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Abstract

We consider the exploration-exploitation
tradeoff in linear quadratic (LQ) control prob-
lems, where the state dynamics is linear and
the cost function is quadratic in states and
controls. We analyze the regret of Thomp-
son sampling (TS) (a.k.a. posterior-sampling
for reinforcement learning) in the frequentist
setting, i.e., when the parameters characteriz-
ing the LQ dynamics are fixed. Despite the
empirical and theoretical success in a wide
range of problems from multi-armed bandit
to linear bandit, we show that when studying
the frequentist regret TS in control problems,
we need to trade-off the frequency of sampling
optimistic parameters and the frequency of
switches in the control policy. This results in
an overall regret of O(T 2/3

), which is signifi-
cantly worse than the regret O(

p
T ) achieved

by the optimism-in-face-of-uncertainty algo-
rithm in LQ control problems.

1 Introduction

One of the most challenging problems in reinforcement
learning (RL) is how to effectively trade off exploration
and exploitation in an unknown environment. A num-
ber of learning methods has been proposed in finite
Markov decision processes (MDPs) and they have been
analyzed in the PAC-MDP (see e.g., [13]) and the regret
framework (see e.g., [8]). The two most popular ap-
proaches to address the exploration-exploitation trade-
off are the optimism-in-face-of-uncertainty (OFU) prin-
ciple, where optimistic policies are selected according to
upper-confidence bounds on the true MDP paramaters,
and the Thompson sampling (TS) strategy1, where
1In RL literature, TS has been introduced by Strens [14]
and it is often referred to as posterior-sampling for rein-
forcement learning (PSRL).
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random MDP parameters are selected from a posterior
distribution and the corresponding optimal policy is
executed. Despite their success in finite MDPs, exten-
sions of these methods and their analyses to continuous
state-action spaces are still rather limited. Osband
et al. [11] study how to randomize the parameters of a
linear function approximator to induce exploration and
prove regret guarantees in the finite MDP case. Osband
and Van Roy [10] develops a specific TS method ap-
plied to the more complex case of neural architectures
with significant empirical improvements over alterna-
tive exploration strategies, although with no theoretical
guarantees. In this paper, we focus on a specific family
of continuous state-action MDPs, the linear quadratic
(LQ) control problems, where the state transition is
linear and the cost function is quadratic in the state
and the control. Despite their specific structure, LQ
models are very flexible and widely used in practice
(e.g., to track a reference trajectory). If the parameter
✓ defining dynamics and cost is known, the optimal
control can be computed explicitly as a linear function
of the state with an appropriate gain. On the other
hand, when ✓ is unknown, an exploration-exploitation
trade-off needs to be solved. Bittanti and Campi [6]
and Campi and Kumar [7], first proposed an optimistic
approach to this problem, showing that the perfor-
mance of an adaptive control strategy asymptotically
converges to the optimal control. Building on this ap-
proach and the OFU principle, Abbasi-Yadkori and
Szepesvári [1] proposed a learning algorithm (OFU-
LQ) with O(

p
T ) cumulative regret. Abbasi-Yadkori

and Szepesvári [2] further studied how the TS strategy,
could be adapted to work in the LQ control problem.
Under the assumption that the true parameters of
the model are drawn from a known prior, they show
that the so-called Bayesian regret matches the O(

p
T )

bound of OFU-LQ.

In this paper, we analyze the regret of TS in LQ prob-
lems in the more challenging frequentist case, where
✓ is a fixed parameter, with no prior assumption of
its value. The analysis of OFU-LQ relies on three
main ingredients: 1) optimistic parameters, 2) lazy up-
dates (the control policy is updated only a logarithmic
number of times) and 3) concentration inequalities for
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regularized least-squares used to estimate the unknown
parameter ✓. While we build on previous results for
the least-squares estimates of the parameters, points 1)
and 2) should be adapted for TS. Unfortunately, the
Bayesian regret analysis of TS in [2] does not apply in
this case, since no prior is available on ✓. Furthermore,
we show that existing frequentist regret analysis for
TS in linear bandit [5] cannot be generalized to the
LQ case. This requires deriving a novel line of proof in
which we first prove that TS has a constant probability
to sample an optimistic parameter (i.e., an LQ system
whose optimal expected average cost is smaller than
the true one) and then we exploit the LQ structure
to show how being optimistic allows to directly link
the regret to the controls operated by TS over time
and eventually bound them. Nonetheless, this analy-
sis reveals a critical trade-off between the frequency
with which new parameters are sampled (and thus the
chance of being optimistic) and the regret cumulated
every time the control policy changes. In OFU-LQ
this trade-off is easily solved by construction: the lazy
update guarantees that the control policy changes very
rarely and whenever a new policy is computed, it is
guaranteed to be optimistic. On the other hand, TS
relies on the random sampling process to obtain opti-
mistic models and if this is not done frequently enough,
the regret can grow unbounded. This forces TS to
favor short episodes and we prove that this leads to an
overall regret of order O(T 2/3

) in the one-dimensional
case (i.e., both states and controls are scalars), which is
significantly worse than the O(

p
T ) regret of OFU-LQ.

2 Preliminaries

The control problem. We consider the discrete-time
infinite-horizon linear quadratic (LQ) control problem.
Let xt 2 Rn be the state of the system and ut 2 Rd be
the control at time t; an LQ problem is characterized
by linear dynamics and a quadratic cost function

xt+1 = A⇤xt +B⇤ut + ✏t+1,

c(xt, ut) = xT
t Qxt + uT

t Rut,
(1)

where A⇤ and B⇤ are unknown matrices and Q and
R are known positive definite matrices of appropriate
dimension. We summarize the unknown parameters
in ✓T⇤ = (A⇤, B⇤). The noise process ✏t+1 is zero-mean
and it satisfies the following assumption.
Assumption 1. {✏t}t is a Ft�martingale difference
sequence, where Ft is the filtration which represents the
information knowledge up to time t.

In LQ, the objective is to design a closed-loop control
policy ⇡ : Rn ! Rd mapping states to controls that
minimizes the average expected cost

J⇡(✓⇤) = lim sup

T!1

1

T
E
 TX

t=0

c(xt, ut)

�
, (2)

with x0 =0 and ut = ⇡(xt). Standard theory for LQ
control guarantees that the optimal policy is linear in
the state and that the corresponding average expected
cost is the solution of a Riccati equation.
Proposition 1 (Thm.16.6.4 in [9]). Under Asm. 1
and for any LQ system with parameters ✓T = (A,B)

such that (A,B) is stabilizable2, and p.d. cost matrices
Q and R, the optimal solution of Eq. 2 is given by

⇡(✓) = K(✓)xt, J(✓) = Tr(P (✓)),

K(✓) = �(R+BTP (✓)B)

�1BTP (✓)A,

P (✓) = Q+ATP (✓)A+ATP (✓)BK(✓)

(3)

where ⇡(✓) is the optimal policy, J(✓) is the correspond-
ing average expected cost, K(✓) is the optimal gain, and
P (✓) is the unique solution to the Riccati equation as-
sociated with the control problem. Finally, we also have
that A+BK(✓) is asymptotically stable.

For notational convenience, we use H(✓) =
�
I K(✓)T

�T,
so that the closed loop dynamics A + BK(✓) can be
equivalently written as ✓TH(✓). We introduce further
assumptions about the LQ systems we consider.
Assumption 2. We assume that the LQ problem is
characterized by parameters (A⇤, B⇤, Q,R) such that
the cost matrices Q and R are symmetric p.d., and
✓⇤ 2 S where3 S = {✓ 2 R(n+d)⇥n s.t. Tr(P (✓)) 
D and Tr(✓✓T)  S2}.

While Asm. 1 basically guarantees that the linear model
in Eq. 1 is correct, Asm. 2 restricts the control param-
eters to the admissible set S. This is used later in the
learning process and it replaces Asm. A2-4 in [1] in a
synthetic way, as shown in the following proposition.
Proposition 2. Given an admissible set S as
defined in Asm. 2, we have 1) S ⇢ {✓T =

(A,B) s.t. (A,B) is stabilizable}, 2) S is compact, and
3) there exists ⇢ < 1 and C < 1 positive con-
stants such that ⇢ = sup✓2S kA + BK(A,B)k2 and
C = sup✓2S kK(✓)k2.4.

As an immediate result, any system with ✓ 2 S is
stabilizable, and therefore, Asm. 2 implies that Prop. 1
holds. Finally, we derive a result about the regularity
of the Riccati solution, which we later use to relate the
regret to the controls performed by TS.
Lemma 1. Under Asm. 1 and for any LQ with param-
eters ✓T = (A,B) and cost matrices Q and R satisfying
Asm. 2, let J(✓) = Tr(P (✓)) be the optimal solution of
2(A,B) is stabilizable if there exists a control gain matrix
K s.t. A+BK is stable (i.e., all eigenvalues are in (�1, 1)).

3Even if P (✓) is not defined for every ✓, we extend its
domain of definition by setting P (✓) = +1.

4We use k · k and k · k2 to denote the Frobenius and the
2-norm respectively.
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Eq. 2. Then, the mapping ✓ 2 S ! Tr(P (✓)) is contin-
uously differentiable. Furthermore, let Ac(✓) = ✓TH(✓)
be the closed-loop matrix, then the directional derivative
of J(✓) in a direction �✓, denoted as rJ(✓)T�✓, where
rJ(✓) 2 R(n+d)⇥n is the gradient of J , is the solution
of the Lyapunov equation

rJ(✓)T�✓ = Ac(✓)
TrJ(✓)T�✓Ac(✓)+C(✓, �✓)+C(✓, �✓)T,

where C(✓, �✓) = Ac(✓)TP (✓)�✓TH(✓).

The learning problem. At each time t, the learner
chooses a policy ⇡t, it executes the induced control
ut = ⇡t(xt) and suffers a cost ct = c(xt, ut). The per-
formance is measured by the cumulative regret up to
time T as RT =

PT
t=0(c

⇡
t

t � J⇡⇤(✓⇤)), where at each
step the difference between the cost of the controller
c⇡ and the expected average cost J⇡⇤(✓⇤) of the op-
timal controller ⇡⇤ is measured. Let (u0, . . . , ut) be
a sequence of controls and (x0, x1, . . . , xt+1) be the
corresponding states, then ✓? can be estimated by regu-
larized least-squares (RLS). Let zt = (xt, ut)

T, for any
regularization parameter � 2 R⇤

+, the design matrix
and the RLS estimate are defined as

Vt = �I +
t�1X

s=0

zsz
T
s ;

b✓t = V �1
t

t�1X

s=0

zsx
T
s+1.

For notational convenience, we use Wt = V �1/2
t . We

recall a concentration inequality for RLS estimates.
Proposition 3 (Thm. 2 in [3]). We assume that ✏t
are conditionally and component-wise sub-Gaussian of
parameter L and that E(✏t+1✏Tt+1|Ft) = I. Then for
any � 2 (0, 1) and any Ft-adapted sequence (z0, . . . , zt),
the RLS estimator ˆ✓t is such that

Tr
⇣
(

ˆ✓t � ✓⇤)
TVt(

ˆ✓t � ✓⇤)
⌘

 �t(�)
2, (4)

w.p. 1�� (w.r.t. the noise {✏t}t and any randomization
in the choice of the control), where

�t(�) = nL

s

2 log

⇣
det(Vt)

1/2

det(�I)1/2

⌘
+ �1/2S. (5)

Further, when kztk  Z,

det(Vt)

det(�I)
 (n+ d) log

�
1 + TZ2/�(n+ d)

�
.

At any step t, we define the ellipsoid ERLS
t =

�
✓ 2

Rd | k✓�ˆ✓tkV
t

 �t(�0)
 

centered in b✓t with orientation
Vt and radius �t(�0), with �0 = �/(4T ). Finally, we
report a standard result of RLS that, together with
Prop. 3, shows that the prediction error on the points
zt used to construct the estimator b✓t is cumulatively
small.

Input: ✓̂0, V0 = �I, �, T , ⌧ , t0 = 0
1: Set �

0 = �/(8T )
2: for t = {0, . . . , T} do

3: if det(V
t

) > 2 det(V0) or t � t0 + ⌧ then

4: while

e
✓

t

/2 S do

5: Sample ⌘

t

⇠ DTS

6: Compute e
✓

t

= b
✓

t

+ �

t

(�0)V �1/2
t

⌘

t

7: end while

8: Let V0 = V

t

, t0 = t,
9: else

10: e
✓

t

= e
✓

t�1

11: end if

12: Execute control u
t

= K(e✓
t

)x
t

13: Move to state x

t+1, receive cost c(x
t

, u

t

)

14: Compute V

t+1 and b
✓

t+1

15: end for

Figure 1: Thompson sampling algorithm.

Proposition 4 (Lem. 10 in [1]). Let � � 1, for any
arbitrary Ft-adapted sequence (z0, z1, . . . , zt), let Vt+1

be the corresponding design matrix, then

tX

s=0

min

�
kzsk2V �1

s

, 1
�

 2 log

det(Vt+1)

det(�I)
. (6)

Moreover, when kztk  Z for all t � 0, then

tX

s=0

kzsk2V �1
s

 2

Z2

�
(n+ d) log

⇣
1 +

(t+ 1)Z2

�(n+ d)

⌘
.

3 Thompson Sampling for LQR

We introduce a specific instance of TS for learning in
LQ problems obtained as a modification of the algo-
rithm proposed in [2], where we replace the Bayesian
structure and the Gaussian prior assumption with a
generic randomized process and we modify the update
rule. The algorithm is summarized in Alg. 1. At any
step t, given the RLS-estimate b✓t and the design matrix
Vt, TS samples a perturbed parameter e✓t. In order to en-
sure that the sampling parameter is indeed admissible,
we re-sample it until a valid e✓t 2 S is obtained. Denot-
ing as RS the rejection sampling operator associated
with the admissible set S, we define e✓t as

e✓t = RS(b✓t + �t(�
0
)Wt⌘t), (7)

where Wt = V �1/2
t and every coordinate of the ma-

trix ⌘t 2 R(n+d)⇥(n+d) is a random sample drawn
i.i.d. from N (0, 1). We refer to this distribution as
DTS. Notice that such sampling does not need to
be associated with an actual posterior over ✓? but it
just need to randomize parameters coherently with
the RLS estimate and the uncertainty captured in
Vt. Let �t(�) = �t(�0)n

q
2(n+ d) log

�
2n(n+ d)/�

�
,
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then the high-probability TS ellipsoid ETS
t = {✓ 2

Rd | k✓ � b✓tkV
t

 �t(�0)} is defined so that any param-
eter e✓t belongs to it with 1 � �/8 probability.

Given the parameter e✓t, the gain matrix K(

e✓t) is com-
puted and the corresponding optimal control ut =

K(

e✓t)xt is applied. As a result, the learner observes
the cost c(xt, ut) and the next state xt+1, and Vt and
b✓t are updated accordingly. Similar to most of RL
strategies, the updates are not performed at each step
and the same estimated optimal policy K(

e✓t) is kept
constant throughout an episode. Let V0 be the de-
sign matrix at the beginning of an episode, then the
episode is terminated upon two possible conditions:
1) the determinant condition of the design matrix is
doubled (i.e., det(Vt) � 2 det(V0)) or 2) a maximum
length condition is reached. While the first condition
is common to all RL strategies, here we need to force
the algorithm to interrupt episodes as soon as their
length exceeds ⌧ steps. The need for this additional
termination condition is intrinsically related to the TS
nature and it is discussed in detail in the next section.

4 Theoretical analysis

We prove the first frequentist regret bound for TS in
LQ systems of dimension 2 (n = 1, d = 1). In order to
isolate the steps which explicitly rely on this restriction,
whenever possible we derive the proof in the general
n+ d-dimensional case.
Theorem 1. Consider the LQ system in Eq. 1 of
dimension n = 1 and d = 1. Under Asm. 1 and 2 for
any 0 < � < 1, the cumulative regret of TS over T
steps is bounded w.p. at least 1 � � as 5

R(T ) = eO
⇣
T 2/3

p
log(1/�)

⌘
.

This result is in striking contrast with previous results
in multi-armed and linear bandit where the frequentist
regret of TS is O(

p
T ) and the Bayesian analysis of

TS in control problems where the regret is also O(

p
T ).

As discussed in the introduction, the frequentist regret
analysis in control problems introduces a critical trade-
off between the frequency of selecting optimistic models,
which guarantees small regret in bandit problems, and
the reduction of the number of policy switches, which
leads to small regret in control problems. Unfortunately,
this trade-off cannot be easily balanced and this leads
to a final regret of O(T 2/3

). Sect. 4.2 provides a more
detailed discussion on the challenges of bounding the
frequentist regret of TS in LQ problems.

4.1 Setting the Stage

Concentration events. We introduce the following
high probability events.
5Further details can be recovered from the proof.

Definition 1. Let � 2 (0, 1) and �0 = �/(8T ) and
t 2 [0, T ]. We define the event (RLS estimate con-
centration) bEt =

�
8s  t, kb✓s � ✓?kV

s

 �s(�0)
 

and the event (parameter e✓s concentrates around b✓s)
eEt =

�
8s  t, ke✓s � b✓skV

s

 �s(�0)
 
.

We also introduce a high probability event on which
the states xt are bounded almost surely.
Definition 2. Let � 2 (0, 1), X,X 0 be two problem
dependent positive constants and t 2 [0, T ]. We define
the event (bounded states) ¯Et =

�
8s  t, kxsk 

X log

X0

�

 
.

Then we have that bE :=

bET ⇢ · · · ⇢ bE1, eE :=

eET ⇢
· · · ⇢ eE1 and ¯E :=

¯ET ⇢ · · · ⇢ ¯E1. We show that
these events do hold with high probability.
Lemma 2. P( bE \ eE) � 1 � �/4.
Corollary 1. On bE \ eE, P( ¯E) � 1 � �/4. Thus,
P( bE \ eE \ ¯E) � 1 � �/2.

Lem. 2 leverages Prop. 3 and the sampling distribution
DTS to ensure that bE \ eE holds w.h.p. Furthermore,
Corollary 1 ensures that the states remains bounded
w.h.p. on the events bE \ eE.6 As a result, the proof can
be derived considering that both parameters concen-
trate and that states are bounded, which we summarize
in the sequence of events Et =

bEt \ eEt \ ¯Et, which
holds with probability at least 1 � �/2 for all t 2 [0, T ].

Regret decomposition. Conditioned on the filtra-
tion Ft and event Et, we have ✓? 2 ERLS

t , e✓t 2 ETS
t

and kxtk  X. We directly decompose the regret and
bound it on this event as [1, Sect. 4.2]

R(T ) =
TX

t=0

�
J(e✓t) � J(✓⇤)

 
1{Et}

| {z }
RTS

+ (RRLS
1 +RRLS

2 +RRLS
3 )1{Et}| {z }

RRLS

(8)

where RRLS is decomposed into the three components

RRLS
1 =

TX

t=0

�
E(xT

t+1P (

e✓t+1)xt+1|Ft) � xT
t P (

e✓t)xt

 
,

RRLS
2 =

TX

t=0

E
⇥
x>
t+1(P (

e✓t) � P (

e✓t+1))xt+1|Ft

⇤
,

RRLS
3 =

TX

t=0

�
zTt e✓tP (

e✓t)e✓Tt zt � z>t ✓⇤P (

e✓t)✓T⇤ zt
 
.

Before entering into the details of how to bound each
of these components, in the next section we discuss
what are the main challenges in bounding the regret.
6This non-trivial result is directly collected from the
bounding-the-state section of [1].
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4.2 Related Work and Challenges

Since the RLS estimator is the same in both TS and
OFU, the regret terms RRLS

1 and RRLS
3 can be bounded

as in [1]. In fact, RRLS
1 is a martingale by construc-

tion and it can be bounded by Azuma inequality. The
term RRLS

3 is related to the difference between the
true next expected state ✓T? zt and the predicted next
expected state e✓Tt zt. A direct application of RLS prop-
erties makes this difference small by construction, thus
bounding RRLS

3 . Finally, the RRLS
2 term is directly

affected by the changes in model from any two time
instants (i.e., e✓t and e✓t+1), while RTS measures the
difference in optimal average expected cost between
the true model ✓⇤ and the sampled model e✓t. In the
following, we denote by RRLS

2,t and RTS
t the elements at

time t of these two regret terms and we refer to them
as consistency regret and optimality regret respectively.

Optimistic approach. OFU-LQ explicitly bounds
both regret terms directly by construction. In fact, the
lazy update of the control policy allows to set to zero
the consistency regret RRLS

2,t in all steps but when the
policy changes between two episodes. Since in OFU-LQ
an episode terminates only when the determinant of
the design matrix is doubled, it is easy to see that the
number of episodes is bounded by O(log(T )), which
bounds RRLS

2 as well (with a constant depending on
the bounding of the state X and other parameters
specific of the LQ system).7At the same time, at the
beginning of each episode an optimistic parameter e✓t is
chosen, i.e., J(e✓t)  J(✓⇤), which directly ensures that
RTS

t is upper bounded by 0 at each time step.

Bayesian regret. The lazy PSRL algorithm in [2]
has the same lazy update as OFUL and thus it directly
controls RRLS

2 by a small number of episodes. On the
other hand, the random choice of e✓t does not guarantee
optimism at each step anymore. Nonetheless, the regret
is analyzed in the Bayesian setting, where ✓⇤ is drawn
from a known prior and the regret is evaluated in
expectation w.r.t. the prior. Since e✓t is drawn from
a posterior constructed from the same prior as ✓⇤, in
expectation its associated J(e✓t) is the same as J(✓⇤),
thus ensuring that E[RTS

t ] = 0.

Frequentist regret. When moving from Bayesian to
frequentist regret, this argument does not hold any-
more and the (positive) deviations of J(e✓t) w.r.t. J(✓⇤)
has to be bounded in high probability. Abbasi-Yadkori
and Szepesvári [1] exploits the linear structure of LQ
problems to reuse arguments originally developed in

7Notice that the consistency regret is not specific to LQ
systems but it is common to all regret analyses in RL (see
e.g., UCRL [8]) except for episodic MDPs and it is always
bounded by keeping under control the number of switches
of the policy (i.e., number of episodes).

the linear bandit setting. Similarly, we could leverage
on the analysis of TS for linear bandit by Agrawal and
Goyal [5] to derive a frequentist regret bound. Agrawal
and Goyal [5] partition the (potentially infinite) arms
into saturated and unsaturated arms depending on their
estimated value and their associated uncertainty (i.e.,
an arm is saturated when the uncertainty of its estimate
is smaller than its performance gap w.r.t. the optimal
arm). In particular, the uncertainty is measured us-
ing confidence intervals derived from a concentration
inequality similar to Prop. 3. This suggests to use a
similar argument and classify policies as saturated and
unsaturated depending on their value. Unfortunately,
this proof direction cannot be applied in the case of
LQR. In fact, in an LQ system ✓ the performance of
a policy ⇡ is evaluated by the function J⇡(✓) and the
policy uncertainty should be measured by a confidence
interval constructed as |J⇡(✓⇤) � J⇡(b✓t)|. Despite the
concentration inequality in Prop. 3, we notice that nei-
ther J⇡(✓⇤) nor J⇡(b✓t) may be finite, since ⇡ may not
stabilize the system ✓⇤ (or b✓t) and thus incur an infinite
cost. As a result, it is not possible to introduce the
notion of saturated and unsaturated policies in this
setting and another line of proof is required. Another
key element in the proof of [5] for TS in linear bandit
is to show that TS has a constant probability p to
select optimistic actions and that this contributes to
reduce the regret of any non-optimistic step. In our
case, this translates to requiring that TS selects a sys-
tem e✓t whose corresponding optimal policy is such that
J(e✓t)  J(✓⇤). Lem. 3 shows that this happens with a
constant probability p. Furthermore, we can show that
optimistic steps reduce the regret of non-optimistic
steps, thus effectively bounding the optimality regret
RTS. Nonetheless, this is not compatible with a small
consistency regret. In fact, we need optimistic parame-
ters e✓t to be sampled often enough. On the other hand,
bounding the consistency regret RRLS

2 requires to re-
duce the switches between policies as much as possible
(i.e., number of episodes). If we keep the same number
of episodes as with the lazy update of OFUL (i.e., about
log(T ) episodes), then the number of sampled points is
as small as T/(T � log(T )). While OFU-LQ guarantees
that any policy update is optimistic by construction,
with TS, only a fraction T/(p(T � log(T )) of steps
would be optimistic on average. Unfortunately, such
small number of optimistic steps is no longer enough
to derive a bound on the optimality regret RTS. Sum-
marizing, in order to derive a frequentist regret bound
for TS in LQ systems, we need the following ingredient
1) constant probability of optimism, 2) connection be-
tween optimism and RTS without using the saturated
and unsaturated argument, 3) a suitable trade-off be-
tween lazy updates to bound the consistency regret and
frequent updates to guarantee small optimality regret.
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4.3 Bounding the Optimality Regret RTS

RTS decomposition. We define the “extended” filtra-
tion Fx

t = (Ft�1, xt). Let K be the (random) number
of episodes up to time T , {tk}Kk=1 be the steps when
the policy is updated, i.e., when a new parameter ˜✓ is
sampled, and let Tk be the associated length of each
episode, then we can further decompose RTS as

RTS
=

KX

k=0

Tk

⇣
J(e✓t

k

) � E[J(e✓t
k

)|Fx
t
k

, Et
k

]

⌘
1E

t

k| {z }
RTS,1

t

k

+

KX

k=0

Tk

�
E[J(e✓t

k

)|Fx
t
k

, Et
k

] � J(✓⇤)
 
1E

t

k| {z }
RTS,2

t

k

.

(9)

We focus on the second regret term that we redefine
RTS,2

t
k

= �t for any t = tk for notational convenience.

Optimism and expectation. Let ⇥

opt

= {✓ :

J(✓)  J(✓⇤)} be the set of optimistic parameters
(i.e., LQ systems whose optimal average expected cost
is lower than the true one). Then, for any ✓ 2 ⇥

opt,
the per-step regret �t is bounded by:

�t 
�
E[J(e✓t)|Fx

t , Et] � J(✓)
�
1E

t

,


���J(✓) � E[J(e✓t)|Fx

t , Et]

���1E
t

, which implies that

�t  E
h��J(e✓)�E[J(e✓t)|Fx

t , Et]
��1 eE

t

|Fx
t , bEt, ¯Et,e✓2⇥

opt

i
,

where we use first the definition of the optimistic pa-
rameter set, then bounding the resulting quantity by
its absolute value, and finally switch to the expecta-
tion over the optimistic set, since the inequality is true
for any e✓ 2 ⇥

opt. While this inequality is true for
any sampling distribution, it is convenient to select it
equivalent to the sampling distribution of TS. Thus,
we set e✓ = RS(b✓t + �t(�0)Wt⌘) with ⌘ is component
wise Gaussian N (0, 1) and obtain

�
t

 E
h��
J(e✓

t

)� E[J(e✓
t

)|Fx

t

, E

t

]
��1 e

E

t

| Fx

t

,

b
E

t

, Ē

t

,

e
✓

t

2 ⇥opt

i
,


E
h��
J(e✓

t

)� E[J(e✓
t

)|Fx

t

, E

t

]
��1 e

E

t

| Fx

t

,

b
E

t

, Ē

t

i

P
�e
✓

t

2 ⇥opt | Fx

t

,

b
E

t

� .

At this point we need to show that the probability of
sampling an optimistic parameter e✓t is constant at any
step t. This result is proved in the following lemma.
Lemma 3. Let ⇥

opt

:= {✓ 2 Rd | J(✓)  J(✓?)} be
the set of optimistic parameters and e✓t = RS(b✓t +
�t(�0)Wt⌘) with ⌘ be component-wise normal N (0, 1),
then in the one-dimensional case (n=1 and d=1)

8t � 0, P
�e✓t 2 ⇥

opt | Fx
t , bEt

�
� p,

where p is a strictly positive constant.

Integrating this result into the previous expression gives

�t  1

p
E
���J(e✓t) � E[J(e✓t)|Fx

t , Et]

��� | Fx
t , Et

�
. (10)

The most interesting aspect of this result is that
the constant probability of being optimistic allows
us to bound the worst-case non-stochastic quantity
E[J(e✓t)|Fx

t ] � J(✓⇤) depending on J(✓⇤) by an expec-
tation E

⇥��J(e✓t) � E[J(e✓t)|Fx
t ]
�� | Fx

t

⇤
up to a multi-

plicative constant (we drop the events E for notational
convenience). The last term is the conditional absolute
deviation of the performance J w.r.t. the TS distribu-
tion. This connection provides a major insight about
the functioning of TS, since it shows that TS does not
need to have an accurate estimate of ✓⇤ but it should
rather reduce the estimation errors of ✓⇤ only on the
directions that may translate in larger errors in estimat-
ing the objective function J . In fact, we show later that
at each step TS chooses a sampling distribution that
tends to minimize the expected absolute deviations of
J , thus contributing to reduce the deviations in RTS

t .

Variance and gradient. Let d0 =

p
n(n+ d), we

introduce the mapping ft from the ball B(0, d0) to R+

defined as

ft(⌘) = J(b✓t + �t(�
0
)Wt⌘) � E[J(e✓t)|Fx

t , Et]

where the restriction on the ball is here to meet the
ETS
t confidence ellipsoid of the sampling. Since the

perturbation ⌘ ⇠ DTS is independent of the past, we
can rewrite Eq. 10 as

�t  E⌘⇠DTS
⇥
|ft(⌘)|

��⌘ 2 B(0, d0), b✓t+�t(�
0
)Wt⌘ 2 S

⇤
.

We now need to show that this formulation of the regret
is strictly related to the policy executed by TS. We
prove the following result (proof in the supplement).
Lemma 4. Let ⌦ ⇢ Rd be a convex domain with finite
diameter diam. Let p be a non-negative log-concave
function on ⌦ with continuous derivative up to the
second order. Then, for all u 2 W 1,1

(⌦)

8 such thatR
⌦ u(z)p(z)dz = 0 one has

Z

⌦
|f(z)|p(z)dz  2diam

Z

⌦
||rf(z)||p(z)dz

Before using the previous result, we relate the gradient
of ft to the gradient of J . Since for any ⌘ and any
✓ =

b✓t + �t(�0)Wt⌘, we have

rft(⌘) = �t(�
0
)WtrJ(✓)

To obtain a bound on the norm of rft, we apply Prop. 5
(derived from Lem. 1) to get a bound on krJ(✓)kW 2

t

:

krJ(✓)kW 2
t

kAc(✓)k22krJ(✓)kW 2
t

+ 2kP (✓)kkAc(✓)k2kH(✓)kW 2
t

.

8

W

1,1(⌦) is the Sobolev space of order 1 in L

1(⌦).
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Making use of kMk  Tr(M) for any positive definite
matrix together with Tr(P (✓))  D (Asm. 2) and
kAc(✓)k2  ⇢ (Prop. 2),

krJ(✓)kW 2
t

 ⇢2krJ(✓)kW 2
t

+ 2D⇢kH(✓)kW 2
t

,

which leads to

krJ(✓)kW 2
t

 2D⇢/(1 � ⇢2)kH(✓)kW 2
t

.

We are now ready to use the weighted Poincaré in-
equality of Lem. 4 to link the expectation of |ft| to
the expectation of its gradient. From Lem. 1, we have
ft 2 W 1,1

(⌦) and its expectation is zero by construc-
tion. On the other hand, the rejection sampling pro-
cedure impose that we conditioned the expectation
with b✓t + �t(�0)Wt⌘ 2 S which is unfortunately not
convex. However, we can still apply Lem. 4 considering
the function ˜ft(⌘) = ft(⌘)1(b✓t + �t(�0)Wt⌘ 2 S) and
diameter diam = d0. As a result, we finally obtain

�t  �E
h��H(

e✓t)
��
W 2

t

|Fx
t

i
,

where � = 8

p
n(n+ d)�T (�0)D⇢/(p(1 � ⇢2)).

From gradient to actions. Recalling the definition
of H(✓) =

�
I K(✓)T

�T we notice that the previous
expression bound the regret �t with a term involving
the gain K(✓) of the optimal policy for the sampled
parameter ✓. This shows that the RTS regret is directly
related to the policies chosen by TS. To make such rela-
tionship more apparent, we now elaborate the previous
expression to reveal the sequence of state-control pairs
zt induced by the policy with gain K(

e✓t). We first plug
the bound on �t back into Eq. 9 as

RTS 
KX

k=1

Tk

✓
RTS,1

t
k

+ �E
h��H(

e✓t
k

)

��
V �1
t

k

|Fx
t
k

i◆
1E

t

k

.

We remove the expectation by adding and subtracting
the actual realizations of e✓t

k

as

RTS,3
t
k

= E
h��H(

e✓t
k

)

��
V �1
t

k

|Fx
t
k

i
�
��H(

e✓t
k

)

��
V �1
t

k

.

Thus, one obtains

RTS 
KX

k=1

Tk

⇣
RTS,1

t
k

+RTS,3
t
k

+�
��H(

e✓t
k

)

��
V �1
t

k

⌘
1E

t

k

.

Now we want to relate the cumulative sum of the last
regret term to

PT
t=1 kztkV �1

t

. This quantity represents
the prediction error of the RLS, and we know from
Prop. 6 that it is bounded w.h.p. We now focus on the
one-dimensional case, where xt is just a scalar value.
Noticing that kztkV �1

t

= |xt|kH(

e✓t)kV �1
t

, one has:

TX

t=0

kztkV �1
t

=

KX

k=1

⇣ t
k+1�1X

t=t
k

|xt|
⌘
kH(

e✓t
k

)kV �1
t

.

Intuitively, it means that over each episode, the more
states are excited (e.g., the larger

Pt
k+1�1
t=t

k

|xt|), the
more V �1

t reduces in the direction H(

e✓t
k

). As a result,
to ensure that the term

PK
k=1 TkkH(

e✓t
k

)kV �1
t

in RTS is
small, it would be sufficient ti show that

Pt
k+1�1
t=t

k

|xt| ⇠
Tk, i.e., that the states provides enough information
to learn the system in each chosen direction H(

e✓t
k

).
More formally, let assume that there exists a constant
↵ such that Tk  ↵

Pt
k+1�1
t=t

k

|xt| for all k  K. Then,

KX

k=1

TkkH(

e✓t
k

)kV �1
t

k

 ↵
TX

t=0

kztkV �1
t

k

 2↵
TX

t=0

kztkV �1
t

,

where we use that det(Vt)  2 det(Vt
k

) as guaranteed
by the termination condition. Unfortunately, the intrin-
sic randomness of xt (triggered by the noise ⇠t) is such
that the assumption above is violated w.p. 1. However,
in the one-dimensional case, the regret over the episode
k can be conveniently written as

Rk(T ) =
⇣ t

k+1�1X

t=t
k

|xt|2
⌘�

Q+K(✓t
k

)

2R
�

� TkJ(✓⇤).

As a result, if we set

↵ := X
Q+RC2

J(✓⇤)
� X

Q+RK(✓t
k

)

2

J(✓⇤)
, (11)

whenever
Pt

k+1�1
t=t

k

kxtk  1
↵Tk then we can directly

conclude that Rk(T ) is zero. On the other hand, in the
opposite case, we have Tk  ↵

Pt
k+1�1
t=t

k

|xt| and thus
we can upper bound the last term in RTS as

RTS 
KX

k=1

Tk

⇣
RTS,1

t
k

+RTS,3
t
k

⌘
1E

t

k

+2�↵
TX

t=0

kztkV �1
t

.

4.4 Final bound

Bounding RRLS
1 and RRLS

3 . These two terms can
be bounded following similar steps as in [1]. We report
the detailed derivation in the supplement while here
we simply report the final bounds

RRLS
1  2DX2

p
2 log(4/�)| {z }

:=�1

p
T ,

and

RRLS
3  4SD

p
(1 + C2

)X2µT (�
0
)| {z }

:=�3

TX

t=0

kztkV �1
t

1E
t

,

where µT (�0) = �T (�0) + �T (�0).

Bounding RRLS
2 . Since the policy is updated from

time to time, the difference of the optimal values
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P (

e✓t) � P (

e✓t+1) is zero unless when the parameters
are updated. When it is the case, thanks to the re-
jection sampling procedure which ensures that every
parameters belong to the set S of Asm. 2, it is trivially
bounded by 2D. Therefore, on event E, one has:

RRLS
2  2X2DK,

where K is the (random) number of episodes. By
definition of TS, the updates are triggered either when
the det(Vt) increases by a factor 2 or when the length
of the episode is greater than ⌧ . Hence, the number of
update can be split into K = Kdet

+Klen, where Kdet

and Klen are the number of updates triggered by the
two conditions respectively. From Cor. 2, one gets:

K 
�
T/⌧ + (n+ d) log2(1 + TX2

(1 + C2
)/�)

�
,

and thus

RRLS
2  2X2D(n+ d) log2(1 + TX2

(1 + C2
)/�)| {z }

:=�2

T/⌧.

Plugging everything together. We are now ready
to bring all the regret terms together and obtain

R(T )  (2�↵+ �3)
TX

t=0

kztkV �1
t

1E
t

+ �2T/⌧

+ �1
p
T +

KX

k=1

Tk

�
RTS,1

t
k

+RTS,3
t
k

�
1E

t

k

At this point, the regret bound is decomposed into
several parts: 1) the first term can be bounded asPT

t=0 kztkV �1
t

=

˜O(

p
T ) on E using Prop. 4 (see

App. E for details) 2) two terms which are already
conveniently bounded as T/⌧ and

p
T , and 3) two

remaining terms from RTS that are almost exact mar-
tingales. In fact, Tk is random w.r.t. Ft

k

and thus the
terms TkR

TS,1
t
k

and TkR
TS,3
t
k

are not proper martingale
difference sequences. However, we can leverage on the
fact that on most of the episodes, the length Tk is not
random since the termination of the episode is trig-
gered by the (deterministic) condition Tk  ⌧ . Let
↵k = (RTS,1

t
k

+RTS,3
t
k

)1E
t

k

, Kdet and Klen two set of in-
dexes of cardinality Kdet and K len respectively, which
correspond to the episodes terminated following the
determinant or the limit condition respectively. Then,
we can write

KX

k=1

Tk↵k =

X

k2Kdet

Tk↵k + ⌧
X

k2Klen

↵k


X

k2Kdet

Tk↵k +

X

k2Klen

⌧↵k +

X

k2Kdet

⌧↵k +

X

k2Kdet

⌧k↵kk

 2⌧
X

k2Kdet

k↵kk + ⌧
KX

k=1

↵k.

The first term can be bounded using Lem. 6, which
implies that the number of episodes triggered by the
determinant condition is only logarithmic. On the other
hand the remaining term

PK
k=1 ↵k is now a proper

martingale and, together with the boundedness of ↵k

on event E, Azuma inequality directly holds. We obtain

KX

k=1

Tk

�
RTS,1

t
k

+RTS,3
t
k

�
1E

t

k

=

˜O(⌧
p
K).

w.p. 1� �/2. Grouping all higher-order terms w.r.t. to
T and applying Cor. 2 to bound K, we finally have

R(T )  C1
T

⌧
+ C2⌧

p
T/⌧ ,

where C1 and C2 are suitable problem-dependent con-
stants. This final bound is optimized for ⌧ = O(T 1/3

)

and it induces the final regret bound R(T ) = O(T 2/3
).

More details are reported in App. E.

5 Discussion

We derived the first frequentist regret for TS in LQ
control systems. Despite the existing results in LQ
for optimistic approaches (OFU-LQ), the Bayesian
analysis of TS in LQ, and its frequentist analysis in
linear bandit, we showed that controlling the frequen-
tist regret induced by the randomness of the sampling
process in LQ systems is considerably more difficult
and it requires developing a new line of proof that
directly relates the regret of TS and the controls exe-
cuted over time. Furthermore, we show that TS has
to solve a trade-off between frequently updating the
policy to guarantee enough optimistic samples and
reducing the number of policy switches to limit the
regret incurred at each change. This gives rise to a
final bound of O(T 2/3

). This opens a number of ques-
tions. 1) The current analysis is derived in the general
n/d-dimensional case except for Lem. 3 and the steps
leading to the introduction of the state in Sect. 4.4,
where we set n = d = 1. We believe that these steps
can be extended to the general case without affecting
the final result. 2) The final regret bound is in striking
contrast with previous results for TS. While we provide
a rather intuitive reason on the source of this extra
regret, it is an open question whether a different TS or
analysis could allow to improve the regret to O(

p
T )

or whether this result reveals an intrinsic limitation of
the randomized approach of TS.
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