$. If $g(u)$ and $g(v)$ cannot see each other, then $\widetilde{d}_{\Sigma}(g(u), g(v)) \geq 8 \epsilon^{\prime \prime} / D_{\Sigma}$. Next we assume that $g(u)$ and $g(v)$ see each other. Because $g(u) \in \Sigma_{1}$ and $g(v) \in \Sigma_{2}$,

$$
d_{t v}\left(P_{g(u)}-P_{g(v)}\right) \geq 1-P_{g(u)}\left(S_{2}\right)-P_{g(v)}\left(S_{1}\right) \geq 1-2 \delta=1-\frac{\epsilon^{\prime \prime}}{8 e^{4} D_{\Sigma}}
$$

Lemma 12, applied to $g(u), g(v) \in \Sigma^{\epsilon^{\prime \prime}}$, gives us that

$$
d_{\Sigma}(g(u), g(v)) \geq \frac{\epsilon^{\prime \prime}}{24 D_{\Sigma}} \quad \text { or } \quad|g(u)-g(v)| \geq \frac{2}{\sqrt{n}} \min \left(\frac{2 F(g(u))}{\sqrt{n}}, G \epsilon^{\prime \prime}\right)
$$

By (6), $F(g(u)) \geq \epsilon^{\prime \prime} / 16$. We get the desired lower bound by taking a minimum over all cases.

