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1 Proof of Proposition 1

Let Z = [0, 1] be an instance space with a contin-
uous marginal density p(z) (hence, has no atoms)
and let Y = {−1,+1} be the target set. Let h? :
Z → {−1,+1} be some fixed predictor, such that
p{h?(Z) = 1} = 1

2 , where the probability is evaluated
over the random choice of Z ∈ Z. In other words, the
marginal distribution of the labels predicted by h?(·)
is uniform1.

Next, let the hypothesis space H be the set of pre-
dictors from Z to {−1,+1} that output a label in
{−1,+1} uniformly at random everywhere in Z ex-
cept at a finite number of points. Therefore, the hy-
pothesis H : Z → {−1,+1} selected by the learning
algorithm is a predictor. Define the parametric loss by
L(Z;H) = I

{
H(Z) 6= h?(Z)

}
.

Next, we construct a learning algorithm L that gener-
alizes perfectly in expectation but it does not gener-
alize in probability. The learning algorithm L simply
picks one of H0

Sm
(·) or H1

Sm
(·) with equal probability,

where:

H0
Sm

(Z) =

{
−h?(Z) if Z ∈ Sm
Uniform(−1,+1) if Z /∈ Sm

H1
Sm

(Z) =

{
h?(Z) if Z ∈ Sm
Uniform(−1,+1) if Z /∈ Sm

Because Z is uncountable, where the probability
of seeing the same observation Z twice is zero,
Rtrue(H) = 1

2 for this learning algorithm. Thus:

Rgen(L) = ESm,H

[
Remp(H;Sm)−Rtrue(H)

]
= 0

However, the empirical risk for any Sm satisfies
Remp(H;Sm) ∈ {0, 1} while the true risk always sat-
isfies Rtrue(H) = 1

2 , as mentioned earlier. Hence, the
statement of the proposition follows.

1These assumptions are satisfied, for example, if p(z) is
uniform in [0, 1] and h?(Z) = I{Z < 1

2
}.

Finally, we prove that the algorithm does not general-
ize uniformly in expectation. There are, at least, two
ways of showing this. The first approach is to use
the equivalence between uniform generalization and
algorithmic stability as stated in Theorem 1. Given
the hypothesis H ∈ {H0

Sm
, H1

Sm
} learned by the al-

gorithm constructed here, the marginal distribution
of an individual training example p(Ztrn|H) is uni-
form over the sample Sm. This follows from the fact
that the hypothesis H has to encode the entire sam-
ple Sm. However, the probability of seeing the same
observation twice is zero (by construction). Hence,
||p(Ztrn) , p(Ztrn|H)||T = 1 for all H. This shows
that S(L) = 0 for all m ≥ 1, and the learning al-
gorithm is not stable. Therefore, by Theorem 1, it
does not generalize uniformly. Note that we used the
information-theoretic interpretation of uniform gener-
alization.

The second approach is to use the statistical in-
terpretation of uniform generalization. Let H ∈
{H0

Sm
, H1

Sm
} be the hypothesis inferred by the learn-

ing algorithm above, and consider the following differ-
ent parametric loss:

L(Z;Hk
Sm

) = I
{

(−1)k+1Hk
Sm

(Z) 6= h?(Z)
}

In other words, we flip the predictions of Hk
Sm

if
k = 0 and measure the misclassification loss after-
wards. Note that this is a parametric loss; it has a
bounded range and satisfies the Markov chain Sm →
H → L(·;H). However, the expected generalization
risk w.r.t. this parametric loss is Rgen(L) = 1

2 for all
m ≥ 1 because Remp(L) = 0 w.r.t. to this loss. There-
fore, L does not generalize uniformly in expectation2.

2We remark here that the Markov inequality cannot
be used to provide a concentration bound for the learning
algorithm in Proposition 1 even if the expected generaliza-
tion risk goes to zero because the quantity Remp(H;Sm)−
Rtrue(H) is not guaranteed to be non-negative. Indeed,
this is precisely why the learning algorithm L constructed
here generalizes in expectation but not in probability.
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2 Proof of Theorem 2

We will first prove the inequality when k = 2. First,
we write by definition:

J (Z; (H1, H2)) = ||p(Z,H1, H2) , p(Z) p(H1, H2)||T
Using the fact that the total variation distance is re-
lated to the `1 distance by ||P , Q||T = 1

2 ||P − Q||1,
we have:

J (Z; (H1, H2)) =
1

2

∣∣∣∣ p(Z,H1, H2)− p(Z) p(H1, H2)
∣∣∣∣
1

=
1

2

∣∣∣∣ p(Z,H1) p(H2|Z,H1)− p(Z) p(H1) p(H2|H1)
∣∣∣∣
1

=
1

2

∣∣∣∣ [p(Z,H1)− p(Z) p(H1)
]
· p(H2|H1)

+ p(Z,H1) ·
[
p(H2|Z,H1)− p(H2|H1)

] ∣∣∣∣
1

Using the triangle inequality:

J (Ztrn; (H1, H2))

≤ 1

2

∣∣∣∣∣∣[p(Z,H1)− p(Z) p(H1)
]
· p(H2|H1)

∣∣∣∣∣∣
1

+
1

2

∣∣∣∣∣∣p(Z,H1) ·
[
p(H2|Z,H1)− p(H2|H1)

]∣∣∣∣∣∣
1

The above inequality is interpreted by expanding the
`1 distance into a sum of absolute values of terms in
the product space Z×H1×H2, where Hk ∈ Hk. Next,
we bound each term on the right-hand side separately.
For the first term, we note that:

1

2

∣∣∣∣ [p(Z,H1)− p(Z) p(H1)
]
· p(H2|H1)

∣∣∣∣
1

=
1

2

∣∣∣∣ p(Z,H1)− p(Z) p(H1)
∣∣∣∣
1

= J (Z; H1)

(1)

The equality holds by expanding the `1 distance and
using the fact that

∑
H2
p(H2|H1) = 1.

However, the second term can be re-written as:

1

2

∣∣∣∣ p(Z,H1) ·
[
p(H2|Z,H1)− p(H2|H1)

] ∣∣∣∣
1

=
1

2

∣∣∣∣ p(H1) ·
[
p(H2, Z|H1)− p(Z|H1) p(H2|H1)

] ∣∣∣∣
1

= EH1

[
||p(H2, Z|H1) , p(Z|H1) p(H2|H1)||T

]
= J (Z; H2 |H1) (2)

Combining Eq. (1) and (2) yields the inequality:

J (Z; (H1, H2)) ≤ J (Z; H1) + J (Z; H2 |H1) (3)

Next, we use Eq. (3) to prove the general statement
for all k ≥ 1. By writing:

J (Z; (H1, . . . ,Hk)) ≤ J (Z; Hk | (H1, . . . ,Hk−1))

+ J (Z; (H1, . . . ,Hk−1))

Repeating the same inequality on the last term on the
right-hand side yields the statement of the theorem.

3 Proof of Proposition 2

We will use the following fact (Alabdulmohsin, 2015):

Fact 1 (Information Cannot Hurt). For any random
variables X,Y, Z:

J (X; Y ) ≤ J (X; (Y,Z))

Now, by the triangle inequality:

J (A; C |B) = EB ||p(A|B) · p(C|B) , p(A,C|B)||T
= EA,B ||p(C|B) , p(C|A,B)||T
≤ EA,B ||p(C|B) , p(C)||T

+ EA,B ||p(C) , p(C|A,B)||T
= EB ||p(C|B) , p(C)||T

+ EA,B ||p(C) , p(C|A,B)||T
= J (B; C) + J (C; (A,B))

Therefore:

J (C; (A,B)) ≥ J (A; C |B)− J (B; C)

Combining this with the following chain rule of Theo-
rem 2:

J (C; (A,B)) ≤ J (A; C |B) + J (B; C)

yields:∣∣∣J (C; (A,B))− J (A; C |B)
∣∣∣ ≤ J (B; C)

Or equivalently:∣∣∣J (A; (B,C))− J (A; C |B)
∣∣∣ ≤ J (A; B) (4)

To prove the other inequality, we use Fact 1. We have:

J (A; B) ≤ J (A; (B,C)) ≤ J (A; B) + J (A; C |B),

where the first inequality follows from Fact 1 and the
second inequality follows from the chain rule. Thus,
we obtain the desired bound:∣∣∣J (A; (B,C))− J (A; B)

∣∣∣ ≤ J (A; C |B) (5)

Both Eq. 4 and Eq. 5 imply that the chain rule is tight.
More precisely, the inequality can be made arbitrarily
close to an equality when one of the two terms in the
upper bound is chosen to be arbitrarily close to zero.

4 Proof of Theorem 3

We will use the following fact:
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Fact 2. Let f : X → [0, 1] be a function with a bounded
range in the interval [0, 1]. Let p1(x) and p2(x) be
two different probability measures defined on the same
space X . Then:∣∣∣EX∼p1(x)f(X)− EX∼p2(x)f(X)

∣∣∣ ≤ ||p1(x) , p2(x)||T

First, consider the following scenario. Suppose a
learning algorithm L generates a hypothesis H ∈ H
from some marginal distribution p(h) independently
of the sample Sm. Afterward, a sample Sm ∈ Zm
is observed, which comprises of m i.i.d. observations.
Then, L selects K ∈ K according to p(k|H,Sm).

In this scenario, we have:

J (Ztrn; (H,K)) = J (Ztrn; K |H),

where the equality follows from the chain rule in The-
orem 2, the statement of Proposition 2, and the fact
that J (Ztrn; H) = 0. The conditional variational in-
formation is written as:

J (Ztrn; K |H)

= EH ||p(Ztrn) · p(K|H) , p(Ztrn,K|H)||T ,

where we used the fact that p(Ztrn|H) = p(Ztrn).
Next, by marginalization, the conditional distribution
p(K|H) is given by:

p(K|H) = EZ′trn|H [p(K|Z ′trn, H)]

= EZ′trn [p(K|Z ′trn, H)].

where the expectation is taken with respect to the
marginal distribution of observations p(z). Similarly:

p(Ztrn,K|H) = p(Ztrn|H) · p(K|Ztrn, H)

= p(Ztrn) · p(K|Ztrn, H)

Therefore:

J (Ztrn; K |H)

= EHEZtrn
||EZ′trnp(K|Z

′
trn, H) , p(K|Ztrn, H)||T

Next, for every value of H that is generated indepen-
dently of the sample Sm, the variational information
between Ztrn ∼ Sm and K ∈ K can be bounded using
Theorem 3 in (Alabdulmohsin, 2015). This follows be-
cause H is selected independently of the sample Sm,
and, hence, the i.i.d. property of the observations Zi
continue to hold. Therefore, we obtain:

EHEZtrn
||EZ′trnp(K|Z

′
trn, H) , p(K|Ztrn, H)||T

= J (Ztrn; K |H)

≤
√

log |K|
2m

(6)

Because p(K|Ztrn, H) is arbitrary in our derivation,
the above bound holds for any distribution of obser-
vations p(z), any distribution p(h), and any family of
conditional distributions p(k|Ztrn, H).

Next, we return to the original setting where both H ∈
H and K ∈ K are chosen according to the sample Sm.
We have:

J (Ztrn; K |H)

= EH ||p(Ztrn|H) · p(K|H) , p(Ztrn,K|H)||T
= EH,Ztrn

||p(K|H) , p(K|Ztrn, H)||T
= EH,Ztrn

||EZ′trn|H [p(K|Z ′trn, H)] , p(K|Ztrn, H)||T
≤ EH,Ztrn

||EZ′trn|H [p(K|Z ′trn, H)] , EZ′trn [p(K|Z ′trn, H)]||T
+ EH,Ztrn

||EZ′trn [p(K|Z ′trn, H)] , p(K|Ztrn, H)||T
(7)

In the last line, we used the triangle inequality.

Next, we would like to bound the first term. Using the
fact that the total variation distance is related to the
`1 distance by ||P , Q||T = 1

2 ||P −Q||1, we have:

EH,Ztrn
||EZ′trn|H [p(K|Z ′trn, H)] , EZ′trn [p(K|Z ′trn, H)]||T

= EH ||EZ′trn|H [p(K|Z ′trn, H)] , EZ′trn [p(K|Z ′trn, H)]||T

=
1

2
EH

∑
K∈K

∣∣∣EZ′trn|H [p(K|Z ′trn, H)]− EZ′trn [p(K|Z ′trn, H)]
∣∣∣

≤ 1

2
EH

∑
K∈K

||p(Z ′trn|H) , p(Z ′trn||T

=
1

2

∑
K∈K

EH ||p(Z ′trn|H) , p(Z ′trn||T

=
1

2

∑
K∈K

J (Ztrn; H)

=
|K|
2
J (Ztrn; H) (8)

Here, the inequality follows from Fact 2.

Next, we bound the second term in Eq. 7. Using Fact
2 and our earlier result in Eq. 6:

EH,Ztrn ||EZ′trn [p(K|Z ′trn, H)] , p(K|Ztrn, H)||T
≤ J (Ztrn; H)

+ EHEZtrn
||EZ′trn [p(K|Z ′trn, H)] , p(K|Ztrn, H)||T

≤ J (Ztrn; H) +

√
log |K|

2m
(9)

Combining all results in Eq. 7, 8, and 9:

J (Ztrn; K |H) ≤ [1 +
|K|
2

]J (Ztrn; H) +

√
log |K|

2m
(10)

This along with the chain rule imply the statement of
the theorem.
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5 Proof of Theorem 4

Let L(·;H) be a parametric loss function and write:

κ(t) = p
{∣∣Remp(H;Sm)−Rtrue(H)

∣∣ ≥ t} (11)

Consider the new pair of hypotheses (H,K), where:

K =


+1, if Remp(H;Sm) ≥ Rtrue(H) + t

−1, if Remp(H;Sm) ≤ Rtrue(H)− t
0, otherwise

Then, by Theorem 3, the uniform generalization
risk in expectation for the composition of hypothe-

ses (H,K) is bounded by (7/2)J (Ztrn; H) +
√

log 3
2m .

This holds uniformly across all parametric loss func-
tions L′(·;H,K)→ [0, 1] that satisfy the Markov chain
Sm → (H,K)→ L′(·;H,K). Next, consider the para-
metric loss:

L′(Z;H,K) =


L(Z;H) if K = +1

1− L(Z;H) if K = −1

0 otherwise

Note that L′(·;H,K) is parametric with respect to the
composition of hypotheses (H,K). Using Eq. 11, the
generalization risk w.r.t L′(·;H,K) in expectation is,
at least, as large as t κ(t). Therefore, by Theorem 1
and Theorem 3, we have t κ(t) ≤ (7/2)J (Ztrn; H) +√

log 3
2m . Because J (Ztrn; H) ≤ 1− S(L) by definition,

the statement of the theorem immediately follows.

6 Proof of Proposition 3

Let I(X;Y ) denote the mutual information between
X and Y and let H(X) denote the Shannon entropy
of the random variable X measured in nats (i.e. using
natural logarithms). We write Sm = (Z1, . . . , Zm).
We have:

I(Sm;(H,K)) = H(Sm)−H(Sm | H,K)

=

m∑
i=1

H(Zi)−
m∑
i=1

H(Zi|H,K,Z1, . . . , Zi−1)

≥
m∑
i=1

H(Zi)−H(Zi|H,K)

= mI(Ztrn;H,K)

The second line is the chain rule for entropy and the
third lines follows from the fact that conditioning re-
duces entropy. We obtain:

I(Ztrn;H,K) ≤ I(Sm; (H,K))

m

By Pinsker’s inequality:

J (Ztrn; (H,K)) ≤
√
I(Ztrn; (H,K))

2
≤
√
I(Sm; (H,K))

2m

Using the chain rule for mutual information:

J (Ztrn; (H,K)) ≤
√
I(Sm; (H,K))

2m

=

√
I(Sm;H) + I(Sm;K|H)

2m

≤
√
I(Sm;H) + H(K)

2m

≤
√
I(Sm;H) + log |K|

2m

The desired bound follows by applying the same proof
technique of Theorem 4 on the last uniform general-
ization bound, and using the fact that log 3 < 2.

7 Proof of Corollary 1

First, we note that for any two adjacent samples S and
S′, we have:

p(H|S)− p(H|S′) ≤ (eε − 1) p(H|S′) + δ

This follows by definition of differential privacy. Sim-
ilarly, we have:

p(H|S)− p(H|S′) ≥ (e−ε − 1) p(H|S′)− e−εδ

= −
[
(1− e−ε) p(H|S′) + e−εδ

]
≥ −eε

[
(1− e−ε) p(H|S′) + e−εδ

]
= −

[
(eε − 1)p(H|S′) + δ

]
Both results imply that:∣∣p(H|S)− p(H|S′)

∣∣ ≤ (eε − 1)p(H|S′) + δ (12)

Writing:

J (Ztrn; H) = ||p(Ztrn, H) , p(Ztrn) · p(H)||T
= EZtrn ||p(H|Ztrn) , p(H)||T

=
1

2
EZtrn

∣∣∣∣∣∣EZ′trn[p(H|Ztrn)− p(H|Z ′trn)
]∣∣∣∣∣∣

1

≤ 1

2
EZtrn,Z′trn

∣∣∣∣∣∣p(H|Ztrn)− p(H|Z ′trn)
∣∣∣∣∣∣
1

The last inequality follows by convexity. Next, let
Sm−1 be a sample that contains m − 1 observations
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drawing i.i.d. from p(z). Then:

J (Ztrn; H) ≤ 1

2
EZtrn,Z′trn

∣∣∣∣∣∣p(H|Ztrn)− p(H|Z ′trn)
∣∣∣∣∣∣
1

=
1

2
EZtrn,Z′trn

∣∣∣∣∣∣ESm−1

[
p(H|Ztrn, Sm−1)

− p(H|Z ′trn, Sm−1)
]∣∣∣∣∣∣

1

≤ 1

2
ES,S′

∣∣∣∣∣∣p(H|S)− p(H|S′)
∣∣∣∣∣∣
1
,

where S, S′ are two adjacent samples.

Next, we expand the `1 distance and use Eq 12:

J (Ztrn; H) ≤ 1

2
ES,S′

∣∣∣∣∣∣p(H|S)− p(H|S′)
∣∣∣∣∣∣
1

=
1

2
ES,S′

∑
H∈H

∣∣p(H|S)− p(H|S′)
∣∣

≤ 1

2
ES,S′

∑
H∈H

[
(eε − 1)p(H|S′) + δ

]
=
eε − 1 + δ

2

Finally, the desired bound follows by combining the
last inequality with Theorem 4.

8 Proof of Corollary 2

It has been shown in Alabdulmohsin (2015) that the
supremum generalization risk is achieved (arbitrarily
well) using the following binary-valued loss:

L?(z;H) = I
{
p(Ztrn = z|H) ≥ p(Ztrn = z)

}
(13)

Therefore, if an algorithm is (ε, δ) robustly generaliz-
ing, let the adversary A (or equivalently the paramet-
ric loss L(·;H)) be fixed to the one given by Eq. 13.
Hence, we have by definition of robust generalization:

p
{∣∣EZ∼p(z)L?(Z;H)− 1

m

∑
Zi∈S

L?(Zi;H)
∣∣ ≤ ε} ≥ 1−δ,

(14)
Therefore:∣∣∣ES,H[EZ∼p(z)L?(Z;H)− 1

m

∑
Zi∈S

L?(Zi;H)
]∣∣∣ ≤ ε+ δ

Because L?(·;H) achieves the maximum possible
generalization risk in expectation (Alabdulmohsin,
2015), we have the uniform generalization bound
J (Ztrn; H) ≤ ε+δ. Hence, (ε, δ) robust generalization
implies a uniform generalization at the rate ε+ δ.

The proof of the converse follows from our concentra-
tion bound in Theorem 4, which shows that uniform
generalization in expectation implies a generalization
in probability. In particular, any algorithm that gen-
eralizes uniformly with rate τ is (ε, γ) robustly gener-
alizing, with γ = (7/2)(τ +

√
log 3/(49m))/ε.

9 Proof of Theorem 5

Before we prove the statement of the theorem, we be-
gin with the following lemma:

Lemma 1. Let the observation space Z be the in-
terval [0, 1], where p(z) is continuous in [0, 1]. Let
H ⊆ Sm : |H| = k be a set of k examples picked
at random without replacement from the sample Sm.
Then J (Ztrn; H) = k

m .

Proof. First, we note that p(Ztrn|H) is a mixture of
two distributions: one that is uniform in H with prob-
ability k/m, and the original distribution p(z) with
probability 1 − k/m. By Jensen’s inequality, we have
J (Ztrn; H) ≤ k/m. Second, let the parametric loss
be L(·;H) = I{Z ∈ H}. Then, |Rgen(L)| = k

m . By
Theorem 1, we have J (Ztrn; H) ≥ |Rgen(L)| = k/m.
Both bounds imply the statement of the lemma.

Now, we prove Theorem 5. Consider the example
where Z = [0, 1] and suppose that the observations
Z ∈ Z have a continuous marginal distribution. Be-
cause t is a rational number, let the sample size m be
chosen such that k = tm is an integer.

Let {Z1, . . . , Zm} be the training set, and let the hy-
pothesis H be given by H = {Z1, . . . , Zk} with some
probability δ > 0 and H = {} otherwise. Here, the
k instances Zi ∈ H are picked uniformly at random
without replacement from the sample Sm. To deter-
mine the variational information between Ztrn and H,
we consider the two cases:

1. If H 6= {}, then ||p(Ztrn) , p(Ztrn|H)||T = t as
proved in Lemma 1. This happens with probabil-
ity δ by construction.

2. If H = {} then p(Ztrn|H) = p(Ztrn). Hence, we
have ||p(Ztrn) , p(Ztrn|H = {})||T = 0. This
happens with probability 1− δ.

So, by combining the two cases above, we deduce that:

J (Ztrn; H) = EH ||p(Ztrn) , p(Ztrn | H)||T = t δ.

Therefore, L generalizes uniformly with the rate tδ.
Next, let the loss L(·;H) be given by L(Z ; H) =
I
{
Z ∈ H

}
. With this loss:

p
{∣∣Remp(H;Sm)−Rtrue(H)

∣∣ = t
}

= δ

=
J (Ztrn; H)

t
,

which is the statement of the theorem.
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10 Proof of Proposition 4

This proposition is proved in Corollary 1.
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