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Abstract

We propose the Hit-and-Run algorithm
for planning and sampling problems in non-
convex spaces. For sampling, we show the
first analysis of the Hit-and-Run algorithm
in non-convex spaces and show that it mixes
fast as long as certain smoothness conditions
are satisfied. In particular, our analysis re-
veals an intriguing connection between fast
mixing and the existence of smooth measure-
preserving mappings from a convex space
to the non-convex space. For planning, we
show advantages of Hit-and-Run compared
to state-of-the-art planning methods such as
Rapidly-Exploring Random Trees.

1 Introduction

Rapidly-Exploring Random Trees (RRT) (LaValle,
1998, LaValle and Ku↵ner, 2001) is one of the most pop-
ular planning algorithms, especially when the search
space is high-dimensional and finding the optimal path
is computationally expensive. RRT performs well on
many problems where classical dynamic programming
based algorithms, such as A*, perform poorly. RRT is
essentially an exploration algorithm, and in the most
basic implementation, the algorithm even ignores the
goal information, which seems to be a major reason
for its success. Planning problems, especially those
in robotics, often feature narrow pathways connecting
large explorable regions; combined with high dimen-
sionality, this means that finding the optimal path is
usually intractable. However, RRT often provides a
feasible path quickly.

Although many attempts have been made to improve
the basic algorithm (Abbasi-Yadkori et al., 2010, Kara-
man and Frazzoli, 2011), RRT has proven di�cult
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to improve upon. In fact, given extra computation,
repeatedly running RRT often produces competitive
solutions. In this paper, we show that a simple alter-
native greatly improves upon RRT. We propose using
the Hit-and-Run algorithm for feasible path search.
Arguably simpler than RRT, the Hit-and-Run is a
rapidly mixing MCMC sampling algorithm for pro-
ducing a point uniformly at random from a convex
space (Smith, 1984). Not only Hit-and-Run finds a
feasible path faster than RRT, it is also more robust
with respect to the geometry of the space.

Before giving more details, we define the planning
and sampling problems that we consider. Let ⌃ be
a bounded connected subset of Rn. For points a, b 2 ⌃,
we use [a, b] to denote their (one-dimensional) convex
hull. Given a starting point a

1

and a goal region G ⇢ ⌃,
the planning problem is to find a sequence of points
{a

1

, a
2

, . . . , a
⌧

} for ⌧ � 1 such that all points are in ⌃,
a
⌧

is in G, and for t = 2, . . . , ⌧ , [a
t�1

, a
t

] ⇢ ⌃.

The sampling problem is to generate points uniformly at
random from ⌃. Sampling is often di�cult, but Markov
Chain Monte Carlo (MCMC) algorithms have seen em-
pirical and theoretical success (Lovász and Vempala,
2007). MCMC algorithms, such as Hit-and-Run and
Ball-Walk (Vempala, 2005), sample a Markov Chain
on ⌃ that has a stationary distribution equal to the
uniform distribution on ⌃; then, if we run the Markov
Chain long enough, the marginal distribution of the
sample is guaranteed to come from a distribution ex-
ponentially close to the target distribution. Solving
the sampling problem yields a solution to the planning
problem; one can generate samples and terminate when
a
t

hits G.
Let us define Hit-and-Run and the RRT algorithms
(see also Figure 1 for an illustration). Hit-and-Run de-
fines a Markov chain on ⌃ where the transition dynam-
ics are as follows. A direction is chosen uniformly
at random, and a

t+1

is chosen uniformly from the
largest chord contained in ⌃ in this direction passing
through a

t

. This Markov Chain has a uniform station-
ary distribution on ⌃ (Smith, 1984). As a planning
algorithm, this chain continues until it hits the goal
region. Let ⌧ be the stopping time. The solution path
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Figure 1: RRT (top) and Hit-and-Run (bottom)

is {a
1

, a
2

, . . . , a
⌧

}.
On the other hand, the RRT algorithm iteratively
builds a tree T with a

1

as a root and nodes labeled as
an 2 ⌃ and edges {am, an} that satisfy [am, an] ✓ ⌃.
To add a point to the tree, ar is uniformly sampled
from ⌃ and its nearest neighbor an 2 T is computed. If
[an, ar] ⇢ ⌃, then node ar and edge [an, ar] are added
to T . Otherwise, we search for the point ae 2 [an, ar]
farthest from an such that [an, ae] ✓ ⌃. Then ae

and [an, ae] are added to the tree. This process is
continued until we add an edge terminating in G and
the sequence of points on that branch is returned as the
solution path. In the presence of dynamic constraints,
a di↵erent version of RRT that makes only small local
steps is used. These versions will be discussed in the
experiments section.

There are two main contributions on this paper. First,
we analyze the Hit-and-Run algorithm in a non-
convex space and show that the mixing time is poly-
nomial in dimensionality as long as certain smooth-
ness conditions are satisfied. The mixing time of
Hit-and-Run for convex spaces is known to be poly-
nomial (Lovász, 1999). However, to accommodate
planning problems, we focus on non-convex spaces.
Our analysis reveals an intriguing connection between
fast mixing and the existence of smooth measure-
preserving mappings. The only existing analysis of
random walk algorithms in non-convex spaces is due
to Chandrasekaran et al. (2010) who analyzed Ball-

Walk in star-shaped bodies.1 We show that the mixing
time of Hit-and-Run is O(n6) in a class of nonconvex
spaces. It is possible that the n6 rate could be im-
proved: the analogous best result for Hit-and-Run on
a convex set is n2. However, the n2 complexity in the
convex case required decades of refinement. Second,
we propose Hit-and-Run for planning problems as an
alternative to RRT and show that it finds a feasible
path quickly. From the mixing rate, we obtain a bound
on the expected length of the solution path in the plan-
ning problem: If the mixing time is m, diameter of
the space is D

⌃

, and the volume of the goal space is
v, then, roughly, this expected length is O(mD

⌃

/v).
Although this might not be tight, this is much stronger
than the available theory for RRT (that show only that
a path is found in the limit).

The current proof techniques in the analysis of Hit-
and-Run heavily rely on the convexity of the space.
It turns out that non-convexity is specially troubling
when points are close to the boundary. We overcome
these di�culties as follows. First, Lovász and Vempala
(2006) show a tight isoperimetic inequality in terms of
average distances instead of minimum distances. This
enables us to ignore points that are su�ciently close to
the boundary. Next we show that as long as points are
su�ciently far from the boundary, the cross-ratio dis-
tances in the convex and non-convex spaces are closely
related. Finally we show that, given a curvature as-
sumption, if two points are close geometrically and are
su�ciently far from the boundary, then their proposal
distributions must be close as well.

Hit-and-Run has a number of advantages compared
to RRT; it does not require random points sampled
from the space (which is itself a hard problem), and
it is guaranteed to reach the goal region with high
probability in a polynomial number of rounds. In
contrast, there are cases where RRT growth can be
very slow. For example, consider a spiral shaped space.
RRT can be slow in this space because in many rounds
the tree does not grow in the right direction. As Hit-
and-Run only considers the space that is visible to
the current point, it is less sensitive to the geometry of
the free space. We can make this problem arbitrarily
hard for RRT by making certain parts of the spiral
fatter. Hit-and-Run, on the other hand, is insensitive
to such changes. Additionally, the growth of the RRT
tree can become very slow towards the end. This is
because the rest of the tree absorbs most samples, and
the tree grows only if the random point falls in the
vicinity of the goal. (see the experiments sections for
more details). Moreover, Hit-and-Run provides safer
solutions, as its paths are more likely to stay away

1
We say S is star-shaped if the kernel of S, define by

KS = {x 2 S : 8y 2 S [x, y] ⇢ S}, is nonempty.
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from the boundary. In contrast, a common issue with
RRT solutions is that they tend to be close to the
boundary. Because of this, further post-processing
steps are needed to smooth the path.

1.1 Notation

For a set K, we will denote the n-dimensional vol-
ume by vol(K), the (n� 1)-dimensional surface vol-
ume by S

K

= vol
n�1

(@K), and the boundary by
@K. The diameter of K is D

K

= max
x,x

02K

|x� x0|,
where |·| will be used for absolute value and Euclidean
norm, and the distance between sets K

1

and K
2

is de-
fined as d(K

1

,K
2

) = min
x2K1,y2K2 |x� y|. Similarly,

d(x,K) = d({x},K). For a set K, we use K✏ to denote
{x 2 K : d(x, @K) � ✏}. Finally, for distributions P
and Q, we use d

tv

(P,Q) to denote the total variation
distance between P and Q.

We will also need some geometric quantities. We will
denote lines (i.e., 1-dimensional a�ne spaces) by `. For
x, y 2 K, we denote their convex hull, that is, the line
segment between them, by [x, y] and `(x, y) the line
that passes through x and y (which contains [x, y]).
We also write [x

1

, . . . , x
k

] to denote that x
1

, . . . , x
k

are
collinear.

We also use `
K

(x, y) to denote the longest connected
chord through x 2 K and y 2 K contained in K
and |`

K

(x, y)| its length. We use a(x, y) and b(x, y) to
denote the endpoints of `

K

(x, y) that are closer to x and
y, respectively, so that `

K

(x, y) = [a(x, y), b(x, y)] =
[b(y, x), a(y, x)]. The Euclidean ball of unit radius
centered at the origin, B

n

(0, 1) ⇢ Rn, has volume ⇡
n

.
We use x

1:m

to denote the sequence x
1

, . . . , x
m

. Finally
we use a ^ b to denote min(a, b).

2 Sampling from Non-Convex Spaces

Most of the known results for the sampling times of
the Hit-and-Run exist for convex sets only. We will
think of ⌃ as the image of some convex set ⌦ under a
measure preserving, bilipschitz function g. The goal is
to understand the relevant geometric quantities of ⌃
through properties of g and geometric properties of ⌦.
We emphasize that the existence of the map g and its
properties are necessary for the analysis, but the actual
algorithm does not need to know g. We formalize this
assumption below as well as describe how we interact
with ⌃ and present a few more technical assumptions
required for our analysis. We then present our main
result, and follow that with some conductance results
before moving on to the proof of the theorem in the
next section.

Assumption 1 (Oracle Access). Given a point u and a
line ` that passes through u, the oracle returns whether

u 2 ⌃, and, if so, the largest connected interval in `\⌃
containing u.

The complexity of computing the longest chord in an
arbitrary nonconvex space depends on the specific prob-
lem. For example, if an agent controls a robot and the
robot has some distance sensors, then the complexity
is low. On the other hand, if we want to estimate the
length by probing the space and there is a thin wall,
this operation can be expensive.

Assumption 2 (Bilipschitz Measure-Preserving Em-
beddings). There exist a convex set ⌦ ⇢ Rn and a
bilipschitz, measure-preserving map g such that ⌃ is
the image of ⌦ under g. That is, there exists a function
g with |D

g

(x)| = 1 (i.e. the Jacobian has unit deter-
minant) with constants L

⌃

and L
⌦

such that, for any
x, y 2 ⌦,

1

L
⌦

|x� y|  |g(x)� g(y)|  L
⌃

|x� y| .

In words, g is measure-preserving, g is L
⌃

-Lipschitz,
and g�1 is L

⌦

-Lipschitz.

As an example, Fonseca and Parry (1992) shows that
for any star-shaped space, a smooth measure-preserving
embedding exists. Also the spiral shaped spaces that
we use in our experiments satisfy this assumption. The
basic intuition is that we need to disallow sets with
very narrow bridges connecting large masses (e.g. a
dumbbell) and very deep corners; there are examples of
both sets which can be made to mix arbitrarily slowly.

One interesting consequence of Assumption 2 is that
because the mapping is measure-preserving, there
must exist a pair x, y 2 ⌦ such that |g(x)� g(y)| �
|x� y|. Otherwise,

R
⌦

g  1, a contradiction. Sim-
ilarly, there must exist a pair u, v 2 ⌃ such that��g�1(u)� g�1(v)

�� � |u� v|. Thus,
L
⌦

, L
⌃

� 1 . (1)

To simplify the analysis, we will assume that ⌦ is a
ball with radius r. In what follows, we use x, y, z to
denote points in ⌦, and u, v, w to denote points in ⌃.
We will also assume that ⌃ has no sharp corners and
has a smooth boundary:

Assumption 3 (Low Curvature). For any two dimen-
sional plane H ⇢ Rn, let H be the curvature of @⌃\H
and RH be the perimeter of @⌃\H. We assume that ⌃
has low curvature, i.e. that  = supH HRH is finite.

We require this assumption to show that if two
points are close geometrically, then their proposal
distributions must be close as well. Assumption 2
does not imply low curvature, as there exist smooth
measure-preserving mappings from the unit ball to a
cube (Griepentrog et al., 2008).
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Assumption 4. We assume that the volume of ⌃ is
equal to one. We also assume that ⌃ contains a Eu-
clidean ball of radius one.

Note that the unit ball has volume less than 1 for
n > 12, so for small dimensional problems, we will
need to relax this assumption.

We motivate the forthcoming technical machinery by
demonstrating what it can accomplish. The following
theorem is the main result of the paper, and the proof
makes up most of Section 3.

Theorem 5. Consider the Hit-and-Run algorithm.
Let �

0

be the distribution of the initial point given to
Hit-and-Run, �

t

be the distribution after t steps of
Hit-and-Run, and � be the stationary distribution
(which is uniform). Let M = sup

A

�
0

(A)/�(A). Let ✏
be a positive scalar. After

t � C 0n6 log
M

✏

steps, we have d
tv

(�
t

,�)  ✏. Here C 0 is a low order
polynomial of L

⌦

, L
⌃

,.

3 Analysis

This section proves Theorem 5. We begin by stating
a number of useful geometrical results, which allow us
to prove the two main components: an isoperimetric
inequality in Section 3.2 and a total variation inequal-
ity in Section 3.3. We then combine everything in
Appendix 3.4.

3.1 Fast Mixing Markov Chains

We rely on the notion of conductance as our main
technical tool. This section recalls the relevant results.

We say that points u, v 2 ⌃ see each other if [u, v] ✓ ⌃.
We use view(u) to denote all points in ⌃ visible from
u. Let `

⌃

(u, v) denote the chord through u and v
inside ⌃ and |`

⌃

(u, v)| its length. Let P
u

(A) be the
probability of being in set A ⇢ ⌃ after one step of
Hit-and-Run from u and f

u

its density function. By
an argument similar to the argument in Lemma 3 of
Lovász (1999), we can show that

f
u

(v) = 2
1 {v 2 view(u)}

n⇡
n

|`
⌃

(u, v)| · |u� v|n�1

. (2)

The conductance of the Markov process is defined as

� = inf
A⇢⌃

R
A

P
u

(⌃ \A)du

min(vol(A),vol(⌃ \A))
.

We begin with a useful conductance result that applies
to general Markov Chains.

Lemma 6 (Corollary 1.5 of Lovász and Simonovits
(1993)). Let M = sup

A

�
0

(A)/�(A). Then for every
A ⇢ ⌃,

|�
t

(A)� �(A)| 
p
M

✓
1� �2

2

◆
t

.

Proving a lower bound on the conductance is therefore
a key step in the mixing time analysis. Previous litera-
ture has shown such lower bounds for convex spaces.
Our objective in the following is to obtain such bounds
for more general non-convex spaces that satisfy bilip-
schtiz measure-preserving embedding and low curvature
assumptions.

As in previous literature, we shall find that the follow-
ing cross-ratio distance is very useful in deriving an
isoperimetric inequality and a total variation inequality.

Definition 1. Let [a, u, v, b] be collinear and inside ⌃,
such that a, b 2 @⌃. Define

d
⌃

(u, v) =
|a� b| |u� v|
|a� u| |v � b| .

It is easy to see that d
⌃

(u, v) � 4 |u� v| /D
⌃

. We
define the following distance measure for non-convex
spaces.

Definition 2. A set ⌃ will be called ⌧ -best if, for
any u, v 2 ⌃, there exist points z

1

, . . . , z
⌧�1

such that
[u, z

1

], [z
⌧�1

, v], and [z
i

, z
i+1

] for i = 1, . . . , ⌧ � 2 are
all in ⌃; i.e., any two points in ⌃ can be connected by
⌧ line segments that are all inside ⌃. We define the
distance

ed
⌃

(u, v) = inf
z1:⌧�12⌃

�
d
⌃

(u, z
1

) + d
⌃

(z
1

, z
2

) + . . .

+ d
⌃

(z
⌧�1

, v)
�
,

and, by extension, the distance between two subsets
⌃

1

,⌃
2

⇢ ⌃ as ed
⌃

(⌃
1

,⌃
2

) = inf
u2⌃1,v2⌃2

ed
⌃

(u, v).

The analysis of the conductance is often derived via an
isoperimetric inequality.

Theorem 7 (Theorem 4.5 of Vempala (2005)). Let ⌦
be a convex body in Rn. Let h : ⌦ ! R+ be an arbitrary
function. Let (⌦

1

,⌦
2

,⌦
3

) be any partition of ⌦ into
measurable sets. Suppose that for any pair of points
x 2 ⌦

1

and y 2 ⌦
2

and any point z on the chord of ⌦
through x and y, h(z)  (1/3)min(1, d

⌦

(x, y)). Then

vol(⌦
3

) � E

⌦

(h)min(vol(⌦
1

),vol(⌦
2

)) ,

where the expectation is defined with respect to the
uniform distribution on ⌦.

Given an isoperimetric inequality, a total variation in-
equality is typically used in a mixing time analysis
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to lower bound cross-ratio distances and then lower
bound the conductance. Our approach is similar. We
use the embedding assumption to derive an isoperi-
metric inequality in the non-convex space ⌃. Then
we relate cross-ratio distance d

⌦

to distance ed
⌃

. This
approximation is good when the points are su�ciently
far from the boundary. We incur a small error in the
mixing bound by ignoring points that are too close
to the boundary. Finally we use the curvature condi-
tion to derive a total variation inequality and to lower
bound the conductance.

3.2 Cross-Ratio Distances

The first step is to show the relationship between cross-
ratio distances in the convex and non-convex spaces.
We show that these distances are close as long as points
are far from the boundary. These results will be used in
the proof of the main theorem in Section 3.4 to obtain
an isoperimetric inequality in the non-convex space.
First we define a useful quantity.

Definition 3. Consider a convex set ⌦ with some
subset ⌦0 and collinear points {a, x, b} with a, b 2 @⌦,
x 2 ⌦0, and |x� b|  |x� a|. Let c be a point on @⌦.
Let R(a, x, b, c) = |x� b| / |x� c|. We use R(⌦,⌦0) to
denote the maximum of R(a, x, b, c) over all such points.
We use R

✏

to denote R(⌦,⌦✏).

The following lemma is the main technical lemma, and
we use it to express ed

⌃

in terms of d
⌦

.

Lemma 8. Let ✏ be a positive scalar such that R
✏

(1 +
8R

✏

) � 2/3. Let {a, x
1

, x
2

, b} be collinear such that
a and b are on the boundary of ⌦, x

1

, x
2

2 ⌦✏, and
|x

1

� a| < |x
2

� a|. Let c and d be two points on the
boundary of ⌦. Then

|b� a|
|a� x

1

| ·
|x

1

� c|
|c� d| · |d� x

2

|
|x

2

� b| �
1

4R
✏

(1 + 2R
✏

)
.

Proof. Let

A =
|b� a| |x

1

� x
2

|
|a� x

1

| |x
2

� b| , B =
|c� d| |x

1

� x
2

|
|c� x

1

| |x
2

� d| .

We prove the claim by proving that A/B � 1/(4R
✏

(1+
2R

✏

)). We show this inequality by considering di↵erent
configurations of {a, x

1

, x
2

, b, c, d}. To save space, we
present the proof for only a few cases. The complete
proof is in Appendix A.
Case 1, |x

1

� b|  |x
1

� a|: In this case, x
1

and x
2

are both on the line segment [(a+ b)/2, b]. We consider
two cases.
Case 1.1, |x

2

� d|  |x
2

� b|: We have that

|c� d| = |c� x
1

|+ |x
1

� x
2

|+ |x
2

� d|
 |c� x

1

|+ |x
1

� b|+ |x
2

� b| . (3)

Because |x
1

� a| < |x
2

� a| by the assumption of
the lemma, we have |x

2

� b| < |x
1

� b|. Also
because |x

1

� b|  |x
1

� a| in Case 1, we have
|x

1

� b| / |c� x
1

|  R
✏

. Thus

|x
2

� b|
|c� x

1

| 
|x

1

� b|
|c� x

1

|  R
✏

. (4)

By (3) and (4),

|c� d|
|c� x

1

|  1 +
|x

1

� b|
|c� x

1

| +
|x

2

� b|
|c� x

1

|
 1 +R

✏

+
|x

2

� b|
|c� x

1

|  1 + 2R
✏

.

We use also that by definition of R
✏

|x
2

� b| 
R

✏

|x
2

� d|. This and the previous result lets us bound

B  (1 + 2R
✏

)
|x

1

� x
2

|
|x

2

� d| ,

A � |b� a| |x
1

� x
2

|
R

✏

|a� x
1

| |x
2

� d| �
|x

1

� x
2

|
R

✏

|x
2

� d| ,

and conclude

A

B
� 1

R
✏

(1 + 2R
✏

)
� 1

4R
✏

(1 + 2R
✏

)
.

The proof for other cases is in Appendix A.

The following lemma states that the distance d
⌦

does
not increase by adding more steps.

Lemma 9. Let a, y
1

, y
2

, . . . , y
m

, b be in the convex
body ⌦ such that the points {a, y

1

, y
2

, . . . , y
m

, b} are
collinear. Further assume that a, b 2 @⌦. We have that

d
⌦

(y
1

, y
2

) + · · ·+ d
⌦

(y
m�1

, y
m

)  d
⌦

(y
1

, y
m

) .

Proof. We write

d
⌦

(y
1

, y
m

) =
|a� b| |y

1

� y
m

|
|a� y

1

| |y
m

� b|
=

|a� b| |y
1

� y
2

|
|a� y

1

| |y
m

� b| +
|a� b| |y

2

� y
3

|
|a� y

1

| |y
m

� b|
+ · · ·+ |a� b| |y

m�1

� y
m

|
|a� y

1

| |y
m

� b|
� |a� b| |y

1

� y
2

|
|a� y

1

| |y
2

� b| +
|a� b| |y

2

� y
3

|
|a� y

2

| |y
3

� b|
+ · · ·+ |a� b| |y

m�1

� y
m

|
|a� y

m�1

| |y
m

� b|
= d

⌦

(y
1

, y
2

) + · · ·+ d
⌦

(y
m�1

, y
m

) .

The next lemma upper bounds ed
⌃

in terms of d
⌦

.
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Lemma 10. Let x
1

, x
2
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Proof. First we prove the inequality for the case that
g(x

1

) 2 view(g(x
2

)). Let a, b 2 @⌦ be such that
the points {a, x

1

, x
2

, b} are collinear. Let c, d 2 ⌦ be
points such that the points {g(c), g(x

1

), g(x
2

), g(d)} are
collinear and the line connecting g(c) and g(d) is inside
⌃. By the Lipschitzity of g and g�1 and Lemma 8,
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Now consider the more general case where
g(x

1

) /2 view(g(x
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)). Find a set of
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1

, . . . , y
⌧

such that the line segments
[g(x
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), g(y
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)], [g(y
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), g(y
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⌧

), g(x
2

)] are all

inside ⌃. By definition of ed
⌃

, (5), and Lemma 9,
ed
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)) can be upper bounded by

inf
u1:⌧�12⌃
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3.3 Total Variation Inequality

In this section, we show that if two points u, v 2 ⌃
are close to each other, then P

u

and P
v

are also close.
First we show that if the two points are close to each
other, then they have similar views.

Lemma 11 (Overlapping Views). Given the curvature
 defined in Assumption 3, for any u, v 2 ⌃✏ such that
|u� v|  ✏0  ✏,

P
u

({x : x /2 view(v)})  max

✓
4

⇡
,



sin(⇡/8)

◆
✏0

✏
.

The proof is in Appendix A. Next we define some
notation and show some useful inequalities. For
u 2 ⌃, let w be a random point obtained by mak-
ing one step of Hit-and-Run from u. Define F (u) by

P (|w � u|  F (u)) = 1/8. If d(u, @⌃) � h, less than
1/8 of any chord passing through u is inside B(u, h/16).
Thus P (|u� w|  h/16)  1/8, which implies

F (u) � h

16
. (6)

Intuitively, the total variation inequality implies that
if u and v are close geometrically, then their proposal
distributions must be close as well.

Lemma 12. Let u, v 2 ⌃✏ be two points that see each

other. Let ✏0 = ✏

6

min
⇣

⇡

4

, sin(⇡/8)



⌘
. Suppose that

d
⌃

(u, v) <
✏

24D
⌃

and |u� v| < min

✓
2F (u)p

n
, ✏0

◆
.

Then,

|P
u

� P
v

| < 1� ✏

8e4D
⌃

.

The proof is in Appendix A. The proof uses ideas
from proof of Lemma 9 of Lovász (1999). The proof
of Lovász (1999) heavily relies on the convexity of the
space, which does not hold in our case. We overcome
the di�culties using the low curvature assumption and
the fact that u and v are su�ciently far from the
boundary.

3.4 Putting Everything Together

Now we are ready to prove Theorem 5. We proceed
as follows. First, Theorem 7 shows an isoperimetric
inequality in the convex case in terms of average dis-
tances. As we have an integration over ⌦, we can
ignore points that are very close to the boundary at
a moderate cost in terms of the tightness of the in-
equality. Second, Lemma 10 shows that as long as
points are su�ciently far from the boundary, the cross-
ratio distances in the convex and non-convex spaces
are closely related. This lemma and the isoperimetric
inequality for the convex space gives an isoperimetric
inequality for ⌃. The next step is to show that if two
points are close geometrically, then their proposal dis-
tributions must be close as well. We achieve this by
using the fact that points are su�ciently far from the
boundary and the boundary has low curvature. This
argument bounds the conductance of Hit-and-Run.
The complete proof is in Appendix A.

Lemma 13. Let � = 9r

320e

4
nL⌦D⌃

, G =
1

6

min
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⇡

4

, sin(⇡/8)



⌘
, ✏0 = 9r

20n

, where r is the radius

of ball ⌦ (so rn⇡
n

= 1). Let N = 9r

80nL

2
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3
⌦R✏0 (1+2R✏0 )

.

The conductance � of Hit-and-Run is at least
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If we treat L
⌃

, L
⌦

, as constants and collect all con-
stants in C, we have a � � C/n3 lower bound for the
conductance.

Using Lemma 6 and Lemma 13,

d
tv

(�
t

,�) 
p
M

✓
1� C2

2n6

◆
t

,

which gives the bound in Theorem 5 after rearrange-
ment.

4 Planning

This section makes an empirical argument for use of
the Hit-and-Run in trajectory planning. In the first
of two experiments, the state space is a position vector
constrained to some map illustrated by the bottom
plots of Figure 2. The second experiment also includes
two dimensions of velocity in the state and limits state
transitions to those that respect the map as well as
kinematics and requires the planning to control the
system explicitly (by specifying an acceleration vector
for every time step). We use spiral shaped spaces in
both experiments. It can be shown that the embedding
assumption (Assumption 2) holds for these examples:
first, using results of Griepentrog et al. (2008), we con-
struct a smooth measure-preserving mapping from the
unit ball to a cube. Then we construct a map from the
unit cube to a long tube. Finally, we obtain the desired
shape by bending the tube in appropriate locations.
We will show that Hit-and-Run outperforms RRT in
both cases by requiring fewer transitions to reach the
goal state across a wide variety of map di�culties.

4.1 Position only

The state starts at the bottom left of the spiral and the
goal is the top right. Both algorithms are implemented
as described in the introduction. The number of tran-
sitions needed to reach the goal of both algorithms is
plotted as a function of the width of the spiral arms;
the larger the width, the easier the problem.

The results are presented in Figure 2. The top plot
show the number of transitions needed by both algo-
rithms as the width of the arms changes, averaged
over 500 independent runs. We see that the Hit-and-
Run outperforms RRT for all but the hardest problems,
usually by a large margin. The two lower plots show the
sample points produced from one run with width equal
to 1.2; we see that RRT has more uniform coverage,
but that Hit-and-Run has a large speedup over linear
sections, therefore justifying its faster exploration.

RRT is slow in this problem because in many rounds the
tree does not grow in the right direction. For example
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Figure 2: Position only planning example

at the beginning the tree needs to grow upwards, but
most random samples will bias the growth to right. As
Hit-and-Run only considers the space that is visible
to the current point, it is less sensitive to the geometry
of the free space. We can make this problem arbitrarily
hard for RRT by making the middle part of the spiral
fatter. Hit-and-Run, on the other hand, is insensitive
to such changes. Additionally, the growth of the RRT
tree can become very slow towards the end. This is
because the rest of the tree absorbs most samples, and
the tree grows only if the random point falls in the
vicinity of the goal.

4.2 Kinematic Planning

In this set of simulations, we constrain the state tran-
sitions to adhere to the laws of physics: the state
propagates forward under kinematics until it exits the
permissible map, in which case it stops inelastically
at the boundary. The position map is the two-turn
corridor, illustrated in the bottom plots of Figure 3.
Both algorithms propose points to in the analogous
manner to the previous section (where a desired speed
is sampled in addition to a desired position); then, the
best acceleration vector in the unit ball is calculated
and the sample is propagated forward by the kinemat-
ics. If the sample point encounters the boundary, the
velocity is zeroed. Both RRT and Hit-and-Run are
constrained to use the same controller and the only
di↵erence is what points are proposed.

We see that Hit-and-Run again outperforms RRT
across a large gamut of path widths by as much as a
factor of three. The bottom two plots are of a typical
sample path, and we see that Hit-and-Run has two
advantages: it accelerates down straight hallways, and
it samples more uniformly from the state space. In
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Figure 3: Performance under kinematic constraints

contrast, RRT wastes many more samples along the
boundaries.

5 Conclusions and Future Work

This paper has two main contributions. First, we use a
measure-preserving biLipschitz map to extend the anal-
ysis of the Hit-and-Run random walk to non-convex
sets. Mixing time bounds for non-convex sets open up
many applications, for example non-convex optimiza-
tion via simulated annealing and similar methods. The
second contribution of this paper has been to study
one such application: the planning problem.

In contrast to RRT, using Hit-and-Run for planning
has stronger guarantees on the number of samples
needed and faster convergence in some cases. It also
avoids the need for a sampling oracle for ⌃, since it
combines the search with an approximate sampling
oracle. One drawback is that the sample paths for Hit-
and-Run have no pruning and are therefore longer
than the RRT paths. Hybrid approaches that yield
short paths but also explore quickly are a promising
future direction.
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