
Generalized Pseudolikelihood Methods for
Inverse Covariance Estimation

Alnur Ali Kshitij Khare Sang-Yun Oh Bala Rajaratnam
Machine Learning Dept.

Carnegie Mellon University
alnurali@cmu.edu

Dept. of Statistics
University of Florida

kdkhare@stat.ufl.edu

Dept. of Stats. and Applied Prob.
UC Santa Barbara

syoh@pstat.ucsb.edu

Dept. of Statistics
UC Davis

brajaratnam01@gmail.com

This document contains proofs and supplementary details for the paper “Generalized Pseudolikelihood Methods
for Inverse Covariance Estimation”. All section, equation, table, and figure numbers in this supplementary
document are preceded by the letter S (all section, equation, table, and figure numbers without an S refer to the
main paper).

S.1 COMPUTATIONAL ASPECTS OF THE PseudoNet ESTIMATOR

S.1.1 Proximal gradient method for computing the PseudoNet estimate

In Algorithm 1 below, we fully specify our proximal gradient method for computing the PseudoNet estimate (it
is straightforward give an accelerated proximal gradient method as well). Assuming the iterates are sparse, the
computational cost of each iteration of Algorithm 1 is dominated by computing the soft-thresholding operator,
and therefore costs O(p2).

Algorithm 1 Proximal gradient method for computing the PseudoNet estimate

Input: data matrix X ∈ Rn×p, tuning parameters λ1, λ2 > 0
Output: estimate Ω̂net

initialize starting point Ω ∈ Sp++ (the space of p× p positive definite matrices); optimization tolerance ε > 0;
line search parameters τinit, β ∈ (0, 1)
repeat

compute ∇g(Ω), using Equation 4
choose τ via backtracking line search as follows

set τ ← τinit

set Ω̃← prox(λ1τ)h(Ω− τ∇g(Ω)) using Equation 3

while g(Ω̃) ≥ g(Ω)−Tr
(

(∇g(Ω))T (Ω− Ω̃)
)

+ 1
2τ ‖Ω− Ω̃‖2F do

update Ω̃← prox(λ1τ)h(Ω− τ∇g(Ω))
update τ ← βτinit

end while
output τ

update Ω← prox(λ1τ)h(Ω− τ∇g(Ω))
until stopping criterion is satisfied, i.e., ‖∇g(Ω) + z‖F /‖Ω‖F ≤ ε (z is any subgradient of h evaluated at Ω)
output Ω̂net = Ω
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S.1.2 Choice of tuning parameters

Here, we give a way to choose the tuning parameters λ1 and λ2 in the PseudoNet optimization problem (1).
We propose choosing these parameters by selecting the (λ1, λ2) pair that minimizes the following Bayesian
information criterion-like score over a grid of tuning parameter values:

Bic(λ1, λ2) =

p∑
j=1

Bic(λ1, λ2, j), (S.1)

where

Bic(λ1, λ2, j) = n log rss(λ1, λ2, j) + log n×
∣∣∣{` : ` ∈ {1, . . . , p}, ` 6= j, Ω̂net

j` (λ1, λ2) 6= 0
}∣∣∣ ,

rss(λ1, λ2, j) =

n∑
i=1

Xij −
p∑
k 6=j

Ω̂net
jk (λ1, λ2)

Ω̂net
jj (λ1, λ2)

Xik

2

,

and Ω̂net(λ1, λ2) is the solution of the PseudoNet optimization problem (1) for a particular λ1 and λ2. This
method is simple to implement and computationally inexpensive, especially when combined with the screening
rules that we described in Section S.1.4, and which we elaborate on below.

S.1.3 Sequential strong screening rules for PseudoNet

Lemma 2.1, presented in the main paper, forms the foundation for our screening rules; its proof is given below.
We also provide an algorithmic specification of our screening rules in Algorithm 2.

Sequential strong rules build on the work of Banerjee et al. (2008, Theorem 4), who first observed that variables
can be dropped from their particular optimization problem by arguing from their dual problem and block
coordinate descent procedure. Mazumder and Hastie (2012) also derive screening rules for the GLasso by
arguing from the GLasso’s optimality conditions. Although all of these rules are safe, i.e., they do not commit
violations, we unfortunately do not use block coordinate descent to compute the PseudoNet estimate, and a
careful inspection of PseudoNet’s optimality conditions reveals that these conditions are not separable in the
entries of Ω̂net, making the framework of Tibshirani et al. (2012) more appropriate here.

Algorithm 2 Sequential strong screening rules for PseudoNet

Input: data matrix X ∈ Rn×p; nonincreasing sequences of tuning parameters (λ
(k)
1 )rk=1, (λ

(`)
2 )s`=1

Output: estimates Ω̂net(λ
(k)
1 , λ

(`)
2 ), k = 1, . . . , r, ` = 1, . . . , s

for ` = 1, . . . , s do

compute Ω̂net(λ
(1)
1 , λ

(`)
2 ) using Equation 1 with λ

(1)
1 , λ

(`)
2

for k = 2, . . . , r do

compute N , the set of nonzero variables, using Equation 6 with Ω̂net(λ
(k−1)
1 , λ

(`)
2 ), λ

(k−1)
1 , λ

(`)
2

repeat

compute Ω̂net(λ
(k)
1 , λ

(`)
2 ) using Equation 1 with N,λ

(k)
1 , λ

(`)
2

check (all variables) for violations using the optimality conditions for (1) (see Equation S.2)
add any violating variables back into N

until there are no violations
output Ω̂net(λ

(k)
1 , λ

(`)
2 )

end for
end for

S.1.4 Proof of Lemma 2.1

Proof. By considering the gradient of the smooth term in the objective of the PseudoNet optimization problem
(1), given by (4), in a componentwise fashion, we can express the optimality conditions for (1), evaluated at the
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off-diagonal entries of Ω̂net
ij (λ

(k)
1 , λ

(`)
2 ), as∣∣∣Cij(λ(k)
1 , λ

(`)
2 )
∣∣∣ ≤ λ(k)

1 if Ω̂net
ij (λ

(k)
1 , λ

(`)
2 ) = 0

Cij(λ
(k)
1 , λ

(`)
2 ) = λ

(k)
1 if Ω̂net

ij (λ
(k)
1 , λ

(`)
2 ) > 0

Cij(λ
(k)
1 , λ

(`)
2 ) = −λ(k)

1 if Ω̂net
ij (λ

(k)
1 , λ

(`)
2 ) < 0.

(S.2)

Now assume that
∣∣∣Cij(λ(k−1)

1 , λ
(`)
2 )
∣∣∣ < 2λ

(k)
1 − λ(k−1)

1 . Then we have that∣∣∣Cij(λ(k)
1 , λ

(`)
2 )
∣∣∣ ≤ ∣∣∣Cij(λ(k)

1 , λ
(`)
2 )− Cij(λ(k−1)

1 , λ
(`)
2 )
∣∣∣+
∣∣∣Cij(λ(k−1)

1 , λ
(`)
2 )
∣∣∣

< |λ(k)
1 − λ(k−1)

1 |+ 2λ
(k)
1 − λ(k−1)

1

= λ
(k)
1 ,

with the first inequality following by the triangle inequality; the second by the assumptions that the Cij are
nonexpansive and nonincreasing, as well as by the assumption in the statement of the lemma; and the third

because we assumed that λ
(k−1)
1 ≥ λ(k)

1 . By checking (S.2), this implies that Ω̂net
ij (λ

(k)
1 , λ

(`)
2 ) = 0 is a solution.

S.2 ADDITIONAL NUMERICAL RESULTS FOR THE SYNTHETIC
EXAMPLES

We present the variable selection accuracies and estimation errors for PseudoNet and CONCORD on the synthetic
data described in Section 3.1, with p = 1000, In Table S.1. We also present the percentages of variables that our
screening rules suggest dropping, as well as the percentages of violations, on this same data (i.e., with p = 1000
again) in Figure S.1. (We presented these results with p = 3000 in Section 3.1 of the main paper.)

Our experimental settings correspond to ultimately running PseudoNet and CONCORD 145,200 and 6,600 times
and estimating p(p+1)/2 = 500, 500 and 4, 501, 500 parameters, respectively. Computing the mean across λ1, λ2

gave similar results.

n = 200 n = 400 n = 800
PseudoNet CONCORD PseudoNet CONCORD PseudoNet CONCORD

AUC
Median 0.68 0.65 0.81 0.73 0.91 0.86
IQR 0.02 0.01 0.01 0.01 0.01 0.01

Squared Frobenius norm
Median 6391.48 20150.68 5722.84 18805.59 4205.49 14990.35
IQR 84.70 513.99 26.18 245.65 18.22 192.78

`2 operator norm
Median 2.51 5.17 2.41 5.07 2.56 5.84
IQR 0.01 0.06 0.01 0.03 0.01 0.03

Elementwise `1 norm
Median 17480.45 35959.79 21640.10 46951.74 21749.16 51526.46
IQR 65.71 323.46 35.01 240.09 26.38 276.32

Elementwise `∞ norm
Median 1.34 2.93 1.06 2.32 0.67 1.38
IQR 0.01 0.04 0.01 0.02 0.01 0.03

Wallclock time (secs.)
Median 73.72 103.23 40.76 71.02 14.60 20.46
IQR 3.23 41.53 1.76 29.54 0.70 7.08

Table S.1: Median and interquartile range for PseudoNet and CONCORD’s areas under the curves (AUCs), estimation
errors in several matrix norms, and wallclock times (p = 1000). Higher median AUC is better, lower median estimation
error and wallclock time is better; best in bold. PseudoNet outperforms CONCORD across all sample sizes and metrics.

S.3 ADDITIONAL NUMERICAL RESULTS FOR THE MINIMUM
VARIANCE PORTFOLIO OPTIMIZATION EXAMPLE

In addition to the numerical results given in the main paper, we consider here the realized risk and Sharpe ratios
for various estimators and estimation horizons, after accounting for borrowing costs (at an 8% annual percentage
rate) and transaction costs (at 0.5% of the principal); Tables S.2 and S.3 present the results, and we generally
see the same trends as in the main paper. PseudoNet achieves the lowest risk when the estimation horizon is
small, and otherwise is within 5% of the lowest risk. PseudoNet also achieves the highest Sharpe ratio four (out
of eight) times, and is otherwise within 5% of the highest Sharpe ratio.
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Figure S.1: Percentages of dropped variables excluding diagonal entries (dashed line, right vertical axes) and violations
(solid line, left vertical axes) for PseudoNet’s screening rules (λ2 = 1, p = 1000); first column is n = 0.2p, second is
n = 0.4p, third is n = 0.8p. The rules never commit a violation.

H PseudoNet CONCORD Sample GLasso CondReg Ledoit

35 14.98 16.75 33.70 16.29 17.61 15.32
40 14.79 16.73 26.46 16.27 17.54 15.21
45 14.98 16.75 23.13 16.28 17.43 15.21
50 14.77 16.73 20.87 16.10 17.39 15.15
75 14.82 16.76 17.25 15.38 16.98 14.91
150 14.81 16.80 15.18 14.74 16.17 14.45
225 14.85 16.81 14.77 14.64 15.85 14.29
300 14.96 16.86 14.74 14.73 15.88 14.29

Table S.2: Realized risk for various estimators and estimation horizons H, after accounting for borrowing and transaction
costs, in the portfolio optimization example. Lower is better; best in bold. PseudoNet is best 5/8 times.

Qualitatively, we find that, although PseudoNet does provide sparse estimates, these estimates are usually
somewhat denser than those provided by CONCORD (as expected); Figure S.2 plots these estimates (from a
randomly chosen investment horizon and trading period). Thus, owing to its (comparatively) denser and better
estimates, PseudoNet can reduce risk by hedging, for example, by taking a short position in a stock whose returns
are negatively correlated with another stock that it also takes a long position in. To this end, we consider the size
of the short side of a portfolio x ∈ Rp, which is defined as the ratio of the magnitude of all the short positions
in the portfolio to the magnitude of the portfolio, expressed as a percentage, i.e.,

100×

(
p∑
i=1

min{xi, 0}

)
/

(
p∑
i=1

|xi|

)
.

Table S.4 presents the size of the short side, averaged over all trading periods, for various estimators and
estimation horizons, and we indeed see that the size of PseudoNet’s short side is larger than CONCORD’s,
GLasso’s, and CondReg’s.

S.4 SUSTAINABLE ENERGY APPLICATION

Here, we present an evaluation of PseudoNet on the task of recovering the conditional independencies
between several wind farms on the basis of historical wind power measurements at these farms; wind
power is naturally intermittent (as are many renewable resources), and thus understanding the relation-
ships between wind farms can help operators forecast, plan, and dispatch. We obtained hourly wind
power measurements from July 1, 2009 through September 14, 2010 (440 days) at seven wind farms from
http://www.kaggle.com/c/GEF2012-wind-forecasting; see Hong et al. (2014) for further details, as well as
a summary of a recent Kaggle competition based on this data. Each group of 48 columns in the data set cor-
responds to two days (i.e., 48 hours) of hourly wind power measurements at a particular farm; to model the
nonlinear relationship between wind power at different locations, we consider five radial basis function kernels
spread evenly and evaluated at each hourly measurement (see, for example, Wytock and Kolter (2013); Ali et al.
(2016) for a similar approach). Thus, p = 7 × 48 × 5 = 1680. Each row in the data set considers wind power
measurements starting 12 hours after the (start of the) previous row; for example, the first row considers wind
power measurements from 1:00 pm on July 1, 2009 through 12:00 pm on July 3, 2009, the second row from 1:00
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H PseudoNet CONCORD Sample GLasso CondReg Ledoit

35 0.47 0.42 0.35 0.42 0.42 0.44
40 0.46 0.42 0.50 0.43 0.43 0.41
45 0.40 0.41 0.30 0.40 0.41 0.36
50 0.43 0.42 0.23 0.40 0.41 0.38
75 0.41 0.40 0.36 0.34 0.40 0.33
150 0.42 0.42 0.27 0.33 0.43 0.36
225 0.46 0.45 0.33 0.33 0.48 0.38
300 0.49 0.45 0.32 0.32 0.44 0.37

Table S.3: Sharpe ratios for various estimators and estimation horizons H, after accounting for borrowing and transaction
costs, in the portfolio optimization example. Higher is better; best in bold. PseudoNet is best 4/8 times.

Figure S.2: Estimates provided by PseudoNet (left) and CONCORD (right); darker means larger in magnitude.

am on July 2, 2009 through 12:00 am on July 4, 2009, and the last row from 1:00 am on September 12, 2010
through 12:00 am on September 14, 2010. Thus, n = 877. Computing the PseudoNet estimate here therefore
corresponds to learning the structure of a spatiotemporal graphical model.

The left panel of Figure S.3 presents the PseudoNet estimate’s sparsity pattern. The nonzero super- and sub-
diagonal entries suggest that at any wind farm the previous hour’s wind power (naturally) influences the next
hour’s, while the nonzero off-diagonal entries, for example, in the (4,6) block, uncover farms that may influence
one another: for example, farms 4 and 6 may be nearby, or (perhaps more interestingly) they may not be
nearby1. Wytock and Kolter (2013), whose method placed fifth in the Kaggle competition, as well as Ali et al.
(2016) report similar findings (see the left panel of Figure 7 as well as Figure S.3, respectively, in these papers).
The right panel of Figure S.3 evaluates PseudoNet’s screening rules on this data set: the rules never commit a
violation.

S.5 PROOF OF LEMMA 4.1

We prove this result by first establishing, in the following lemma, that the gradient of the smooth term in the
objective in the PseudoNet optimization problem (1), ∇g, is Lipschitz continuous. The squared Frobenius norm
penalty in the PseudoNet optimization problem (1) makes doing this much cleaner, letting us move completely
away from the strategy used in Oh et al. (2014, Theorem 3.1).

Lemma S.5.1. Suppose (Ω(i))ki=0 is a sequence of PseudoNet iterates with nonincreasing objective value. Let
Ω be any of the iterates here. Also, let L = 1/`2 + ‖S‖2 + λ2, with ‖ · ‖2 denoting the `2 operator norm

1The true wind farm locations are censored in the data set.
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H PseudoNet CONCORD Sample GLasso CondReg Ledoit

35 6.91 0.06 41.13 0.63 1.77 20.50
40 6.80 0.06 38.64 0.67 1.91 20.45
45 6.64 0.05 36.89 0.83 2.21 20.31
50 6.60 0.04 35.46 1.36 2.43 20.33
75 5.93 0.04 30.89 8.60 4.11 20.13
150 5.74 0.02 25.65 23.34 7.58 19.60
225 5.59 0.01 23.68 23.35 9.34 19.26
300 5.22 0.00 22.45 22.43 9.41 18.85

Table S.4: Average size of the short side for various estimators and estimation horizons H in the portfolio optimization
example.
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Figure S.3: Left: sparsity pattern for the PseudoNet estimate (black means nonzero, and each block corresponds to
a wind farm). Right: percentages of dropped variables excluding diagonal entries (dashed line, right vertical axes) and
violations (solid line, left vertical axes) for PseudoNet’s screening rules (λ2 = 1); the rules never commit a violation.

(maximum singular value), and let ` be a constant that uniformly lower bounds Ωii, i = 1, . . . , p. Then we get
that ∇2g(Ω) � LIp2×p2 .

Proof. Let Jnet be the objective in the PseudoNet optimization problem (1). Then we have that

−
p∑
i=1

log Ωii + (λ2/2)

p∑
i=1

Ω2
ii ≤ Jnet(Ω

(0)),

since the `1 term in the objective in (1) is nonnegative, and the trace term can be expressed as a nonnegative
quadratic form. The lefthand side here approaches ∞ as either Ωii →∞ or Ωii → 0, i.e., Ωii must be uniformly
bounded away from ∞ and 0 by some u and `, respectively, for i = 1, . . . , p, owing to the righthand side of the
expression. Thus, we can upper bound the eigenvalues of (5) with

1/`2 + ‖S‖22 + λ2,

as claimed.

Obtaining linear convergence is now immediate. As g is smooth, the conclusion in Lemma S.5.1 is equivalent to
∇2g(Ω) � LIp2×p2 ⇐⇒ ‖∇g(Ω)−∇g(Ω̃)‖F ≤ L‖Ω − Ω̃‖F , where Ω̃ ∈ Sp++, and L = 1/`2 + ‖S‖2 + λ2. Now,
since g is also λ2-strongly convex, the claim follows by Schmidt et al. (2011, Proposition 3). �
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S.6 SATURATION RESULTS

The statement and proof of Theorem 4.4 make use of a matrix A ∈ Rnp×p(p−1)/2 containing the columns of the
data matrix X arranged in a particular fashion; this matrix is defined as

A = −


X2 X3 X4 · · · Xp−1 Xp 0 · · · 0
X1 0 · · · 0 X3 X4 X5 · · · Xp−1 Xp 0 · · · 0
0 X1 0 · · · 0 X2 0 · · · 0 X4 X5 X6 · · · Xp−1 Xp 0 · · · 0

.

.

.
0 · · · 0 X1 0 · · · 0 X2 0 · · · 0 X3 0 · · · 0 Xp−1

 .

In order to make the statement and proof of Corollary 4.5 clearer, we also describe the SPLICE and SPACE es-
timators in more detail here.

We can obtain a SPLICE estimate by first minimizing the following objective, alternately over the variables
D ∈ Rp×p and B ∈ Rp×p, where D is a diagonal matrix and the diagonal entries of the matrix B are set to zero,

−1

2
log detD +

1

2

p∑
i=1

1

D2
ii

‖Xi −X−i(Bi·)T ‖22 + λ1‖B‖1, (S.3)

where X−i denotes the data matrix X after removing the ith column, and Bi· here means the ith row of B after
removing the entry Bii; then, for any iteration i, we compute the estimate

Ω̂spl,(i) = (D̂(i−1))−2(I − B̂(i)), (S.4)

with Ω̂spl,(i) referring to the estimate at the end of the ith iteration (D̂(i−1) and B̂(i) are interpreted similarly).

Turning to SPACE, we can compute a SPACE estimate by minimizing the following objective, alternately over
the variables Ωdiag and Ωoff,

− (1/2) log det Ωdiag + λ1‖Ωoff‖1 + (1/2)

p∑
i=1

Ωdiag,ii

∥∥∥∥∥∥Xi −
p∑
j 6=i

Ωoff,ij

√
Ωdiag,jj

Ωdiag, ii
Xj

∥∥∥∥∥∥
2

2

, (S.5)

where Ωdiag,ii refers to the (i, i)th entry of Ωdiag (Ωoff,ij is interpreted similarly). As a reminder, Ωdiag ∈ Rp×p

is a matrix of the diagonal entries of Ω, with its off-diagonal entries set to zero; Ωoff ∈ Rp×p is a matrix of
the off-diagonal entries of Ω, with its diagonal entries set to zero; and we form the SPACE estimate, for any

iteration i, as Ω̂spc,(i) = Ω̂
(i)
diag + Ω̂

(i)
off . To be clear, the superscripts involving i here are interpreted just as

with SPLICE above (also, we note that in the optimization problem (S.5), we have set the “weights” for each
regression subproblem i to Ωdiag,ii, as recommended by Peng et al. (2009)).

Since the objectives in the defining optimization problems for many pseudolikelihood-based estimators include
terms that go beyond pure lasso regressions, it is perhaps not clear that pseudolikelihood-based estimators can
also saturate.

S.6.1 Proof of Theorem 4.4

Proof. We proceed by first showing that there exists a CONCORD estimate that saturates; then we show that
the PseudoNet estimate does not saturate.

A CONCORD estimate is defined as a solution to the following (convex) optimization problem:

minimize
Ω∈Rp×p

−(1/2) log det(Ω2
diag) + (n/2)TrSΩ2 + λ1‖Ωoff‖1, (S.6)

where, as a reminder, Ωdiag ∈ Rp×p is a matrix of the diagonal entries of Ω, with its off-diagonal entries set
to zero; S ∈ Rp×p is the sample covariance matrix, i.e., S = (1/n)XTX, and X ∈ Rn×p is a data matrix;
Ωoff ∈ Rp×p is a matrix of the off-diagonal entries of Ω, with its diagonal entries set to zero; λ1 is a tuning
parameter; and ‖ · ‖1 is the elementwise `1 norm.
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Letting

J̃con(Ωdiag) = inf
Ωoff

(1/2)

p∑
i=1

∥∥∥∥∥∥
p∑
j=1

ΩijXj

∥∥∥∥∥∥
2

2

+ λ1‖Ωoff‖1, (S.7)

we see that the optimization problem (S.6) above is equivalent to

minimize
Ωdiag

−(1/2) log det(Ω2
diag) + J̃con(Ωdiag).

Next, define

b =


Ω11X1

Ω22X2

Ω33X3

...
ΩppXp

 , ω =



Ω12

Ω13

...
Ω1p

Ω23

Ω24

...
Ω2p

Ω34

Ω35

...
Ω3p

...
Ωp−1,p



,

i.e., b ∈ Rnp and ω = vechΩ ∈ Rp(p−1)/2.

Then we can express (S.7) as
inf
ω

(1/2)‖b−Aω‖22 + λ1‖ω‖1, (S.8)

which is evidently a lasso problem with variable ω.

Then, by Tibshirani (2013, Lemma 14), for any b, A, and λ1 > 0, there exists a solution ω̂(Ωdiag) of (S.8) (note
that we have written here the solution ω̂ as a function of Ωdiag to emphasize the dependence on Ωdiag) that will
have at most min{np, p(p− 1)/2} nonzero entries for any value of Ωdiag; thus, when p� n, card ω̂(Ωdiag) ≤ np,
as claimed. The final claim in the statement of the result follows by invoking Tibshirani (2013, Lemma 3).

Now, turning to the PseudoNet optimization problem (1), we have that the trace plus the squared Frobenius
norm penalty in the objective in (1) can be expressed as

(n/2)TrSΩ2 + (λ2/2)

p∑
i,j=1

Ω2
ij = (1/2)

p∑
i=1

ΩTi X
TXΩi + (λ2/2)

p∑
i=1

ΩTi Ωi

= (1/2)

p∑
i=1

ΩTi
(
XTX + λ2I

)
Ωi

= (1/2)

p∑
i=1

∥∥∥∥∥∥
p∑
j=1

Ωij

[
Xj√
λ2ej

]∥∥∥∥∥∥
2

2

,

(S.9)

where, as a reminder, ei is the ith standard basis vector in Rp.

Thus, following a similar argument as above, we can express (1) as a lasso problem with variable ω ∈ Rp(p−1)/2,

A ∈ Rp(n+p)×p(p−1)/2, and b ∈ Rp(n+p); however, in this case, the solution ω̂(Ωdiag) can have p(p−1)/2 nonzeros,
as claimed.
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S.6.2 Proof of Corollary 4.5

Proof. We prove these results by following a strategy similar to the one we used in the proof of Theorem 4.4.
Note that, at the end of some iteration i − 1, we can consider the variables D (for SPLICE) and Ωdiag (for
SPACE) fixed, and then optimize over B (for SPLICE) and Ωoff (for SPACE). Accordingly, we let (for SPLICE)

b
(i−1)
spl =


(1/D̂

(i−1)
11 )X1

(1/D̂
(i−1)
22 )X2

(1/D̂
(i−1)
33 )X3

...

(1/D̂
(i−1)
pp )Xp

 , ωspl =


(B1·)

T

(B2·)
T

(B3·)
T

...
(Bp·)

T

 ,

A
(i−1)
spl =


(1/D̂

(i−1)
11 )X−1 0 0 0 · · · 0

0 (1/D̂
(i−1)
22 )X−2 0 0 · · · 0

0 0 (1/D̂
(i−1)
33 )X−3 0 · · · 0

...

0 0 0 0 · · · (1/D̂
(i−1)
pp )X−p

 ,

i.e., b
(i−1)
spl ∈ Rnp, ωspl ∈ Rp(p−1), and A

(i−1)
spl ∈ Rnp×p(p−1). We also let (for SPACE)

b(i−1)
spc =



√
Ω̂

(i−1)
11 X1√

Ω̂
(i−1)
22 X2√

Ω̂
(i−1)
33 X3

...√
Ω̂

(i−1)
pp Xp


, ωspc =



Ω12

Ω13

...
Ω1p

Ω23

Ω24

...
Ω2p

Ω34

Ω35

...
Ω3p

...
Ωp−1,p



,

A
(i−1)
spc =



X̃2 X̃3 X̃4 · · · X̃p − 1 X̃p 0 · · · 0

X̃1 0 · · · 0 X̃3 X̃4 X̃5 · · · X̃p − 1 X̃p 0 · · · 0

0 X̃1 0 · · · 0 X̃2 0 · · · 0 X̃4 X̃5 X̃6 · · · X̃p − 1 X̃p 0 · · · 0

.

.

.

0 · · · 0 X̃1 0 · · · 0 X̃2 0 · · · 0 X̃3 0 · · · 0 X̃p − 1

 ,

where we write X̃j =
√

Ω̂
(i−1)
jj Xj ; so, b

(i−1)
spc ∈ Rnp, ωspc ∈ Rp(p−1)/2, and A

(i−1)
spc ∈ Rnp×p(p−1)/2. Applying

Tibshirani (2013, Lemma 14) as before, and noting that applying (S.4) does not affect the sparsity pattern of
B̂(i) for SPLICE, gives the required results.

S.7 STATEMENT OF REGULARITY CONDITIONS FOR AND PROOF OF
THEOREM 4.2

S.7.1 Statement of regularity conditions for Theorem 4.2

Below, we state the regularity conditions required to establish the consistency of PseudoNet. The conditions are
similar those required in Khare et al. (2015), which are in turn similar to those in Peng et al. (2009), except
that here we must additionally control how the new tuning parameter λ2 grows with n. When it is particularly
helpful to emphasize the dependence of the tuning parameters λ1 and λ2 on n, we write λ1,n = λ1 and λ2,n = λ2.
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i. Sub-Gaussian rows. We require that the rows of the data matrix X are i.i.d. sub-Gaussian random vectors,
i.e., there exists a constant c ≥ 0 such that, for all t ∈ Rp, we have that E exp(tTXi·) ≤ exp((c2/2)tT t), i =
1, . . . , n, where, as a reminder, Xi· is the ith row of X.

ii. Correlation restrictions. For all n, we require that the minimum and maximum eigenvalues of the underlying
covariance matrix Σ0, i.e., λmin(Σ0) and λmax(Σ0), are uniformly bounded away from zero and infinity (note
that we omit the notational dependence of Σ0, as well as some related quantities, on n, for simplicity).

iii. Incoherence. We require that there exists a constant α < 1 such that, for all (i, j) ∈ Acn, where An here is
the support of the off-diagonal entries of the underlying inverse covariance matrix Ω0

off, i.e.,

An =
{

(i, j) : 1 ≤ i < j ≤ p, Ω0
ij 6= 0

}
,

we have that ∣∣∣L̄′′ij,An
(ω0

off, ω
0
diag)(L̄

′′

AnAn
(ω0

off, ω
0
diag))−1 signω0

An

∣∣∣ ≤ α. (S.10)

Here, the sign here is interpreted elementwise; ω0
off and ω0

diag are the vectorizations of the off-diagonal and

diagonal entries, respectively, of the underlying inverse covariance matrix Ω0, i.e.,

ω0
off = vecΩ0

off, ω0
diag = vecΩ0

diag;

L(ω0
off, ω

0
diag) equals the log det plus trace terms in (1) evaluated at (ω0

off, ω
0
diag), i.e.,

L(ω0
off, ω

0
diag) = −(1/2) log det((Ω0

diag)2) + (n/2)Tr(S(Ω0)2);

and L̄
′′

ij,k`(ω
0
off, ω

0
diag) is an element of the negative (p2 × p2)-dimensional Fisher information matrix at

(ω0
off, ω

0
diag), i.e.,

L̄
′′

ij,k`(ω
0
off, ω

0
diag) = E

∂2L(ω0
off, ω

0
diag)

∂ω0
off,ijω

0
off,k`

, i, j, k, ` = 1, . . . , p

(we abuse notation somewhat and write ωij = Ωij).

iv. Accurate diagonal estimates. We require the existence of accurate diagonal estimates ω̂diag such that

‖ω̂diag − ω0
diag‖∞ = OP (

√
(log n)/n).

v. Support size and tuning parameter restrictions. As n → ∞, we let qn = o(
√
n/ log n), λ1,n

√
qn → 0,

λ1,n

√
n/ log n → ∞, and λ2,n = o(λ1,n), where qn = |An| (note that we make explicit here the notational

dependence of the tuning parameters on n).

vi. Signal restrictions. As n→∞, we require that sn/(λ1,n
√
qn)→∞, where sn = max(i,j)∈An

|ω0
off,ij |.

Condition (iii) can be interpreted as requiring bounded correlation between the rows of L̄
′′

Ac
nAn

(ω0
off, ω

0
diag) and

the columns of (L̄
′′

AnAn
(ω0

off, ω
0
diag))−1. Khare et al. (2015) as well as Peng et al. (2009) also use this condition;

see Khare et al. (2015) for examples that satisfy this condition.

S.7.2 Proof of Theorem 4.2

Proof. Define wi = Ω̂2
ii, i = 1, . . . , p, where, as a reminder, the Ω̂ii are estimates of the diagonal entries of Ω0

that are assumed in condition (iv) (see the statement of Theorem 4.2), and consider the change of variables for
the off-diagonal entries of Ω

ωij = −θij(Ω̂iiΩ̂jj)1/2, i, j = 1, . . . , p, i 6= j,



Alnur Ali, Kshitij Khare, Sang-Yun Oh, Bala Rajaratnam

where θ ∈ Rp(p−1) and again ω = vecΩ; then we can express the trace term in the objective in the PseudoNet op-
timization problem (1) as

nTrSΩ2 =

p∑
i=1

(wi/Ω̂
2
ii)Ω

T
i X

TXΩi

=

p∑
i=1

(wi/Ω̂
2
ii)

∥∥∥∥∥∥
p∑
j=1

ωijXj

∥∥∥∥∥∥
2

2

=

p∑
i=1

wi

∥∥∥∥∥∥(1/Ω̂ii)

Ω̂iiXi +

p∑
j 6=i

ωijXj

∥∥∥∥∥∥
2

2

=

p∑
i=1

wi

∥∥∥∥∥∥Xi +

p∑
j 6=i

(ωij/Ω̂ii)Xj

∥∥∥∥∥∥
2

2

=

p∑
i=1

wi

∥∥∥∥∥∥Xi −
p∑
j 6=i

θij

(
Ω̂jj/Ω̂ii

)1/2

Xj

∥∥∥∥∥∥
2

2

. (S.11)

Equation S.11 is equal to the objective of the SPACE optimization problem (cf. Peng et al. (2009, Equation 10)
and/or the trace term in Khare et al. (2015, Equation 12)), up to constants and for fixed diagonal entries; thus,
the log det term (which is only a function of diagonal entries) plus the trace term in the objective in (1) are also
equivalent to the corresponding terms in the SPACE’s objective. This implies that properties A1–A4 and B0–B3
in the supplement for Peng et al. (2009) also apply to the log det plus trace terms in the objective in (1).

Now, let L(θ) denote the log det plus trace terms in the objective in (1) (with variable off-diagonal entries

θ ∈ Rp(p−1) and fixed diagonal entries ω̂diag), and let Bc1(θ0
off, c1q

1/2
n λ1,n) be a ball of radius c1q

1/2
n λ1,n, for a

constant c1 > 0, with center θ0
off, i.e., Bc1 = {θ : ‖θ − θ0

off‖2 ≤ c1q
1/2
n λ1,n}, where θ0

off is the application of the
same (strictly monotone) transformation in (S.7.2) to the underlying off-diagonal entries ω0

off.

First, we show that the unique, global solution (owing to the strong convexity of (S.12)) of the following “re-
stricted” optimization problem lies in Bc1 with probability tending to one as n→∞:

minimize
θ:θAc

n
=0

L(θ) + λ1,n

∑p
i 6=j

∣∣∣(Ω̂iiΩ̂jj)1/2θij

∣∣∣+ (λ2,n/2)
∑p
i6=j Ω̂iiΩ̂jjθ

2
ij . (S.12)

Let αn = q
1/2
n λ1,n, and let u ∈ Rp(p−1) with uAc

n
= 0 and ‖u‖2 = c, for a constant c > 0. Fix θ ∈ Bc1 to be

equal to θ0
off + αnu. Then we have that

λ1,n

 p∑
i6=j

∣∣∣(Ω̂iiΩ̂jj)1/2θ0
off,ij

∣∣∣− p∑
i 6=j

∣∣∣(Ω̂iiΩ̂jj)1/2θij

∣∣∣


≤ λ1,n

p∑
i 6=j

∣∣∣(Ω̂iiΩ̂jj)1/2(θ0
off,ij − θij)

∣∣∣
= λ1,nαn

p∑
i6=j

∣∣∣(Ω̂iiΩ̂jj)1/2uij

∣∣∣
= O(λ1,nαnq

1/2
n ‖u‖2)

= O(α2
n), (S.13)

with probability at least 1−O(n−β), as the diagonal estimates Ω̂ii are uniformly bounded with high probability;
the second line here follows by the triangle inequality, the third by the choice of θ, the fourth by the Cauchy-

Schwarz inequality and the definition of u, and the fifth by the definition αn = q
1/2
n λ1,n.
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We also have that

(λ2,n/2)

 p∑
i 6=j

Ω̂iiΩ̂jj(θ
0
off,ij)

2 −
p∑
i 6=j

Ω̂iiΩ̂jjθ
2
ij

 (S.14)

= (λ2,n/2)

 p∑
i 6=j

Ω̂iiΩ̂jj(θ
0
off,ij)

2 −
p∑
i 6=j

Ω̂iiΩ̂jj(θ
0
off,ij + αnuij)

2


= −λ2,nαn

p∑
i 6=j

Ω̂iiΩ̂jjθ
0
off,ijuij − (λ2,n/2)α2

n

p∑
i 6=j

Ω̂iiΩ̂jju
2
ij . (S.15)

We get for the first term in (S.15) that

−λ2,nαn

p∑
i 6=j

Ω̂iiΩ̂jjθ
0
off,ijuij ≤ O(λ2,nαnq

1/2
n )‖u‖2

= o(α2
n)‖u‖2, (S.16)

with probability at least 1−O(n−β); the first line here follows by the Cauchy-Schwarz inequality, and the second
by the assumption that λ2,n = o(λ1,n).

Similarly, we get for the second term in (S.15)

−(λ2,n/2)α2
n

p∑
i6=j

Ω̂iiΩ̂jju
2
ij ≤ o(α2

n)‖u‖22, (S.17)

with probability at least 1−O(n−β).

Putting (S.16) and (S.17) together, we get for (S.14) that

(λ2,n/2)

 p∑
i 6=j

Ω̂iiΩ̂jj(θ
0
off,ij)

2 −
p∑
i 6=j

Ω̂iiΩ̂jjθ
2
ij

 ≤ o(α2
n)
(
‖u‖2 + ‖u‖22

)
(S.18)

with probability at least 1−O(n−β).

Next, let Jnet(θ) equal the objective in (1) (with fixed diagonal entries ω̂diag); combining (S.13) and (S.18), we
get

Jnet(θ)− Jnet(θ
0
off) ≥ L(θ)− L(θ0

off)

− λ1,n

 p∑
i 6=j

∣∣∣(Ω̂iiΩ̂jj)1/2θ0
off,ij

∣∣∣− p∑
i 6=j

∣∣∣(Ω̂iiΩ̂jj)1/2θij

∣∣∣


− (λ2,n/2)

 p∑
i6=j

Ω̂iiΩ̂jj(θ
0
off,ij)

2 −
p∑
i 6=j

Ω̂iiΩ̂jjθ
2
ij


≥ L(θ)− L(θ0

off)−O(α2
n)− o(α2

n)

= L(θ)− L(θ0
off)−O(α2

n).

By the same arguments in the proof of Lemma S-3 in the supplement for Peng et al. (2009), it follows that
the (unique, global) solution to the restricted problem (S.12) lies in Bc1 , with probability at least 1 − O(n−β);

this also implies (by a simple contradiction argument) that the event sign θ̂An = sign θ0
An

occurs with high
probability.

By construction, the solution θ̂ to the restricted optimization problem (S.12) satisfies the support “block” of

the optimality conditions for the unrestricted optimization problem (1). Next, we show that θ̂ satisfies the non-
support (the complement of the support) block of the optimality conditions for the unrestricted optimization
problem (1).
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The optimality conditions for the unrestricted optimization problem (1) are

L
′

ij(θ) + λ2,nΩ̂iiΩ̂jjθij = −λ1,n(Ω̂iiΩ̂jj)
1/2 sign θij if θij 6= 0

|L′ij(θ) + λ2,nΩ̂iiΩ̂jjθij | ≤ λ1,n(Ω̂iiΩ̂jj)
1/2 if θij = 0,

(S.19)

where L
′

ij(θ) = ∂L(θ)/∂θij ; this establishes the analog of Lemma S-1 in the supplement for Peng et al. (2009),
and also implies that Lemma S-2 there applies to the unrestricted optimization problem (1) here. We wish to
show that (with high probability)

max
(i,j)∈Ac

n

|L
′

ij(θ̂) + λ2,nΩ̂iiΩ̂jj θ̂ij | < λ1,n(Ω̂iiΩ̂jj)
1/2.

We begin by taking an exact (since L
′

An
is affine) first-order Taylor expansion of L

′

An
(θ̂) around θ0, i.e.,

L
′

An
(θ̂) = L

′

An
(θ0) + L

′′

AnAn
(θ̂ − θ0)︸ ︷︷ ︸

v

= L
′

An
(θ0) + (L

′′

AnAn
(θ0)− L̄

′′

AnAn
(θ0))︸ ︷︷ ︸

∆AnAn

v + L̄
′′

AnAn
(θ0)v. (S.20)

However, we also have that, with probability at least 1−O(n−β),

L
′

An
(θ̂) = −λ1,n(Ω̂iiΩ̂jj)

1/2 sign θ0
An
. (S.21)

Equating (S.20) and (S.21) and rearranging, we get

v = −
(
L̄
′′

AnAn
(θ0)

)−1 (
λ1,n(Ω̂iiΩ̂jj)

1/2 sign θ0
An

+ L
′

An
(θ0) + ∆AnAn

v
)
. (S.22)

Repeating a similar analysis for any (i, j) ∈ Acn, we get

L
′

ij(θ̂) = L
′

ij(θ
0) + ∆ij,An

(θ0)v + L̄
′′

ij,An
(θ0)v. (S.23)

Now, plugging (S.22) into the third term on the righthand side of (S.23), we get

L
′

ij(θ̂) = L
′

ij(θ
0) + ∆ij,An

(θ0)v

− λ1,n(Ω̂iiΩ̂jj)
1/2L̄

′′

ij,An
(θ0)

(
L̄
′′

AnAn
(θ0)

)−1

sign θ0
An

− L̄
′′

ij,An
(θ0)

(
L̄
′′

AnAn
(θ0)

)−1

L
′

An
(θ0)

− L̄
′′

ij,An
(θ0)

(
L̄
′′

AnAn
(θ0)

)−1

∆AnAn
v.

Applying the triangle inequality and rearranging yields

|L
′

ij(θ̂)| ≤
∣∣∣∣λ1,n(Ω̂iiΩ̂jj)

1/2L̄
′′

ij,An
(θ0)

(
L̄
′′

AnAn
(θ0)

)−1

sign θ0
An

∣∣∣∣
+

∣∣∣∣(∆ij,An
(θ0)− L̄

′′

ij,An
(θ0)

(
L̄
′′

AnAn
(θ0)

)−1

∆AnAn

)
v

∣∣∣∣
+

∣∣∣∣L̄′′ij,An
(θ0)

(
L̄
′′

AnAn
(θ0)

)−1

L
′

An
(θ0)

∣∣∣∣
+ |L

′

ij(θ
0)|.

The first term here is (strictly) less than λ1,n(Ω̂iiΩ̂jj)
1/2/2 by condition (iii), and the remaining terms are o(λ1,n),

with probability at least 1−O(n−β), by the same arguments in the proof of Peng et al. (2009, Theorem 2).
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Now, let R
′

ij(θ) = λ2,nΩ̂iiΩ̂jjθij ; repeating a similar analysis as above, we get

R
′

ij(θ̂) = R
′

ij(θ
0) +

(
R
′′

ij,An
(θ0)− R̄

′′

ij,An
(θ0)

)
v + R̄

′′

ij,An
(θ0)v

= R
′

ij(θ
0) + R̄

′′

ij,An
(θ0)v

= λ2,nΩ̂iiΩ̂jjθ
0
ij + λ2,nΩ̂iiΩ̂jjvij

≤ o(λ1,n) + λ2,nΩ̂iiΩ̂jjc1q
1/2
n λ1,n

= o(λ1,n),

where the penultimate line follows since ‖v‖2 = ‖θ̂ − θ0‖2 ≤ c1q
1/2
n λ1,n =⇒ vij ≤ c1q

1/2
n λ1,n, and the last line

since q
1/2
n λ1,n → 0 by condition (v).

Putting these findings together, we get, with probability at least 1−O(n−β),

max
(i,j)∈Ac

n

|L
′

ij(θ̂) +R
′

ij(θ̂)| < λ1,n(Ω̂iiΩ̂jj)
1/2/2 + o(λ1,n),

as required.

Thus, since the (unique, global) solution to the restricted optimization problem (S.12) satisfies the optimality
conditions for the unrestricted optimization problem (1) (which also admits a unique, global solution), and since
the restricted solution lies in Bc1 , we obtain the required results.

S.8 STATEMENT OF REGULARITY CONDITIONS FOR AND PROOF OF
THEOREM 4.3

The assumption that sufficiently accurate estimates of the diagonal entries of the underlying inverse covariance
matrix Ω0

ii, i = 1, . . . , p, are available is critical in establishing that the SPACE, CONCORD, and PseudoNet es-
timates are consistent, even in a high-dimensional setup. An obvious estimate for the underlying diagonal entries
is 1/Sii, i = 1, . . . , p, where S here is the sample covariance matrix. However, S is not invertible when p > n,
and so these estimates are not defined; an alternative approach is to consider the entries of a generalized inverse
of S, but this turns out to be difficult, as well. Theorem 4.3 below instead provides a two-step method to obtain
these estimates and rigorously establishes their accuracy, resolving an important gap in the literature, and may
also be of independent interest.

S.8.1 Statement of regularity conditions for Theorem 4.3

Assume conditions (i), (ii), (v), and (vi) that were stated above for Theorem 4.2. Assume further that there
exists a constant δ < 1 such that∣∣∣∣Σ0

i,Aj
n

(
Σ0
Aj

n,Aj
n

)−1

signΩ0
Aj

n,j

∣∣∣∣ ≤ δ, i /∈ Ajn, j = 1, . . . , p, (S.24)

where

dn = max
k=1,...,p

∣∣{` : ` ∈ {1, . . . , p}, ` 6= k, Ω0
k` 6= 0

}∣∣ ,
Ajn =

{
k : k ∈ {1, . . . , p}, k 6= j, Ω0

jk 6= 0
}
,

and the sign in (S.24) is interpreted elementwise. As a reminder, dn denotes the maximum number of nonzero
entries in any row of Ω0; when dn is bounded in n, this theorem yields estimates satisfying condition (iv) above,
even when p > n. We note that (S.24) is similar but not equivalent to condition (iii) above.

S.8.2 Proof of Theorem 4.3

We start by considering the estimation of the pth diagonal entry for ease of exposition. As discussed later, the
argument below (all the way to Equation (S.47)) can be repeated verbatim for estimation of the ith diagonal
entry with obvious notational changes.
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Note that, since dn = O(qn), conditions (i), (ii), (v), and (vi) imply that d
1/2
n λ1,n → 0, dn(log n/n)1/2 → 0, and

(1/λ1,n)((dn/n) log n)1/2 → 0.

Let (ηT , 1) = Ωp·/Ωpp, i.e., η is the pth (off-diagonal) row of Ω divided by the pth diagonal entry. Let S again
denote the sample covariance matrix. Consider the function

Jp(η) = (ηT , 1)S(ηT , 1)T + λ1,n

p−1∑
i=1

|ηi|,

where again λ1,n is the tuning parameter. This a convex function, and any global minimizer of this function will
be sparse in η. This will immediately lead to an estimate of the sparsity in the pth row of Ω. The function Jp is the
same objective function used by Meinshausen and Bühlmann (2006) in their neighborhood selection procedure
(up to a simple transformation of the parameter η). Note that Meinshausen and Bühlmann (2006) provide
a consistency proof for the sparsity pattern obtained by minimizing Jp under a set of regularity assumptions
(for example, Gaussianity).2 We provide a proof of sparsity selection consistency for Jp below under a set of
related but different assumptions from those in Meinshausen and Bühlmann (2006) (for example, under a general
sub-Gaussian tail setting).

Let η0 denote the true value of the parameter η. Also, for ease of exposition, we use ηp = η0
p = 1 below, but

the vector η will always refer to the (p − 1)-dimensional parameter defined above. We now obtain the required
result through a sequence of lemmas.

Lemma S.8.1. For any γ > 0, there exists a constant Cγ > 0 such that, with probability at least 1−O(n−γ),

max
1≤i,j,≤p

|Sij − Σ0
ij | ≤ Cγ

√
log n

n
,

for large enough n.

Proof. Fix 1 ≤ i, j ≤ p. Let µ+ = EΣ0
n

[
(X1i +X1j)

2
]

and µ− = EΣ0
n

[
(X1i −X1j)

2
]
. It follows that

Pr(|Sij − Σ0
ij | > t)

= Pr

(∣∣∣∣∣ 1n
n∑
`=1

(X`i +X`j)
2 − (X`i −X`j)

2 − (µ+ − µ−)

∣∣∣∣∣ > 4t

)

≤ Pr

(∣∣∣∣∣ 1n
n∑
`=1

(X`i +X`j)
2 − µ+

∣∣∣∣∣ > 2t

)
+ Pr

(∣∣∣∣∣ 1n
n∑
`=1

(X`i −X`j)
2 − µ−

∣∣∣∣∣ > 2t

)
. (S.25)

Note that X`i + X`j are sub-Gaussian random variables (by condition (i)), and their variances are uniformly
bounded in i, j, and n (by condition (ii)). For any c3 > 0, it follows, by (S.25) and Rudelson and Vershynin
(2013, Theorem 1.1), that there exist constants K1 and K2 independent of i, j, and n such that

Pr

(
|Sij − Σ0

ij | > C

√
log n

n

)
≤ K1e

−K2n
(
c3
√

log n
n

)2

= K1e
−K2C

2 logn,

for large enough n. Using the union bound and the fact that p = O(nκ), for some κ > 0, gives us the required
result.

Next, let
L̃(η) = (ηT , 1)S(ηT , 1)T ,

and let

di(η) = 2

p∑
j=1

ηjSij , (S.26)

for 1 ≤ i ≤ p− 1, denote the elements of the gradient of L̃. Then we obtain the following results.

2Note that, by combining the sparsity patterns for all the rows of Ω using the neighborhood selection procedure, one
can obtain an estimate for the sparsity pattern in Ω0. However, a drawback is that the resulting pattern is not necessarily
symmetric. On the other hand, our goal in this section is to show consistency of a procedure, which uses the sparsity
pattern for neighborhood selection solely for estimating the diagonal entries of Ω0.
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Lemma S.8.2 (Optimality conditions). η minimizes Jp if and only if

di(η) = −λ1,n sign ηi if ηi 6= 0, 1 ≤ i ≤ p− 1
|di(η)| ≤ λ1,n if ηi = 0, 1 ≤ i ≤ p− 1.

(S.27)

Also, if |di(η̂)| < λ1,n, for any minimizer η̂, then by the continuity of di and the convexity of Jp, it follows that
η̃i = 0, for every minimizer η̃ of Jp.

Lemma S.8.3. For every 1 ≤ i ≤ p− 1,

EΣ0
n

[
di(η

0)
]

= 0.

Proof. Let Σ0
r denote the submatrix of Σ0 formed by using the first r rows and columns. It follows, by the

definition of η0, that, for every 1 ≤ i < p,

EΣ0

[
di(η

0)
]

= 2

p∑
j=1

η0
jΣ0

ij =
2

Ω0
pp

p∑
j=1

(Σ0)−1
pj Σ0

ij = 0.

Lemma S.8.4. For any γ > 0, there exists a constant C1,γ > 0 such that, with probability at least 1−O(n−γ),

max
1≤i≤p

|di(η0)| ≤ C1,γ

√
log n

n
.

Proof. It follows, by Lemma S.8.2, that

di(η
0) =

2

n

n∑
`=1

X`i

 p∑
j=1

η0
jX`j


is the difference between the sample covariance and population covariance of Xi and

∑p
j=1 η

0
jXj . It follows,

by condition (ii) and the definition of η0, that the variance of
∑p
j=1 η

0
jXj , given by

(
(η0)T , 1

)
Σ0
(
(η0)T , 1

)T
, is

uniformly bounded over n. The proof now follows along the same lines as the proof of Lemma S.8.1.

Note that Apn is the set of indices corresponding to the nonzero entries of η0
n. Also note that |Apn| ≤ dn. Next,

we establish properties for the following “restricted” minimization problem:

minimize
η:ηj=0, j /∈Ap

n

Jp(η). (S.28)

Lemma S.8.5. There exists C > 0 such that, for any γ > 0, a global minimum of the restricted minimization
problem (S.28) exists within the ball {η : ‖η − η0‖2 < C

√
dnλ1,n}, with probability at least 1 − O(n−γ) for

sufficiently large n.

Proof. Let α̃n =
√
dnλ1,n. Then, for any constant C > 0 and any u ∈ Rp−1 satisfying uj = 0 for every j /∈ Apn

and ‖u‖2 = C, we get by the triangle inequality that

p−1∑
j=1

|η0
j | −

p−1∑
j=1

|η0
j + α̃nuj | ≤ α̃n

p−1∑
j=1

|uj | ≤ Cα̃n
√
dn. (S.29)

Again, let

L̃(η) = (ηT , 1)TS(ηT , 1)T .
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By (S.29) and a second-order Taylor series expansion around η0, we get

Jp(η
0 + α̃nu)− Jp(η0)

= L̃(η0 + α̃nu)− L̃(η0)− λ1,n

p−1∑
j=1

|η0
j | −

p−1∑
j=1

|η0
j + α̃nuj |


≥ α̃n

∑
j∈Ap

n

ujdj(η
0) + α̃2

n

∑
j∈Ap

n

∑
k∈Ap

n

ujukSjk − Cα̃n
√
dnλ1,n

≥ α̃n
∑
j∈Ap

n

ujdj(η
0) + α̃2

n

∑
j∈Ap

n

∑
k∈Ap

n

ujuk(Sjk − Σ0
jk) + α̃2

n

∑
j∈Ap

n

∑
k∈Ap

n

ujukΣ0
jk − Cα̃2

n. (S.30)

Note that λ1,n

√
n

logn →∞ and dn

√
logn
n → 0 as n→∞, since (1/λ1,n)((dn/n) log n)1/2 → 0 and d

1/2
n λ1,n → 0.

It follows, by the Cauchy-Schwarz inequality, Lemma S.8.1, and Lemma S.8.4, that for any γ > 0 there exist
constants Cγ and C1,γ > 0 such that, with probability at least 1−O(n−γ),

α̃n
∑
j∈Ap

n

ujdj(η
0) ≤ CC1,γ

√
dn log n

n
α̃n = o(α̃2

n) (S.31)

and

α̃2
n

2

∣∣∣∣∣∣
∑
j∈Ap

n

∑
k∈Ap

n

ujuk(Sjk − Σ0
jk)

∣∣∣∣∣∣ ≤ CγC2dn

√
log n

n
= o(α̃2

n). (S.32)

Also, by condition (ii), it follows that ∑
j∈Ap

n

∑
k∈Ap

n

ujukΣ0
jk ≥

C2α̃2
n

2λmax(Ω0)
. (S.33)

Combining (S.30), (S.31), (S.32), and (S.33), we get that

Jp(η
0 + α̃nu)− Jp(η0) >

C2α̃2
n

2λmax(Ω0)
− 2Cα̃2

n,

with probability at least 1−O(n−γ), for large enough n.

Choosing C = 4λmax(Ω0) + 1, we obtain that

inf
u:u(Ap

n)c=0, ‖u‖2=C
Jp(η

0 + α̃nu) > Jp(η
0),

with probability at least 1 − O(n−γ), for large enough n. Hence, for every η > 0, a local minimum (in fact
a global minimum due to convexity) of the restricted minimization problem (S.28) exists within the ball {η :
‖η − η0‖2 < C

√
dnλ1,n}, with probability at least 1−O(n−η), for sufficiently large n.

Lemma S.8.6. There exists a constant C1 > 0 such that, for any γ > 0, the following holds with probability at
least 1−O(n−γ).

For any η in the set

S = {η : ‖η − η0‖2 ≥ C1

√
dnλ1,n, ηj = 0 ∀j /∈ Apn},

we have
∥∥dAp

n
(η)
∥∥

2
>
√
dnλ1,n, where dAp

n
(η) = (dj(η))j∈Ap

n
.

Proof. Recall that α̃n =
√
dnλ1,n. Choose η ∈ S arbitrarily. Let u = η− η0/α̃n. It follows that uj = 0, for every

j /∈ Apn and ‖u‖ ≥ C1. By a first-order Taylor series expansion of dAp
n
, it follows that

dAp
n
(η) = dAp

n
(η0) + 2α̃nSAp

nAp
n
uAp

n

= dAp
n
(η0) + 2α̃nΣ0

Ap
nAp

n
uAp

n
+ 2α̃n

(
SAp

nAp
n
− Σ0

Ap
nAp

n

)
uAp

n
. (S.34)
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By Lemma S.8.1 and Lemma S.8.4, it follows that, for any γ > 0, there exist constants C2,γ and C3,γ such that

‖dAp
n
(η)‖2

≥ 2α̃n
∥∥Σ0
Ap

nAp
n
uAp

n

∥∥
2
− C2,γ

√
dn log n

n
− C3,γ‖u‖2

α̃ndn
√

log n√
n

≥ α̃n
λmax(Ω0)

‖u‖2

=
√
dnλ1,n

C1

λmax(Ω0)
,

with probability at least 1−O(n−γ) for large enough n. The last inequality follows by condition (iii) and since
dn(log n/n)1/2 → 0.

Choosing C1 = λmax(Ω0) + 1 leads to the required result.

The next lemma establishes estimation and model selection (sign) consistency for the restricted minimization
problem (S.28).

Lemma S.8.7. There exists C2 > 0 such that, for any γ > 0, the following holds with probability at least
1−O(n−γ) for large enough n:

a. there exists a solution to the restricted minimization problem (S.28)

b. (estimation consistency) any global minimum of the restricted minimization problem (S.28) lies within the
ball {η : ‖η − η0‖2 < C2

√
dnλ1,n}

c. (sign consistency) for any solution η̂ of the restricted minimization problem (S.28), sign η̂j = sign η0
j , for

every 1 ≤ j ≤ r.

Proof. The existence of a solution follows from Lemma S.8.6.

By the optimality conditions for the restricted minimization problem (S.28) (along the lines of Lemma S.8.2), it
follows that, for any solution η̂ of (S.28), |dj(η̂)| ≤ λ1,n, for every j ∈ Apn. It follows that

∥∥dAp
n
(η̂)
∥∥

2
≤
√
dnλ1,n.

Estimation consistency now follows from Lemma S.8.7.

Note that, by condition (vi) and the fact that dn ≤ qn,

η0
j ≥

sn
λmax(Ω0)

> 2C2

√
dnλ1,n,

for every j ∈ Apn and for sufficiently large n. Sign consistency now follows by combining this fact with ‖η−η0‖2 <
C2

√
dnλ1,n.

The next lemma will be instrumental in showing that the solution set of the restricted minimization problem
(S.28) is the same as the solution set of the unrestricted minimization problem for Jp with high probability.

Lemma S.8.8. For any γ > 0, any solution η̂ of (S.28) satisfies

max
j /∈Ap

n

|dj(η̂)| < λ1,n,

with probability at least 1−O(n−γ) for large enough n.

Proof. Let γ > 0 be given, and let η̂ be a solution of (S.28). If Cn = {sign η̂ = sign η0}, then Pr(Cn) ≥
1 − O(n−γ−κ) for large enough n (by Lemma S.8.7). Now, on Cn, it follows by a first-order expansion of dAp

n

around η0 and the optimality conditions for (S.28), that

−λ1,n sign η
0
Ap

n
= dAp

n
(η̂)

= dAp
n
(η0) + 2SAp

nAp
n
ûn

= Hnûn + dAp
n
(η0) + 2

(
SAp

nAp
n
− Σ0

Ap
nAp

n

)
ûn, (S.35)
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where ûn = η̂ − η0, and Hn = 2Σ0
Ap

nAp
n
.

Hence,

ûn = −λ1,nH
−1
n sign η0

Ap
n
−H−1

n dAp
n
(η0)− 2H−1

n

(
SAp

nAp
n
− Σ0

Ap
nAp

n

)
ûn. (S.36)

Now, let us fix j /∈ Apn. By a first-order Taylor series expansion of dj , it follows that

dj(η̂) = dj(η
0) + 2STi,Ap

n
ûn.

Using (S.36), we get that

dj(η̂) = dj(η
0) + 2(Sj,Ap

n
− Σ0

j,Ap
n
)T ûn + 2(Σ0

j,Ap
n
)T ûn

= −2λ1,n(Σ0
j,Ap

n
)TH−1

n sign η0
Ap

n
+ dj(η

0)− 2(Σ0
j,Ap

n
)TH−1

n dAp
n
(η0) +

−4(Σ0
j,Ap

n
)TH−1

n

(
SAp

nAp
n
− Σ0

Ap
nAp

n

)
ûn + 2(Si,Ap

n
− Σ0

i,Ap
n
)T ûn. (S.37)

We now individually analyze all the terms in (S.37).

It follows, by (S.24), that the first term satisfies∣∣∣−2λ1,n(Σ0
j,Ap

n
)TH−1

n sign η0
Ap

n

∣∣∣ ≤ δλ1,n < λ1,n. (S.38)

It follows, by Lemma S.8.4 and since (1/λ1,n)((dn/n) log n)1/2 → 0 and d
1/2
n λ1,n → 0, that the second term

dj(η
0) is o(λ1,n) with probability at least 1−O(n−γ−κ) for large enough n.

Also, by condition (ii) and the definition of Hn, we get that∥∥∥2(Σ0
j,Ap

n
)TH−1

n

∥∥∥
2
≤
∥∥∥Σ0

j,Ap
n

∥∥∥
2
‖2H−1

n ‖2 ≤
1

λmin(Ω0)

∥∥∥(Σ0
Ap

nAp
n

)−1
∥∥∥

2
≤ λmax(Ω0)

λmin(Ω0)
, (S.39)

where ‖ · ‖2 here denotes the `2 operator norm (maximum singular value). It follows, by Lemma S.8.4 and since

(1/λ1,n)((dn/n) log n)1/2 → 0 and d
1/2
n λ1,n → 0, that the third term in (S.37) satisfies∣∣∣2(Σ0

j,Ap
n
)TH−1

n dAp
n
(η0)

∣∣∣ ≤ λmax(Ω0)

λmin(Ω0)

√
dn max

j∈Ap
n

|dj(η0)| = o(λ1,n). (S.40)

Let b = 2H−1
n Σj,Ap

n
. Note that, by (S.39), the norm of b is uniformly bounded in n and r. Also note that the jth

element of the vector
(
SAp

nAp
n
− Σ0

Ap
nAp

n

)
b is the difference between the sample and the population covariance

of Xj and
∑
k∈Ap

n
bkXk. Using the same line of arguments as in the proof of Lemma S.8.4, it follows that there

exists a constant C4,γ > 0 such that

max
j∈Ap

n

∣∣∣((SAp
nAp

n
− Σ0

Ap
nAp

n

)
b
)
j

∣∣∣ ≤ C4,γ

√
log n

n
, (S.41)

with probability at least 1 − O(n−γ−κ) for large enough n. By (S.39), (S.41), claim (b) in Lemma S.8.7, and

since (1/λ1,n)((dn/n) log n)1/2 → 0 and d
1/2
n λ1,n → 0, we have that the fourth term in (S.37) satisfies∣∣∣4(Σ0

j,Ap
n
)TH−1

n

(
SAp

nAp
n
− Σ0

Ap
nAp

n

)
ûn

∣∣∣ ≤ 2
∥∥(SAp

nAp
n
− Σ0

Ap
nAp

n

)
b
∥∥

2
‖ûn‖2

= O

(√
dn log n

n

√
dnλ1,n

)
(S.42)

= o(λ1,n), (S.43)

with probability at least 1−O(n−γ−κ) for large enough n.
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By Lemma S.8.1, claim (b) in Lemma S.8.7, and condition (ii), the fifth term in (S.37) satisfies

∣∣∣2(Si,Ap
n
− Σ0

i,Ap
n
)T ûn

∣∣∣ ≤ 2
∥∥∥Si,Ap

n
− Σ0

i,Ap
n

∥∥∥
2
‖ûn‖2 = O

(√
dn log n

n

√
dnλ1,n

)
= o(λ1,n). (S.44)

It follows, by (S.37), (S.38), (S.40), and (S.42)-(S.44), that, for any j /∈ Apn,

|dj(η̂)| < λ1,n,

with probability at least 1−O(n−γ−κ) for large enough n. The result now follows by the union bound, and from
the fact that p = O(nκ).

Let γ > 0 be chosen arbitrarily. Let Cp,n denote the event on which Lemma S.8.7 and Lemma S.8.8 hold. It
follows that Pr(Cp,n) ≥ 1−O(n−γ−κ), for large enough n. Now, on Cp,n, any solution of the restricted problem
(S.28) is also a global minimizer of Jp (by Lemma S.8.2). Hence, there is at least one global minimizer of Jp for
which the components corresponding to (Apn)c are zero. It again follows, by Lemma S.8.2, that these components
are zero for all global minimizers of Jp. Hence, the solution set of the restricted minimization problem (S.28) is
the same as the solution set for the unrestricted problem (i.e., the set of global minimizers of Jp). Hence, on
Cp,n, the assertions of Lemma S.8.7 hold for the solutions of the unrestricted minimization problem for Jp.

Now, let Bpn = Apn∪{p}. Using the sparsity in Ω0 it can be shown that Ω0
pp is also the diagonal entry corresponding

to the index p in
(

Σ0
Bp

nBp
n

)−1

. Let Âpn be the set of indices corresponding to the nonzero entries of any minimizer

η̂ of Jp, let Ω̂pp be the diagonal entry corresponding to the index p for
(
SB̂p

nB̂p
n

)−1

, and let B̂pn = Âpn ∪ {p}. It

follows that B̂pn = Bpn on Cp,n, and that

|Ω̂pp − Ω0
pp| ≤

∥∥∥(SBp
nBp

n

)−1 −
(
Σ0
Bp

nBp
n

)−1
∥∥∥

2

≤
∥∥∥(SBp

nBp
n

)−1
∥∥∥

2

∥∥SBp
nBp

n
− Σ0

Bp
nBp

n

∥∥
2

∥∥∥(Σ0
Bp

nBp
n

)−1
∥∥∥

2

≤ λmax(Ω0)
∥∥∥(SBp

nBp
n

)−1
∥∥∥

2

∥∥SBp
nBp

n
− Σ0

Bp
nBp

n

∥∥
2

≤ dnλmax(Ω0)
∥∥∥(SBp

nBp
n

)−1
∥∥∥

2
max

1≤i,j≤p
|Sij − Σ0

ij |. (S.45)

Note that, by Lemma S.8.1, there exists a constant Cγ+κ such that

‖S − Σ0
n‖max = max

1≤i,j≤p
|Sij − Σ0

ij | ≤ Cγ+κ

√
log n

n
,

with probability at least 1−O(n−γ−κ) for large enough n. Let Dn denote the event on which the above inequality
holds. Hence, on Dn, we get∥∥∥(SBp

nBp
n

)−1
∥∥∥

2
≤

∥∥∥(Σ0
Bp

nBp
n

)−1
∥∥∥

2
+
∥∥∥(SBp

nBp
n

)−1 −
(
Σ0
Bp

nBp
n

)−1
∥∥∥

2

≤ λmax(Ω0) + dnλmax(Ω0)
∥∥∥(SBp

nBp
n

)−1
∥∥∥

2
max

1≤i,j≤p
|Sij − Σ0

ij |

≤ λmax(Ω0) + λmax(Ω0)Cγ+κdn

√
log n

n
(S.46)

for large enough n. It follows, by (S.45), (S.46), and since dn(log n/n)1/2 → 0, that on Cp,n ∩Dn

|Ω̂pp − Ω0
pp| ≤ 2λ2

max(Ω0)Cγ+κdn

√
log n

n
(S.47)

for large enough n.
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For every 1 ≤ i ≤ p, the above argument can be repeated verbatim by considering η to be the ith (off-diagonal)
row of Ω0 normalized by the corresponding entry, and constructing the Ji, Ain, etc. accordingly. Then, by
maximizing Ji, we can obtain Âin such that there exists a set Ci,n with Pr(Ci,n) = 1 − O(n−γ−κ) for large

enough n, and Âin = Ain on Ci,n. Again, it can be shown in exactly the same way as above (for the case of the

pth row), that if Ω̂ii is the diagonal entry corresponding to the index i for
(
SB̂i

nB̂i
n

)−1

, then on Ci,n ∩Dn

|Ω̂ii − Ω0
ii| ≤ 2λmax(Ω0)2Cγ+κdn

√
log n

n
. (S.48)

It follows, by (S.47) and (S.48), that on (∩pi=1Ci,n) ∩Dn

max
1≤i≤p

|Ω̂ii − Ω0
ii| ≤ 2λ2

max(Ω0)Cγ+κdn

√
log n

n
. (S.49)

Since
Pr ((∩pi=1Ci,n) ∩Dn) ≥ 1− (p+ 1)O(n−γ−κ) = 1−O(n−γ)

for large enough n, we have achieved our goal.

Note that the estimation accuracy in Lemma S.8.7 is
√
dnλ1,n. Hence, an estimate of Ωpp based on η̂ has

estimation accuracy larger than or equal to
√
dnλ1,n. Since

dn

√
log n

n
=
√
dn

√
dn log n

n
= o(

√
dnλ1,n),

(1/λ1,n)((dn/n) log n)1/2 → 0, and d
1/2
n λ1,n → 0, it follows that a two-step procedure gives a provably better

estimation accuracy than direct lasso based estimates of the diagonal entries of Ω0.
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