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A Proofs

Proof of Lemma 8. We continue the proof.
Case 1.2, |x
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Case 1.2.2, |c� x
1
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� d|: As before, we bound A and B separately:
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Putting these together,
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where the second inequality holds because R
✏
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✏

) � 2/3.
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� a|: In this case, x
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and x
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are on opposite sides of the point
(a+ b)/2. Let M be a positive constant. We will choose M = 4 later.
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Case 2.2, |c� d| > M |c� x
1

|:
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Case 2.2.2, |c� d| > M |a� b|: Let x
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(a) The geometry used in Lemma 11.
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(b) The geometry used in Lemma 11.

Figure 4: If two points are close to each other, they have similar views.
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By the triangle inequality,
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] and [x
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which is a quadratic inequality in |x
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If we choose M = 4, then |x
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Finally, observe that Case 3 follows by symmetry from Case 1.
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Proof of Lemma 11. We say a line segment L is not fully visible from a point x if there exists a point on the line
segment that is not visible from x. We denote this event by L /2 view(x). Let L be a line segment chosen by
Hit-and-Run from u. So, as the next point in the Markov chain, Hit-and-Run chooses a point uniformly at
random from L. We know that

P
u

({x : x /2 view(v)})  P
u

({L : L /2 view(v)}) ,
So it su�ces to show
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✏
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To sample the line segment L, first we sample a random two dimensional plane containing u and v, and then
sample the line segment inside this plane. To prove (7), we show that in any two dimensional plane containing u

and v, the ratio of invisible to visible region is bounded by max
⇣
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⇡

, 
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⌘
✏

0
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.

Consider the geometry shown in Figure 4(a). Let H be the intersection of @⌃ and a two dimensional plane
containing u and v. For a line ` and points q and u, we write [q, `, u] to denote that u and a small neighborhood
of q on H are on the opposite sides of `. For example, in Figure 4(a), we have that [x, `(v, x), u]. Define a subset

Q = {q 2 H : `(v, q) is tangent to H at q and [q, `(v, q), u]} .

Any line `(v, q) such that [q, `(v, q), u] creates some space that is visible to u and invisible to v. If Q is empty,
then the entire H is in the view of v and P

u

({x : x /2 view(v)}) = 0.Otherwise, let x be a member of Q. Let
y 2 H be the closest point to x such that [v, y] is tangent to H at x. Let ↵
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.

Otherwise, assume Q has more members. The same upper bound holds for members that are also on the line
`(v, x). So next we consider members of Q that are not on the line `(v, x). Assume Q has only one such member
and let x0 be that tangent point (see Figure 4(a). The same argument can be repeated if Q has more such
members). We consider two cases. Case 1: |v � x0| � |v � y|. Let ↵
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be the angle between [v, x0] and [u, x0]. If
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This implies |x00 � x0| < |x� y|, a contradiction. Thus,
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Next we consider the second case. Case 2: |v � x0| < |v � y|. Consider the arc on H from y to x0. Let y0 be the
last point on this arc such that |v � y0| = |v � y|. Let ⌘ be the change of angle between the tangent of H at y0

and the tangent of H at x0 (tangents are defined in clockwise direction), and let � be the angle between [v, y0]
and [v, x0]. Angle ⌘ is minimized when the tangent at y0 is orthogonal to [v, y0]. Thus ⌘ � ⇡/2� �. If � < ⇡/4,
then ⌘ � ⇡/4. Angle � is smallest when the arc from y0 to x0 changes with maximum curvature /RH, i.e. it is a
segment of a circle with radius RH/. Figure 4(b) shows this case, where R = RH/ and L = |v � y0|. We have
that
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
,
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where the last step follows by |v � y|  RH. Thus

� � �
0

def
= min

✓
⇡

4
,
sin(⇡/8)



◆
.

So for every |u� v| /✏ invisible region, we have at least �
0

visible region. Thus,

P
u

({x : x /2 view(v)})  |u� v|
�
0

✏
= max

✓
4

⇡
,



sin(⇡/8)

◆ |u� v|
✏

.

Before proving Lemma 12, we show a useful inequality. Consider points u, v, w 2 ⌃ that see each other. Let C be
the convex hull of

{a(u, v), b(u, v), a(u,w), b(u,w), a(v, w), b(v, w)} .

Let i and j be distinct members of {u, v, w}. We use a0(i, j) and b0(i, j) to denote the endpoints of `C(i, j) that
are closer to i and j, respectively. Because |a0(i, j)� b0(i, j)| is convex combination of two line segments that are
inside ⌃,

|a0(i, j)� b0(i, j)|  D
⌃

. (8)

Also [a(i, j), b(i, j)] ⇢ [a0(i, j), b0(i, j)], and thus |a(i, j)� i|  |a0(i, j)� i| and |b(i, j)� j|  |b0(i, j)� j|. We can
write

`C(i, j) =
|i� j| · |a0(i, j)� b0(i, j)|
|a0(i, j)� i| · |j � b0(i, j)|

 |i� j| · |a(i, j)� b(i, j)|
|a(i, j)� i| · |j � b(i, j)| ·

|a0(i, j)� b0(i, j)|
|a(i, j)� b(i, j)|

 D
⌃

`
⌃

(i, j)

d(i, @⌃)
, (9)

where the last inequality holds because |a(i, j)� b(i, j)| � d(i, @⌃).

Proof of Lemma 12. Let A ⇢ ⌃ be a measurable subset of ⌃. We prove that

P
u

(A)� P
v

(A)  1� ✏

8e4D
⌃

.

We partition A into five subsets, and estimate the probability of each of them separately:

A
1

= {x 2 A : |x� u| < F (u)} ,

A
2

=

⇢
x 2 A :

��(x� u)>(u� v)
�� > 1p

n
|x� u| · |u� v|

�
,

A
3

=

(
x 2 A : |x� u| < 1

6
|u� a(u, x)| ,

or |x� u| < 1

6
|u� a(x, u)|

)
,

A
4

= {x 2 A : x 2 view(u), x /2 view(v)} ,

S = A \A
1

\A
2

\A
3

\A
4

.

The definition of F (u) immediately yields P
u

(A
1

)  1/8. Now consider A
2

and let C be the cap of the unit
sphere centered at u in the direction of v, defined by C = {x : (u� v)>x � 1p

n

|u� v|}. If x ⇠ P
u

, then P (x 2 A
2

)

is bounded above by the probability that a uniform random line through u intersects C, which has probability
equal to the ratio between the surface of C and the surface of the half-sphere. A standard computation to show
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Figure 5: Illustration for Lemma 12 proof

that this ratio is less than 1/6, and hence P
u

(A
2

)  1/6. The probability that x 2 A
3

is at most 1/6, since x is
chosen from a segment of a chord of length at most |`(u, x)|/6. Finally, to bound P (A

4

), we apply Lemma 11:

P
u

(x 2 A : x 2 view(u), x /2 view(v))  max

✓
4

⇡
,



sin(⇡/8)

◆
✏0

✏
 1

6
.

The combined probability of A
1

, A
2

, A
3

, and A
4

is at most 1/8 + 1/6 + 1/6 + 1/6 < 3/4.

We now turn to bounding P
u

(S) and show that P
u

(S)  2e4(D
⌃

/✏)P
v

(S). Because points in S are visible from
both u and v, by (2)

P
v

(S) =
2

n⇡
n

Z

S

1

`
⌃

(v, x) |x� v|n�1

.

Now, any x 2 S must respect the following

|x� u| � F (u) �
p
n

2
|u� v| , (10)

��(x� u)>(u� v)
��  1p

n
|x� u| · |u� v| , (11)

|x� u| � 1

6
|u� a(u, x)| , and (12)

|x� u| � 1

6
|u� a(x, u)| . (13)

As illustrated in Figure 5, we define the points y = a(u, v), z = a(v, u), p = a(u, x), q = a(x, u), i = a(v, x) and
j = a(x, v) with convex hull C. Also let p0 and q0 be the endpoints of `C(u, x). If p0 = p and q0 = q, we proceed
with the argument in the proof of Lemma 9 of Lovász (1999) to get the desired result. Otherwise, assume q0 = q
and p0 is the intersection of the lines `(u, p) and `(y, i). (See Figure 5. A similar argument holds when q 6= q0.)
From (12) and (13), we get that

2 |x� u| > 1

6
|p� q| .

We have that |p� q| � ✏, and by (8), |p0 � q0|  D
⌃

. Thus |p0 � q0|  (D
⌃

/✏) |p� q|. Thus,
1

6
|p0 � q0|  2D

⌃

✏
|x� u| . (14)
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To relate P
v

(S) to P
u

(S), we need to bound |x� v| and `(x, v) in terms of |x� u| and `(x, u):

|x� v|2 = |x� u|2 + |u� v|2 + 2(x� u)>(u� v)

 |x� u|2 + |u� v|2 + 2p
n
|x� u| · |u� v| . . . By (11)

 |x� u|2 + 4

n
|x� u|2 + 4

n
|x� u|2 . . . By (10)

=

✓
1 +

8

n

◆
|x� u|2 .

Thus,

|x� v| 
✓
1 +

4

n

◆
|x� u| . (15)

First we use convexity of C to bound `C(x, v) in terms of `C(x, u), and then we use (9) to bound `
⌃

(x, v) and
`
⌃

(x, u) in terms of `C(x, v) and `C(x, u). By Menelaus’ Theorem (wrt triangle uvx and transversal line [y, i]),

|x� i|
|v � i| =

|u� y|
|v � y| ·

|x� p0|
|u� p0| .

We have that |u� y|
|v � y| = 1� |v � u|

|v � y| > 1� dC(u, v) ,

and thus

|x� v|
|v � i| =

|x� i|
|v � i| � 1

� (1� dC(u, v))
|x� p0|
|u� p0| � 1

=
|x� u|
|u� p0|

✓
1� dC(u, v)

|x� p0|
|x� u|

◆

>
|x� u|
|u� p0|

✓
1� dC(u, v)

|p0 � q0|
|x� u|

◆

>
|x� u|
|u� p0|

✓
1� 12D

⌃

✏

24D
⌃

✏

◆

>
1

2

|x� u|
|u� p0| ,

where we have used (14) and dC(u, v) = d
⌃

(u, v) < ✏/(24D
⌃

) (the condition in the statement of the lemma); we
conclude that

|v � i| < 2
|x� v|
|x� u| |u� p0| . (16)

Next we prove a similar inequality for |v � j|. It is easy to check that

|z � v|
|u� z| = 1� |u� v|

|u� z| > 1� dC(u, v) ,

and combining with Menelaus’ Theorem

|v � j|
|x� j| =

|q0 � u|
|x� q0| ·

|z � v|
|u� z|

we can show

|x� v|
|x� j| =

|v � j|
|x� j| � 1
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� (1� dC(u, v))
|q0 � u|
|x� q0| � 1

=
|x� u|
|x� q0|

✓
1� dC(u, v)

|q0 � u|
|x� u|

◆

>
|x� u|
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|x� u|

◆
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|x� q0|

✓
1� 12D

⌃

✏

24D
⌃

✏

◆

>
1

2

|x� u|
|x� q0| ,

where we have used (14) and dC(u, v) = d
⌃

(u, v) < ✏/(24D
⌃

). Thus,

|x� j| < 2
|x� v|
|x� u| |x� q0| ,

and combining this with the trivial observation that |x� v|  2 |x�v|
|x�u| |x� u| , and Equation 16 yields

`C(x, v) = |v � i|+ |v � x|+ |x� j|  2
|x� v|
|x� u|`C(x, u) .

Thus,

`
⌃

(x, v) = `C(x, v)

 2
|x� v|
|x� u|`C(x, u)

 2D
⌃

✏

|x� v|
|x� u|`⌃(x, u) . (17)

Where the last step holds by (9). Now we are ready to lower bound P
v

(S) in terms of P
u

(S).

P
v

(S) =
2

n⇡
n

Z

S

dx

`
⌃

(x, v) |x� v|n�1

� ✏

n⇡
n

D
⌃

Z

S

|x� u| dx
`
⌃

(x, u) |x� v|n . . . By (17)

� ✏

n⇡
n

D
⌃

✓
1 +

4

n

◆�n

Z

S

dx

`
⌃

(x, u) |x� u|n�1

. . . By (15)

� ✏

2e4D
⌃

P
u

(S) .

Finally,

P
u

(A)� P
v

(A)  P
u

(A)� P
v

(S)

 P
u

(A)� ✏

2e4D
⌃

P
u

(S)

 P
u

(A)� ✏

2e4D
⌃

✓
P
u

(A)� 3

4

◆

=
3✏

8e4D
⌃

+

✓
1� ✏

2e4D
⌃

◆
P
u

(A)

(a)

 3✏

8e4D
⌃

+ 1� 4✏

8e4D
⌃

= 1� ✏

8e4D
⌃

.

In the step (a), we used the fact that D
⌃

� ✏ and P
u

(A)  1.
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Proof of Lemma 13. Let {S
1

, S
2

} be a partitioning of ⌃. Define

⌃
1

= {x 2 S
1

: P
x

(S
2

)  �} ,

⌃
2

= {x 2 S
2

: P
x

(S
1

)  �} ,

⌃
3
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Next we lower bound ed
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Lemma 12, applied to g(u), g(v) 2 ⌃✏

00
, gives us that

d
⌃

(g(u), g(v)) � ✏00

24D
⌃

or |g(u)� g(v)| � 2p
n
min

✓
2F (g(u))p

n
,G✏00

◆
.

By (6), F (g(u)) � ✏00/16. We get the desired lower bound by taking a minimum over all cases.


