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A Proofs

Proof of Lemma 8. We continue the proof.
Case 1.2, |zg —d| > |z2 — b
Case 1.2.1, |c — x| < |zg — d|: We have that |xo —b| < |z1 — b| < Rc |x1 — ¢|. Thus,

A la—blfer — s
B 7 BRc|a— x1]|x1 — ¢

_ a—b .|d—x2|> |d — x5
Rela—x1| Je—d| — Rele—d|
S |d — x4
T Re(ld = mo| + w2 — 1| + |71 — )
S |d — z2]
T Re(ld = z2| + (1+ Re) |21 — ¢f)
1 1
= >
R (1+(1+R)ped) — R+ £
1

>
= 4R.(1+2R.)
Case 1.2.2, |c — z1| > |z2 — d|: As before, we bound A and B separately:

B< ¢ —d||z1 — 2]
lc — x| |z2 — b]

|x1 — x2| ’ |c — z1| + Re|c — z1] + |2 — d|

= |xo — b le — 21
|21 — @

<24 R)———

<@+ RO
and

A= b —al |z —za| _ |21 — 29|
la —z1||xe —b] = |we — 0]
Putting these together,
A 1 1

> > ,
B~ 2+ R. ~ 4R.(1+2R,)

where the second inequality holds because R.(1 + 8R,) > 2/3.

Case 2, |1 — b| > |21 — a| and |x2 — b| < |z2 —a|: In this case, 21 and x5 are on opposite sides of the point
(a+b)/2. Let M be a positive constant. We will choose M = 4 later.

Case 2.1, |c—d| < M |c—z1|: We bound

M|IL’1 7$2| < MRe |£171 7I2|

B <
|$2 — d‘ - ‘1‘2 — b|

and conclude

A S la — b S 1 1
B~ MR.|a—11] — MR. ~ 4R.(1+2R.) "
Case 2.2, [c —d| > M |c — xq]:
Case 2.2.1, [c—d| < M |a —b|: We have that
A 1 1
— > > .
B~ MR~ 4R.(1+2R.)

Case 2.2.2, |[c—d| > M |a — b|: Let z¢ be a point on the line segment [z, z2]. Let 51 be the angle between
line segments [¢, z1] and [z, z¢]. We write

e = zo|* = |21 — wol* + |21 — c|* — 2|21 — €] - |w1 — @ cos By
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(a) The geometry used in Lemma 11. (b) The geometry used in Lemma 11.

Figure 4: If two points are close to each other, they have similar views.

2I*d|+ I*d|+j|*d|

By the triangle inequality,
|d — 29| > |c—d| —|c— xo| > (1— ) le—d| .

Let B2 be the angle between line segments [d, z2] and [z2, o). Let w =1 —2/M. We write

w? e —d)* < |d—zo)?

|xo — 900|2 + |zg — d|2 —2|xe — d| - |x2 — 0| cos B2

IA

2
g le—dP + ez —df + 2 |d — za| e~ d] .
Thus,

4 3

2
7 Mz—l)\c—d| >0,

|x2—d| +f|d—x2| le—d| + (—

which is a quadratic inequality in |z9 — d|. Thus it holds that

|xo —d| > <+‘1D le—d| .

If we choose M = 4, then |z —d| > 0.25|c — d| and

B < 4|.T1 —$2| < 4RE |.T1 —.T2|

e —¢| — |x1 — al ’

yielding
A |a — b 1 1
Z>_2 0 > - > -
B T 4R |b—x2| — 4R. ~ 4R.(1+2R,)

Finally, observe that Case 3 follows by symmetry from Case 1.



Yasin Abbasi-Yadkori, Peter L. Bartlett, Victor Gabillon, Alan Malek

Proof of Lemma 11. We say a line segment L is not fully visible from a point x if there exists a point on the line
segment that is not visible from z. We denote this event by L ¢ VIEW(z). Let L be a line segment chosen by
HiT-AND-RUN from u. So, as the next point in the Markov chain, HIT-AND-RUN chooses a point uniformly at
random from L. We know that

P,({z:z ¢ viEw(v)}) < P,({L: L ¢ viEW(v)}),

So it suffices to show
K

P,({L: L ¢ viEw(v)}) < max (4 ) ¢ . (7)

7’ sin(w/8) ) €
To sample the line segment L, first we sample a random two dimensional plane containing w and v, and then
sample the line segment inside this plane. To prove (7), we show that in any two dimensional plane containing u

’
€

and v, the ratio of invisible to visible region is bounded by max (%, m) <.
Consider the geometry shown in Figure 4(a). Let H be the intersection of J¥ and a two dimensional plane
containing v and v. For a line ¢ and points ¢ and u, we write [g, ¢, u] to denote that u and a small neighborhood

of ¢ on H are on the opposite sides of ¢. For example, in Figure 4(a), we have that [z, ¢(v,z),u|. Define a subset
Q={qeH : £(v,q) is tangent to H at ¢ and [q, (v, q),u]} .

Any line ¢(v, q) such that [q, (v, q),u] creates some space that is visible to v and invisible to v. If @ is empty,
then the entire H is in the view of v and P,({z : x ¢ VIEW(v)}) = 0.Otherwise, let x be a member of Q. Let
y € H be the closest point to  such that [v,y] is tangent to H at x. Let a3 be the angle between [z, u] and [u, y],
and let ay be the angle between [y, v] and [y, u]. Because |u —v| < |v — 2| < |v — x|, a1 + az < 7/2. Further, if
the lengths of |u — v| and |v — x| are fixed, a; + a2 is maximized when [v,u] is orthogonal to [u,z]. If x is the
only member of ), then maximum invisible angle is a;, which can be bounded as follows:

. . lu—v| _ |Ju—v
sinay < sin(ag + ag) < <

= |u—2x| €

Otherwise, assume () has more members. The same upper bound holds for members that are also on the line
£(v,x). So next we consider members of @) that are not on the line £(v, ). Assume @ has only one such member
and let 2’ be that tangent point (see Figure 4(a). The same argument can be repeated if @) has more such
members). We consider two cases. Case 1: |v — 2’| > |v — y|. Let a3 be the angle between [v,2'] and [u, 2']. If
(0 %:3 S o, then

sin(ag + ag) <sin(ag + az) < v =] .
€

Otherwise, g > ag. Consider point z” such that the angle between [u,z'] and [u,z”] is a;. We show that
|v — 2| > |v — x| by contradiction. Assume |v —z| > |v — 2”|. Thus, |2’ —2"| > |y — z| and |u — x| > |u — 2"|.
By law of sines, |z —y|/sina; = |u— x| /sinag and |2 — 2’| /sinay = |u— "] /sinaz. Because |u — x| >
|u — 2”| and ag > g, we have that |u — x| /sin s > |u — 2| /sin ag, and thus |2 — 2’| /sinay < | — y| /sina;.
This implies |¢” — 2’| < |z — y|, a contradiction. Thus,

) lu — v lu—wv|  |u—o]
sin(ag + ag) <

lo—2"| — jlv—z| = €

Next we consider the second case. Case 2: |v — 2| < |v — y|. Consider the arc on H from y to z’. Let ¢’ be the
last point on this arc such that |[v — y'| = |[v — y|. Let n be the change of angle between the tangent of H at y’
and the tangent of H at 2’ (tangents are defined in clockwise direction), and let A be the angle between [v, 3]
and [v,2']. Angle 7 is minimized when the tangent at y’ is orthogonal to [v,y']. Thus n > 7/2 — A. If A < 7/4,
then 1 > m/4. Angle X is smallest when the arc from y’ to 2’ changes with maximum curvature x/Ry, i.e. it is a
segment of a circle with radius Ry /k. Figure 4(b) shows this case, where R = Ry /k and L = |v — ¢/|. We have

that
sin(\/2) < h/L R Ry

sin(n/2) = h/R L  wlv—yl
Thus,
sin(mw/8)Ry _ sin(w/8)

Ry
> sin(A/2) > —_gin(n/2) = > :
> (/)_K|U_y‘ (n/2) K=y = &

Mo | >
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where the last step follows by |v — y| < Ry. Thus

A > 20 % min (”m@r/&) ,
4 K

So for every |u — v| /e invisible region, we have at least A\ visible region. Thus,

. 0] (4, ) el
P,({z:x ¢ viEwW(v)}) < Thge e (W’ sin(ﬁ/S)) e

O

Before proving Lemma 12, we show a useful inequality. Consider points u, v, w € ¥ that see each other. Let C be
the convex hull of
{a(u,v),b(u,v), a(u,w),b(u, w),alv,w),b(v,w)} .

Let 7 and j be distinct members of {u,v,w}. We use d'(i,j) and V'(4,j) to denote the endpoints of £z (7, j) that
are closer to i and j, respectively. Because |a’(i,j) — b'(4, )| is convex combination of two line segments that are
inside X,

|a/(iaj)7b/(i7j)| < Ds. (8)
Also [a(é, ), b, 1)) C [a/(i, ),V (i, )], and thus a(i, j) — i| < |a(i,5) — i and [b(i, ) — j] < V' (i, ) — j]. We can
write

|a’ (i, §) =il - 17 = 0" (2, J)

< |’L_.7||a(27.])_b(7’7j)| |al(2aj)_b/(l7])|

‘gC(Zvj)

= lali,g) =il 17 =G )] ali, §) — b, 5)]
62(17.7)
d(i,0%) ©)

< Dy,
where the last inequality holds because |a(i,7) — b(4, )| > d(i, 0%).

Proof of Lemma 12. Let A C ¥ be a measurable subset of 3. We prove that

€
PuA*PvA Sl, .
(4) = Pu(4) < 1= g

We partition A into five subsets, and estimate the probability of each of them separately:
Ai={z€eA: |z —ul < Flu)},

Agz{xeA : |(x—u)T(u—v)’>\/lﬁ|x—u|-|u—v|},

Ag{xeA : |xfu|<%|ufa(u,x)\,

1
or |z —u| < 6|ua(x,u)|},

Ay={x e A:zeviEw(u), z ¢ VIEW(v)} ,
S=A\A1\ A\ A3\ As.

The definition of F(u) immediately yields P, (A1) < 1/8. Now consider A and let C' be the cap of the unit
sphere centered at u in the direction of v, defined by C' = {z : (u—v)T2 > ﬁ\u —v|}. If & ~ P,, then P(x € Ay)
is bounded above by the probability that a uniform random line through u intersects C, which has probability
equal to the ratio between the surface of C' and the surface of the half-sphere. A standard computation to show
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q9=q

>

Figure 5: Illustration for Lemma 12 proof

that this ratio is less than 1/6, and hence P, (A2) < 1/6. The probability that « € As is at most 1/6, since z is
chosen from a segment of a chord of length at most |¢(u,z)|/6. Finally, to bound P(A4), we apply Lemma 11:

!
P,(xe€e A: xzeVviEw(u), x ¢ VIEW(v)) < max (%, ﬁ) % < é .

The combined probability of Ay, Ay, As, and Ay is at most 1/8 +1/6+1/6+1/6 < 3/4.
We now turn to bounding P,(S) and show that P,(S) < 2e*(Ds/€)P,(S). Because points in S are visible from

both u and v, by (2)
2 1
P,(S) = / — -
Ny Js s (v, x) |z — |

Now, any = € S must respect the following

ol > Plu) > Y ju o] (10)
[z —w) T (u—v)| < %|x—u|-|u—v| , (11)
o —ul > % lu— a(u, )|, and (12)
o~ > ¢ Ju— a(a,w)] (13)

As illustrated in Figure 5, we define the points y = a(u,v), z = a(v,u), p = a(u,x), ¢ = a(z,u), i = a(v,z) and
j = a(z,v) with convex hull C. Also let p’ and ¢’ be the endpoints of {¢(u,x). If p’ = p and ¢’ = q, we proceed
with the argument in the proof of Lemma 9 of Lovdsz (1999) to get the desired result. Otherwise, assume ¢’ = ¢
and p’ is the intersection of the lines £(u, p) and £(y,). (See Figure 5. A similar argument holds when ¢ # ¢.)
From (12) and (13), we get that

1
2z —u| > = |p—q| .
@ —ul > = lp—dl
We have that |p — q| > €, and by (8), [p’ — ¢’'| < Dx. Thus |p’ — ¢'| < (Dx/¢) |p — q|. Thus,

1 2Ds,
glp'—q'ISTlx—UI : (14)
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To relate P,(S) to P,(S), we need to bound |z — v| and ¢(z,v) in terms of |z — u| and ¢(z, u):

lz—of> =]z —ul®+ Ju—v]* +2(x —u) " (u—2)

2
§\m—u|2+|u—v|2+ﬁ|x—u|~|u—v| ...By (11)
2 4 2 4 2
<le—wul"+—|z—ul"+ — |z —u ... By (10)
n n
8
:(1+>|x—u|2.
n
Thus,
4
e —v| < |1+ —||z—ul. (15)
n

First we use convexity of C to bound ¢¢(z,v) in terms of f¢(x,u), and then we use (9) to bound /5 (z,v) and
lx(z,u) in terms of £¢(x,v) and £e(z,u). By Menelaus’ Theorem (wrt triangle uvz and transversal line [y, 4]),

[z —i] _Ju—yl [z=p]
lv—il |v—yl [|u—p|
We have that
Ju =yl = v =l >1—de(u,v),
lv—yl v —y|
and thus
lv —v| |z —i
|v — 1 o |v — i

i

> (1 - de(u,v)) 272

lu—p'|

T —u z—p
- prp (1 e =)
>xu|0dduvwf¢0

lu—p'| T e —u
- |z — ul <1_ 12Dge)

|u — p'| 24Dse

1|z — ul

2fu—p/|’

where we have used (14) and de(u,v) = dn(u,v) < €/(24Dyx) (the condition in the statement of the lemma); we
conclude that

|z — vl
|u —p
ul

o=l <2 / (16)

Next we prove a similar inequality for |[v — j|. It is easy to check that

|z = vl =1- fu = ol >1—de(u,v),
lu — z| |u— 2|

and combining with Menelaus’ Theorem

il _l¢—ul |z—dl
w=il  fo—q| Ju=—2

we can show

A S el

- = ——1
lz—j| |z —jl
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lq" — ul
1—de(u,v —
(1= de(w, ) — -
@ — ¢ — ul
—d,
wg] \ ) Ty
|z — ul 1_d(w>lp’—tz’|
¢ O =l

2|z —q'|’
where we have used (14) and d¢(u,v) = dg(u,v) < €/(24Dyx). Thus,
|z — v

x — u|

|z—v]

and combining this with the trivial observation that |z — v| < 2 ol

| — u| , and Equation 16 yields

lo(z,v) =|v—i|+ |v—2z|+ |z — ] SQ‘x_Mﬁc(Jc,u).

|z — ul
Thus,

Uy (z,v) = le(z,v)

|z — v
<2
< |a:—u|€c($’u)
2Dy |x — v|
. 1
22 () (")

Where the last step holds by (9). Now we are ready to lower bound P,(S) in terms of P,(S).
2 dx

P,(S) =
»(5) Ny Js s (z,v) v — "
|z — u| dx
> .. By (17
_mran s Is(z,u) o —v|" y (17)
dx
> 14+ = / ...By (15
anDZ < n) s sz, u) |z —ul* y (15)
€
> ——P .
~ 2e4Dy, u(S)

Finally,

%D P,(5)

< Pul) - i (P - 3)

3e €
- 864D2 + (1 B 264D2> Pu(A)

(@) 3¢ 4e
<

1—
~ 8eiDy + 8et Dy,
€

 8eiDy

In the step (a), we used the fact that Dy, > € and P,(A4) < 1. O
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Proof of Lemma 13. Let {S1,S2} be a partitioning of X. Define
Yy ={z €8 : P.(S)<d},
Yo={zx €Sy : P(S1) <4},
Sy =2\ 5\ 5,

Case 1: vOL(X1) < vOL(S7)/2. We have that

Pu(So)dz > / Pu(S)dz > SvoL(S1 \ 31) > Svor(Sy) .
51 S1\S 2
Thus,

1

min{VvOL(S1), VOL(S2)} /s,

| >

Case 2: VOL(X;) > VOL(S1)/2 and VOL(X3) > VOL(S3)/2. Similar to the argument in the previous case,

Pw(SQ) > 6VOL(51 \ 21) s
S1
and

/ PJ;(SQ) = / PI(Sl) > (5VOL(52 \ 22) .
S1 Sa
Thus,
/ Px(Sg) > gVOL(E \ D] \ 22) = gVOL(Zg) .
S1
Let Q; = g~ 1(%;) for i = 1,2,3. Define

(u(z),v(x)) = argmin da(u,v), h(z) = (1/3) min(1, do(u(x),v(z))) .
u€Q,vEN2,{u,v,x} are collinear
By definition, h(x) satisfies condition of Theorem 7. Let € = 5~ and notice that VOL(Q2¢) > vOL(£2)/2. We have
that

(o9

P,(S2) > = voL(Q3)

[\

S1

Y

Eq(h(z)) min(voL(£), vOL(£22))

NS YR
=
2

(h(x)) min(voL(X1), VOL(Xs)) .

Let x € Q°. We consider two cases. In the first case, |u(xz) — v(x)| > €/10. Thus,

4 2

do(u(z),v(@)) 2 5 |u(@) —v(@)] 2 =5 -

In the second case, |u(z) — v(z)| < €/10, then |u(z) — z| < €/10 and |v(z) — x| < €/10. Thus, u,v € Q° for
¢’ = 9¢/10. Thus by Assumption 2, g(u), g(v) € £¢ for €’ = 9¢/(10Lg). By Lemma 10,

dss(g(u(x)), g(v()))
do(u(w),v()) 2 Tr Ty Ry

Next we lower bound ds(g(u), g(v)). If g(u) and g(v) cannot see each other, then ds(g(u), g(v)) > 8¢’ /Ds. Next
we assume that g(u) and g(v) see each other. Because g(u) € ¥; and g(v) € 2o,

6//

dio(Py(u) = Pyw) 2 1 = Py(u)(52) = Pyo)(S1) 21 =26 =1~

8€4DZ ’
Lemma 12, applied to g(u), g(v) € £¢", gives us that
" 2 2F
(o) o) = 5o or ot = gl > Jomin (2 ger)

By (6), F(g(u)) > €’/16. We get the desired lower bound by taking a minimum over all cases. O



