
Regret Bounds for Lifelong Learning

A Proofs

Proof of Theorem 3.1. It is enough to show that the EWA strategy leads to

T

X

t=1

E
ĝt⇠⇡t [L̂t

(ĝ
t

)]  inf
⇢

(

E
g⇠⇢

"

T

X

t=1

L̂
t

(g)

#

+
⌘C2T

8
+

K(⇢,⇡
1

)

⌘

)

. (A.1)

Once this is done, we only have to use the assumption that the regret of the within-task algorithm on task t is
upper bounded by �(g,m

t

) to obtain that

T

X

t=1

L̂
t

(g) =
T

X

t=1

1

m
t

mt
X

i=1

`
�

hg

t,i

� g(x
t,i

), y
t,i

�


T

X

t=1

(

�(g,m
t

) + inf
h2H

1

m
t

mt
X

i=1

`
�

h � g(x
t,i

), y
t,i

�

)

and we obtain the statement of the result.

It remains to prove (A.1). To this end, we follows the same guidelines as in the proof of Theorem 1 in (Audibert,
2006). First, note that

⇡
t

(g) =
exp

h

�⌘
P

t�1

u=1

L̂
u

(g)
i

⇡
1

(dg)
R

exp
h

�⌘
P

t�1

u=1

L̂
u

(�)
i

⇡
1

(d�)
=

exp
h

�⌘
P

t�1

u=1

L̂
u

(g)
i

⇡
1

(dg)

W
t

(A.2)

where we introduce the notation W
t

for the sake of shortness. Put E
t

=
R

L̂
t

(g)⇡
t

(dg) = E
ĝt⇠⇡t [L̂t

(g)]. Using

Hoe↵ding’s inequality on the bounded random variable L̂
t

(g) 2 [0, C] we have, for any t, that

E
ĝt⇠⇡t

h

exp
n

⌘(E
t

� L̂
t

(g))
oi

=

Z

exp
n

⌘(E
t

� L̂
t

(g))
o

⇡
t

(dg)  exp

⇢

C2⌘2

8

�

which can be rewritten as

exp
n

�⌘E
gt⇠⇡t [L̂t

(g
t

)]
o

� exp

✓

�C2⌘2

8

◆

E
ĝt⇠⇡t

n

exp
h

�⌘L̂
t

(g
t

)
io

. (A.3)

Next, we note that

exp

(

�⌘

T

X

t=1

E
ĝt⇠⇡t [L̂t

(g
t

)]

)

=
T

Y

t=1

exp
n

�⌘E
gt⇠⇡t [L̂t

(g
t

)]
o

� exp

✓

�TC2⌘2

8

◆

T

Y

t=1

E
ĝt⇠⇡t

n

exp
h

�⌘L̂
t

(g
t

)
io

, using (A.3)

= exp

⇢

�TC2⌘2

8

�

T

Y

t=1

Z

exp
n

�⌘L̂
t

(g)
o

⇡
t

(dg)

= exp

⇢

�TC2⌘2

8

�

T

Y

t=1

Z exp
n

�⌘
P

t

u=1

L̂
u

(g)
o

W
t

⇡
1

(dg), using (A.2)

= exp

⇢

�TC2⌘2

8

�

T

Y

T=1

W
t+1

W
t

= exp

⇢

TC2⌘2

8

�

W
T+1

.

So

T

X

t=1

E
ĝt⇠⇡t [L̂t

(g
t

)]  � logW
T+1

⌘
+

TC2⌘

8

= �
log
R

exp
h

�⌘
P

T

t=1

L̂
t

(g)
i

⇡
1

(dg)

⌘
+

TC2⌘

8

Pierre Alquier, The Tien Mai, Massimiliano Pontil

and finally we use (Catoni, 2004, Equation (5.2.1)) which states that

�
log
R

exp
h

�⌘
P

T

t=1

L̂
t

(g)
i

⇡
1

(dg)

⌘
= inf

⇢

(

E
g⇠⇢

"

T

X

t=1

L̂
t

(g)

#

+
K(⇢,⇡

1

)

⌘

)

.

Proof of Theorem 4.3. Let D⇤ denote a minimizer to the optimization problem

min
D2DK

1

T

T

X

t=1

inf
ht2H

1

m

m

X

i=1

`(hh
t

, Dx
t,i

i, y
t,i

).

We apply Theorem 3.1 and upper bound the infimum with respect to any ⇢ by an infimum with respect to ⇢ in
the following parametric family

⇢
c

(dD) / 1{8j = 1, . . . ,K : kD·,j �D⇤
·,jk  c}⇡

1

(dD).

where c is a positive parameter. Note that when c is small, ⇢
c

highly concentrates around D⇤, but we will show
this is at a price of an increase in K(⇢

c

,⇡
1

). The proof then proceeds in optimizing with respect to c.

We have that

1

T

T

X

t=1

E
ĝt⇠⇡t

"

1

m

m

X

i=1

ˆ̀
t,i

#

 inf
c

(

E
D⇠⇢c



1

T

T

X

t=1

inf
ht2H

1

m

m

X

i=1

`(hh
t

, Dx
t,i

i, y
t,i

) + �(m)

�

+
⌘C2

8
+

K(⇢
c

,⇡
1

)

⌘T

)

.

Now, we have
K(⇢

c

,⇡
1

) = � log ⇡
1

({8j = 1, . . . ,K : kD·,j �D⇤
·,jk  c}),

and

⇡
1

({8j = 1, . . . ,K : kD·,j �D⇤
·,jk  c}) �

K

Y

j=1

⇡(d�1)/2(c/2)d�1

�(d�1

2

+ 1)

,

2⇡(d+1)/2

�(d+1

2

)

!

�
K

Y

j=1

✓

cd�1

2d⇡

◆

where the first inequality follows by observing that, since ⇡
1

is the uniform distribution on the unit d-sphere, the
probability to be calculated is greater or equal to the ration between the volume of the (d� 1)-ball with radius
c/2 and the surface area of the unit d-sphere. So we get

K(⇢
c

,⇡
1

)  Kd log(1/c) + 3Kd.

Furthermore, using the notation

h⇤
t

:= arg inf
ht2H

1

m

m

X

i=1

`
�

hh
t

, D⇤x
t,i

i, y
t,i

�

,

we get

inf
ht2H

1

m

m

X

i=1

`
�

hh
t

, Dx
t,i

i, y
t,i

�

� 1

m

m

X

i=1

`
�

hh⇤
t

, D⇤x
t,i

i, y
t,i

�

 1

m

m

X

i=1

`
�

hh⇤
t

, Dx
t,i

i, y
t,i

�

� 1

m

m

X

i=1

`
�

hh⇤
t

, D⇤x
t,i

i, y
t,i

�

.

Under the condition on the loss, we have
�

�

�

`(hh⇤
t

, Dx
t,i

i, y
t,i

)� `
�

hh⇤
t

, D⇤x
t,i

i, y
t,i

�

�

�

�

 �
�

�

�

hh⇤
t

, (D �D⇤)x
t,i

i
�

�

�

.

We obtain an upper-bound

Regret Bounds for Lifelong Learning

E
D⇠⇢c

1

T

T

X

t=1

inf
ht2H

1

m

m

X

i=1

`(hh
t

, Dx
t,i

i, y
t,i

)

 inf
D2DK

(

1

T

T

X

t=1

inf
ht2H

1

m

m

X

i=1

`(hh
t

, Dx
t,i

i, y
t,i

) +
1

T

T

X

t=1

1

m

m

X

i=1

� | hh⇤
t

, (D �D⇤)x
t,i

i |
)

.

But then note that

1

T

T

X

t=1

1

m

m

X

i=1

� | hh⇤
t

, (D �D⇤)x
t,i

i | = 1

T

T

X

t=1

1

m

m

X

i=1

�
q

hh⇤
t

, (D �D⇤)x
t,i

i2

 �

v

u

u

t

1

T

T

X

t=1

1

m

m

X

i=1

hh⇤
t

, (D �D⇤)x
t,i

i2 (Jensen)

= �

v

u

u

t

1

T

T

X

t=1

(h⇤
t

)T (D �D⇤)

1

m

m

X

i=1

x
t,i

xT

t,i

!

(D �D⇤)Th⇤
t

 �

v

u

u

t

1

T

T

X

t=1

�
max

1

m

m

X

i=1

x
t,i

xT

t,i

!

k(D �D⇤)Th⇤
t

k2

 �cB

v

u

u

t

1

T

T

X

t=1

�
max

1

m

m

X

i=1

x
t,i

xT

t,i

!

.

So Theorem 3.1 leads to

1

T

T

X

t=1

E
gt⇠⇡t

"

1

m

m

X

i=1

ˆ̀
t,i

#

� inf
D2DK

1

T

T

X

t=1

inf
ht2H

1

m

m

X

i=1

`(hh
t

, Dx
t,i

i, y
t,i

)

 inf
c

8

<

:

c�B

v

u

u

t

1

T

T

X

t=1

�
max

1

m

m

X

i=1

x
t,i

xT

t,i

!

+
Kd

⌘T
log(1/c)

9

=

;

+
3Kd

⌘T
+ �(m) +

⌘C2

8
.

The choices c =
q

1

T

and ⌘ = 2

C

q

Kd

T

lead to the result.

Proof of Theorem 6.1. The proof relies on an application of the well-known online-to-batch trick, discussed
pedagogically in Section 5 page 186 in Shalev-Shwartz (2011). Still, it is very cumbersome, and it is easy to get
confused. For these reasons, we think it is important to write it completely. We use the following notation for
any random variable V , E

V

is the expectation with respect to V . This is very important as the online-to-batch
trick relies essentially on inverting the order of the random variables in the integration. We have:

E[`(ĥ � ĝ(x), y)]
= ET EIEP1,...,PTE(x1,1,y1,1),(x1,2,y1,2),...,(xT,m,yT,m)

E
P

E
(x1,y1),...,(xm,ym)

E
(x,y)

[`(ĥ � ĝ(x), y)]

=
1

T

T

X

t=1

1

m

m

X

i=1

E
P1,...,PTE(x1,1,y1,1),...,(xT,m,yT,m)

E
P

E
(x1,y1),...,(xm,ym)

E
(x,y)

[`(ĥĝt
i

� ĝ
t

(x), y)]

=
1

T

T

X

t=1

E
P1,...,PTE(x1,1,y1,1),...,(xT,m,yT,m)

E
P

1

m

m

X

i=1

E
(x1,y1),...,(xi�1,yi�1)

E
(x,y)

[`(ĥĝt
i

� ĝ
t

(x), y)]

=
1

T

T

X

t=1

E
P1,...,PTE(x1,1,y1,1),...,(xT,m,yT,m)

E
P

1

m

m

X

i=1

E
(x1,y1),...,(xi�1,yi�1)

E
(xi,yi)

[`(ĥĝt
i

� ĝ
t

(x
i

), y
i

)]

=
1

T

T

X

t=1

E
P1,...,PTE(x1,1,y1,1),...,(xT,m,yT,m)

E
P

1

m

m

X

i=1

E
(x1,y1),...,(xm,ym)

[`(ĥĝt
i

� ĝ
t

(x
i

), y
i

)]

Pierre Alquier, The Tien Mai, Massimiliano Pontil

=
1

T

T

X

t=1

E
P1,...,PTE(x1,1,y1,1),...,(xT,m,yT,m)

E
P

E
(x1,y1),...,(xm,ym)

"

1

m

m

X

i=1

`(ĥĝt
i

� ĝ
t

(x
i

), y
i

)

#

=
1

T

T

X

t=1

E
P1,...,Pt�1E(x1,1,y1,1),...,(xt�1,m,yt�1,m)

E
P

E
(x1,y1),...,(xm,ym)

"

1

m

m

X

i=1

`(ĥĝt
i

� ĝ
t

(x
i

), y
i

)

#

=
1

T

T

X

t=1

E
P1,...,Pt�1E(x1,1,y1,1),...,(xt�1,m,yt�1,m)

E
PtE(xt,1,yt,1),...,(xt,m,yt,m)

"

1

m

m

X

i=1

`(ĥĝt
i

� ĝ
t

(x
t,i

), y
t,i

)

#

=
1

T

T

X

t=1

E
P1,...,PTE(x1,1,y1,1),...,(xt,m,yt,m)

"

1

m

m

X

i=1

`(ĥĝt
i

� ĝ
t

(x
t,i

), y
t,i

)

#

= E
P1,...,PTE(x1,1,y1,1),...,(xt,m,yt,m)

"

1

T

T

X

t=1

1

m

m

X

i=1

`(ĥĝt
i

� ĝ
t

(x
t,i

), y
t,i

)

#

 E
P1,...,PTE(x1,1,y1,1),...,(xT,m,yT,m)

inf
⇢

(

E
g⇠⇢

"

1

T

T

X

t=1

inf
ht2H

1

m

m

X

i=1

`(h
t

� g(x
t,i

), y
t,i

)

+
1

T

T

X

t=1

�(g,m)

#

+
⌘C2

8
+

K(⇢,⇡
1

)

⌘T

)

, using Theorem 3.1,

 inf
⇢

(

E
g⇠⇢

"

E
P⇠Q

inf
ht2H

E
(x,y)⇠P

`(h
t

� g(x), y) + �(g,m)

#

+
⌘C2

8
+

K(⇢,⇡
1

)

⌘T

)

.

B Better Bounds for Dictionary Learning

We now state a refined version of the bounds for dictionary learning in Section 4. As pointed out in that section,
while in general the bound

�
max

1

m

m

X

i=1

x
t,i

xT

t,i

!

 1

is unimprovable, if the input vectors x
t,i

are i.i.d. random variables from uniform distribution on the unit sphere,
then

1

m

m

X

i=1

x
t,i

xT

t,i

a.s.����!
m!1 Cov(x

t,i

, x
t,i

) =
1

d
I

where I is the identity matrix. Consequently,

�
max

1

m

m

X

i=1

x
t,i

xT

t,i

!

a.s.����!
m!1

1

d
.

We can take advantage of this fact in order to improve the term �(m) = sup
g2G �(g,m), but only if we assume

that we know in advance that �
max

�

P

m

i=1

x
t,i

xT

t,i

/m
�

is not too large. This is the meaning of the following
theorem.

Theorem B.1. Assume that we know in advance that for all t 2 {1, . . . , T},

�
max

1

m

m

X

i=1

x
t,i

xT

t,i

!

 ⇤

for some ⇤ > 0. Assume the same assumptions as in Theorem 4.3, still with ⌘ = 2

C

q

Kd

T

. Use within tasks

Algorithm 2 (online gradient) with a fixed gradient step ⇣ = B/(L
p
2mK⇤). Then we have

Regret Bounds for Lifelong Learning

1

T

T

X

t=1

E
gt⇠⇡t

"

1

m

m

X

i=1

ˆ̀
t,i

#

� inf
g2G

1

T

T

X

t=1

inf
ht2H

1

m

m

X

i=1

`
�

hh
t

, gx
t,i

i, y
t,i

�

 C

4

r

Kd

T
(log(T) + 7) +

2BL
p
2K⇤p
m

+
B�

p
⇤p

T
.

In particular, note that when ⇤ = 1/d the bound becomes

C

4

r

Kd

T
(log(T) + 7) +

2BL
p
2Kp

md
+

B�p
dT

.

Proof. We apply Theorem 4.3, so we only have to upper bound the term �(g,m) for the online gradient algorithm
with the prescribed step size. Note that in (Corollary 2.7 Shalev-Shwartz, 2011) we actually have the following
regret bound for Algorithm 2 with fixed step size ⌘ > 0:

�(g,m) =
B2

2⌘m
+

⌘

m

m

X

i=1

kr
✓=✓t`(h✓, gxt,i

i, y
t,i

)k2.

By the L-Lipschitz assumption on `, kr
✓=✓t`(h✓t, gxt,i

i, y
t,i

)k2  L2kgx
t,i

k2. So we have

m

X

t=1

kr
✓=✓t`(h✓, gxt,i

i, y
t,i

)k2  L2

m

X

i=1

kgx
t,i

k2 = L2

m

X

i=1

K

X

k=1

hg
k,·, xt,i

i2 = L2

m

X

i=1

K

X

k=1

gT
k,·xt,i

xT

t,i

g
k·

 mL2

K

X

k=1

gT
k,·

1

m

m

X

i=1

x
t,i

xT

t,i

!

g
k·  mKL2�

max

1

m

m

X

i=1

x
t,i

xT

t,i

!

kg
k·k2

 mKL2⇤.

Consequently, �(m) = sup
g

�(g,m)  B2/(2⌘m) + ⌘KL2⇤ and The choice ⌘  B/(L
p
2mK⇤) leads to

�(m) = 2BL
p

2K⇤/m.

C Batch-Within-Online Lifelong Learning

In this last section of the appendix, we present an alternative approach for the batch-within-online setting
discussed in Section 2. In this setting, the tasks are presented sequentially, but, for each task t 2 {1, . . . , T}
the dataset S

t

is presented all at once and we assume it is obtained i.i.d. from a distribution P
t

. Unlike to
the reasoning in Section 6, where we assumed that the P

t

were i.i.d. from a distribution Q, here we make no
assumptions on the generation process underlying the P

t

’s, which may even be adversarial chosen.

Let us recap the setting. At each time t 2 {1, . . . , T}, a task is presented to the learner in the following manner:

1. nature choses P
t

, no assumption is made on this choice. This P
t

is not revealed to the forecaster.

2. nature draws the sample S
t

=
�

(x
t,1

, y
t,1

), . . . , (x
t,mt , yt,mt)] i.i.d. from P

t

, and this sample is revealed to
the forecaster.

3. based on her/his current guess g̃
t

of g and on the sample S
t

, the forecaster has to run her/his favourite
learning algorithm ĥ on (g̃

t

,S
t

) to get an estimate h̃
t

= ĥ(g̃
t

,S
t

) based on an algorithm of his choice. Note
that the forecaster observes r̃

t

:= r
t

(h̃
t

� g̃
t

) where

r
t

(f) =
1

m
t

mt
X

i=1

`
�

f(x
t,i

), y
t,i

�

.

Pierre Alquier, The Tien Mai, Massimiliano Pontil

4. the forecaster incur the loss R
t

(h̃
t

� g̃
t

) where

R
t

(f) = E
(x,y)⇠Pt

⇥

`
�

f(x), y
�⇤

.

Unfortunately, this quantity is not known to the forecaster.

At the end of time, we are interested in a strategy such that the compound regret

R :=
1

T

T

X

t=1

R
t

(h̃
t

� g̃
t

)� inf
g2G

1

T

T

X

t=1

inf
ht2H

R
t

(h
t

� g)

is controled. The situation is similar to the setting discussed in the core of the paper: we will propose an
EWA algorithm for transfer learning, EWA-TL, for which the regret will be controlled, on the condition that
the learner chooses a suitable within task algorithm. In the online case, the within tasks algorithm was either
EWA or OGA. In Subsection C.1 we discuss briefly the within task algorithm. In Subsection C.2 we present the
EWA-TL algorithm and its theoretical analysis.

C.1 Within-task Algorithms

We make an additional assumption, that is that the estimator ĥ satisfies a bound in probability:

P
"

8g 2 G, |r(ĥ(g,S
t

) � g)�R
t

(ĥ(g,S
t

) � g)|  �(g,m
t

, ")

and

|R
t

(ĥ(g,S
t

) � g)� inf
h2H

R
t

(h � g)|  2�(g,m
t

, ")

#

� 1� ". (C.1)

In classification, when ` is the 0-1 loss function, and for any g, the family {h�g, h 2 H} has a Vapnik-Chervonenkis
dimension bounded by V , then the empirical risk minimizer (ERM)

ĥ(g,S
t

) = argmin
h2H

r
t

(h � g)

satisfies the above condition with

�(g,m
t

, ") = 2

s

2
V log

�

2mte

V

�

+ log
�

4

"

�

m
t

,

see e.g. (Chapter 4, page 94 Vapnik, 1998). Similar rates can be obtained with PAC-Bayesian bounds (McAllester,
1998; Catoni, 2004), but we postpone the details to future work.

C.2 EWA-TL

Algorithm 6 EWA-TL

Data A sequence of datasets
S
t

=
�

(x
t,1

, y
t,1

), . . . , (x
t,mt , yt,mt)

�

, 1  t  T , associated with di↵erent learning tasks; the datasets are
revealed sequentially, but the points within each dataset S

t

are revealed all at once.

Input A prior ⇡
1

, a learning parameter ⌘ > 0 and a learning algorithm ĥ which satisfies (C.1).

Loop For t = 1, . . . , T

i Draw ĝ
t

⇠ ⇡
t

.

ii Run the within-task learning algorithm t̂ on S
t

to get h̃
t

= ĥ(ĝ
t

,S
t

).

iii Update

⇡
t+1

(dg) / exp

(

�⌘
h

r
t

(ĥ(S
t

, g) � g) + �(g,m
t

, "/T)
i

)

⇡
t�1

(dg).

Regret Bounds for Lifelong Learning

We now provide a bound on the regret of EWA-TL.

Theorem C.1. Under (C.1), and assuming that there is a constant C such that 0  r
t

(ĥ(S
t

, g) � g) +
�(g,m

t

, "/T)  C, with probability at least 1� ",

T

X

t=1

E
g̃t⇠⇡t�1

h

R
t

(h̃
t

� g̃
t

)]
i

 inf
⇢

(

E
g⇠⇢

"

1

T

T

X

t=1

inf
h2H

R
t

(h � g) + 4

T

T

X

t=1

�(g,m
t

, "/T)

#

+
⌘TC2

8
+

K(⇢,⇡
1

)

⌘

)

.

Sketch of the proof. First, follow the proof of Theorem 3.1 to get:

T

X

t=1

E
g̃t⇠⇡t�1

h

r
t

(h̃
t

� g̃
t

)] + �(g̃
t

,m
t

, "/T)
i

 inf
⇢

(

T

X

t=1

E
g⇠⇢

h

r
t

(h̃
t

� g) + �(g,m
t

, "/T)
i

+
⌘TC2

8
+

K(⇢,⇡)

⌘

)

.

So, with probability at least 1� ",

T

X

t=1

E
g̃t⇠⇡t�1

h

R
t

(h̃
t

� g̃
t

)]
i


T

X

t=1

E
g̃t⇠⇡t�1

h

r
t

(h̃
t

� g̃
t

)] + �(g̃
t

,m
t

, "/T)
i

 inf
⇢

(

T

X

t=1

E
g⇠⇢

h

r
t

(h̃
t

� g) + �(g,m
t

, "/T)
i

+
⌘TC2

8
+

K(⇢,⇡
1

)

⌘

)

 inf
⇢

(

T

X

t=1

E
g⇠⇢

h

R
t

(ĥ
t

(g,S
t

) � g) + 2�(g,m
t

, "/T)
i

+
⌘TC2

8
+

K(⇢,⇡
1

)

⌘

)

 inf
⇢

(

E
g⇠⇢

"

T

X

t=1

inf
h2H

R
t

(h � g) + 4
T

X

t=1

�(g,m
t

, "/T)

#

+
⌘TC2

8
+

K(⇢,⇡
1

)

⌘

)

.

