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A Proofs

Proof of Theorem 3.1. It is enough to show that the EWA strategy leads to

T

X

t=1

E
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Once this is done, we only have to use the assumption that the regret of the within-task algorithm on task t is
upper bounded by �(g,m
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) to obtain that
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and we obtain the statement of the result.

It remains to prove (A.1). To this end, we follows the same guidelines as in the proof of Theorem 1 in (Audibert,
2006). First, note that
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Next, we note that
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and finally we use (Catoni, 2004, Equation (5.2.1)) which states that
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Proof of Theorem 4.3. Let D⇤ denote a minimizer to the optimization problem
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We obtain an upper-bound
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So Theorem 3.1 leads to
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Proof of Theorem 6.1. The proof relies on an application of the well-known online-to-batch trick, discussed
pedagogically in Section 5 page 186 in Shalev-Shwartz (2011). Still, it is very cumbersome, and it is easy to get
confused. For these reasons, we think it is important to write it completely. We use the following notation for
any random variable V , E

V

is the expectation with respect to V . This is very important as the online-to-batch
trick relies essentially on inverting the order of the random variables in the integration. We have:
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B Better Bounds for Dictionary Learning

We now state a refined version of the bounds for dictionary learning in Section 4. As pointed out in that section,
while in general the bound
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We can take advantage of this fact in order to improve the term �(m) = sup
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Proof. We apply Theorem 4.3, so we only have to upper bound the term �(g,m) for the online gradient algorithm
with the prescribed step size. Note that in (Corollary 2.7 Shalev-Shwartz, 2011) we actually have the following
regret bound for Algorithm 2 with fixed step size ⌘ > 0:
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C Batch-Within-Online Lifelong Learning

In this last section of the appendix, we present an alternative approach for the batch-within-online setting
discussed in Section 2. In this setting, the tasks are presented sequentially, but, for each task t 2 {1, . . . , T}
the dataset S
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the reasoning in Section 6, where we assumed that the P

t

were i.i.d. from a distribution Q, here we make no
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4. the forecaster incur the loss R
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Unfortunately, this quantity is not known to the forecaster.

At the end of time, we are interested in a strategy such that the compound regret
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is controled. The situation is similar to the setting discussed in the core of the paper: we will propose an
EWA algorithm for transfer learning, EWA-TL, for which the regret will be controlled, on the condition that
the learner chooses a suitable within task algorithm. In the online case, the within tasks algorithm was either
EWA or OGA. In Subsection C.1 we discuss briefly the within task algorithm. In Subsection C.2 we present the
EWA-TL algorithm and its theoretical analysis.

C.1 Within-task Algorithms

We make an additional assumption, that is that the estimator ĥ satisfies a bound in probability:
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In classification, when ` is the 0-1 loss function, and for any g, the family {h�g, h 2 H} has a Vapnik-Chervonenkis
dimension bounded by V , then the empirical risk minimizer (ERM)
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satisfies the above condition with
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see e.g. (Chapter 4, page 94 Vapnik, 1998). Similar rates can be obtained with PAC-Bayesian bounds (McAllester,
1998; Catoni, 2004), but we postpone the details to future work.

C.2 EWA-TL

Algorithm 6 EWA-TL

Data A sequence of datasets
S
t

=
�

(x
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, y
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�

, 1  t  T , associated with di↵erent learning tasks; the datasets are
revealed sequentially, but the points within each dataset S
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are revealed all at once.
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, a learning parameter ⌘ > 0 and a learning algorithm ĥ which satisfies (C.1).
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Regret Bounds for Lifelong Learning

We now provide a bound on the regret of EWA-TL.
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Sketch of the proof. First, follow the proof of Theorem 3.1 to get:
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So, with probability at least 1� ",
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