
Regret Bounds for Lifelong Learning

Pierre Alquier, The Tien Mai Massimiliano Pontil
CREST, ENSAE, Université Paris Saclay Istituto Italiano di Tecnologia

and
University College London

Abstract

We consider the problem of transfer learn-
ing in an online setting. Di↵erent tasks are
presented sequentially and processed by a
within-task algorithm. We propose a lifelong
learning strategy which refines the underly-
ing data representation used by the within-
task algorithm, thereby transferring informa-
tion from one task to the next. We show that
when the within-task algorithm comes with
some regret bound, our strategy inherits this
good property. Our bounds are in expecta-
tion for a general loss function, and uniform
for a convex loss. We discuss applications to
dictionary learning and finite set of predic-
tors. In the latter case, we improve previous
O(1/

p
m) bounds to O(1/m), where m is the

per task sample size.

1 INTRODUCTION

Most analyses of learning algorithms assume that the
algorithm starts learning from scratch when presented
with a new dataset. However, in real life, it is of-
ten the case that we will use the same algorithm on
many di↵erent tasks, and that information should be
transferred from one task to another. For example, a
key problem in pattern recognition is to learn a dic-
tionary of features helpful for image classification: it
makes perfectly sense to assume that features learnt
to classify dogs against other animals can be re-used
to recognize cats. This idea is at the core of transfer
learning, see (Thrun and Pratt, 1998; Balcan et al.,
2015; Baxter, 1997, 2000; Cavallanti et al., 2010; Mau-
rer, 2005; Maurer et al., 2013; Pentina and Lampert,
2014; Maurer et al., 2016) and references therein.

Proceedings of the 20

th
International Conference on Artifi-

cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-

erdale, Florida, USA. JMLR: W&CP volume 54. Copy-

right 2017 by the author(s).

The setting in which the tasks are presented simultane-
ously is often referred to as learning-to-learn (Baxter,
2000), whereas when the tasks are presented sequen-
tially, the term lifelong learning is often used (Thrun,
1996). In either case, a huge improvement over “learn-
ing in isolation” can be expected, especially when the
sample size per task is relatively small. We will use
the above terminology in the paper.

Although a substantial amount of work has been done
on the theoretical study of learning-to-learn (see Bax-
ter, 2000; Maurer, 2005; Pentina and Lampert, 2014;
Maurer et al., 2016, and references therein), we are
aware of only few papers which address the statistical
analysis of lifelong learning (Balcan et al., 2015; Herb-
ster et al., 2016; Pentina and Urner, 2016). Perhaps
most related to our work is (Ruvolo and Eaton, 2013),
which studied the convergence of certain optimization
algorithms for lifelong learning, however, no statistical
guarantees are provided. Furthermore, in all the afore-
mentioned works, the authors propose a technique for
transfer learning which constrains the within-task al-
gorithm to be of a certain kind, e.g. empirical risk
minimization.

The main goal of this paper is to show that it is
possible to perform a theoretical analysis of lifelong
learning with minimal assumptions on the form of the
within-task algorithm. Given a learner with her/his
own favourite algorithm(s) for learning within tasks,
we propose a meta-algorithm for transferring informa-
tion from one task to the next. The algorithm main-
tains a prior distribution on the set of representations,
which is updated after the encounter of each new task
using the exponentially weighted aggregation (EWA)
procedure, hence we call it EWA for lifelong learning
or EWA-LL.

A standard way to provide theoretical guarantees for
online algorithms are regret bounds, which measure
the discrepancy between the prediction error of the
forecaster and the error of an ideal predictor. We prove
that, as long as the within-task algorithms have good
statistical properties, EWA-LL inherits these proper-

Regret Bounds for Lifelong Learning

ties. Specifically in Theorem 3.1 we present regret
bounds for EWA-LL, in which the regret bounds for
the within-tasks algorithms are combined into a regret
bound for the meta-algorithm.

We also show, using an online-to-batch analysis, that
it is possible to derive a strategy for learning-to-learn,
and provide risk bounds for this strategy. The bounds
are generally in the order of 1/

p
T +1/

p
m, where T is

the number of tasks and m is the sample size per task,
but we show that in some specific cases the bounds
can be improved to the order of 1/

p
T + 1/m. These

rates are novel up to our knowledge and justify the use
of transfer learning with very small sample sizes.

The paper is organized as follows. In Section 2 we in-
troduce the lifelong learning problem. In Section 3 we
present the EWA-LL algorithm and provide a bound
on its expected regret. This bound is very general,
but might be uneasy to understand at first sight. So,
in Section 4 we present more explicit versions of our
bound in two classical examples: finite set of predictors
and dictionary learning. We also provide a short simu-
lation study for dictionary learning. At this point, we
hope that the reader will have a clear overview of the
problem under study. The rest of the paper is devoted
to theoretical refinements: in online learning, uniform
bounds are the norm rather than bounds in expecta-
tions (Cesa-Bianchi and Lugosi, 2006). In Section 5
we establish such bounds for EWA-LL. Section 6 pro-
vides an online-to-batch analysis that allows one to use
a modification of EWA-LL for learning-to-learn. The
supplementary material include proofs (Appendix A),
improvements for dictionary learning (Appendix B)
and extended results (Appendix C).

2 PROBLEM

In this section, we introduce our notation and present
the lifelong learning problem.

Let X and Y be some sets. A predictor is a func-
tion f : X ! Y, where Y = R for regression and
Y = {�1, 1} for binary classification. The loss of a
predictor f on a pair (x, y) is a real number denoted
by `(f(x), y). As mentioned above, we want to trans-
fer the information (a common data representation)
gained from the previous tasks to a new one. Formally,
we let Z be a set and prescribe a set G of feature maps
(also called representations) g : X ! Z, and a set H
of functions h : Z ! R. We shall design an algorithm
that is useful when there is a function g 2 G, common
to all the tasks, and task-specific functions h

1

, . . . , h
T

such that f
t

= h
t

� g is a good predictor for task t, in
the sense that the corresponding prediction error (see
below) is small.

We are now ready to describe the learning problem.
We assume that tasks are dealt with sequentially. Fur-
thermore, we assume that each task dataset is itself re-
vealed sequentially and refer to this setting as online-
within-online lifelong learning. Specifically, at each
time step t 2 {1, . . . , T}, the learner is challenged with
a task, corresponding to a dataset

S
t

=
�

(x
t,1

, y
t,1

), . . . , (x
t,mt , yt,mt)

�

2 (X ⇥ Y)mt

where m
t

2 N. The dataset S
t

is itself revealed se-
quentially, that is, at each inner step i 2 {1, . . . ,m

t

}:

• The object x
t,i

is revealed,

• The learner has to predict y
t,i

, let ŷ
t,i

denote the
prediction,

• The label y
t,i

is revealed, and the learner incurs

the loss ˆ̀
t,i

:= `(ŷ
t,i

, y
t,i

).

The task t ends at time m
t

, at which point the predic-
tion error is

1

m
t

mt
X

i=1

ˆ̀
t,i

. (2.1)

This process is repeated for each task t, so that at the
end of all the tasks, the average error is

1

T

T

X

t=1

1

m
t

mt
X

i=1

ˆ̀
t,i

.

Ideally, if for a given representation g, the best predic-
tor h

t

for task t was known in advance, then an ideal
learner using h

t

�g for prediction would incur the error

inf
ht2H

1

m
t

mt
X

i=1

`
�

h
t

� g(x
t,i

), y
t,i

�

. (2.2)

Hence, we define the within-task-regret of the repre-
sentation g on task t as the di↵erence between the
prediction error (2.1) and the smallest prediction er-
ror (2.2),

R
t

(g) =
1

m
t

mt
X

i=1

ˆ̀
t,i

� inf
ht2H

1

m
t

mt
X

i=1

`
�

h
t

� g(x
t,i

), y
t,i

�

.

The above expression is slightly di↵erent from the
usual notion of regret (Cesa-Bianchi and Lugosi, 2006),
which does not contain the factor 1/m

t

. This normal-
ization is important in that it allows us to give equal
weights to di↵erent tasks.

Note that an oracle who would have known the best
common representation g for all tasks in advance
would have only su↵ered, on the entire sequence of
datasets, the error

inf
g2G

1

T

T

X

t=1

inf
ht2H

1

m
t

mt
X

i=1

`
�

h
t

� g(x
t,i

), y
t,i

�

.

Pierre Alquier, The Tien Mai, Massimiliano Pontil

We are now ready to state our principal objective:
we wish to design a procedure (meta-algorithm) that,
at the beginning of each task t, produces a function
ĝ
t

so that, within each task, the learner can use its
own favorite online learning algorithm to solve task t
on the sequence

�

(ĝ
t

(x
t,1

), y
t,1

), . . . , (ĝ
t

(x
t,mt), yt,mt)

�

.
We wish to control the compound regret of this proce-
dure, which is defined as

R :=
1

T

T

X

t=1

1

m
t

mt
X

i=1

ˆ̀
t,i

� inf
g2G

1

T

T

X

t=1

inf
ht2H

1

m
t

mt
X

i=1

`
�

h
t

� g(x
t,i

), y
t,i

�

and can more concisely be written as the expression
inf

g2G
�

1

T

P

T

t=1

R
t

(g)

. The above objective is ac-
complished in Section 3 under the assumption that
a regret bound for the within-task-algorithm is avail-
able.

We end this section with two examples included in the
framework.

Example 2.1 (Dictionary learning). Set Z = RK ,
and call g = (g

1

, . . . , g
K

) a dictionary, where each g
k

is a real-valued function on X . Furthermore choose H
to be a set of linear functions on RK , so that, for each
task t

h
t

� g(x) =
K

X

k=1

✓
(t)

k

g
k

(x).

In practice depending on the value of K, we can
use least square estimators or LASSO to learn ✓(t).
In (Maurer et al., 2013; Ruvolo and Eaton, 2013), the
authors consider X = Rd and g(x) = Dx for some
d ⇥ K matrix D, and the goal is to learn jointly the
predictors ✓(t) and the dictionary D.

Example 2.2 (Finite set G). We choose G =
{g

1

, . . . , g
K

} and H any set. While this example is
interesting in its own right, it is also instrumental in
studying the continuous case via a suitable discretiza-
tion process. A similar choice has been considered by
Crammer and Mansour (2012) in the multitask set-
ting, in which the goal is to bound the average error
on a prescribed set of tasks.

We notice that a slightly di↵erent learning setting is
obtained when each dataset S

t

is given all at once. We
refer to this as batch-within-online lifelong learning;
this setting is briefly considered in Appendix C. On
the other hand when all datasets are revealed all at
once, we are in the well-known setting of learning-to-
learn (Baxter, 2000). In Section 6, we explain how
our lifelong learning analysis can be adapted to this
setting.

Algorithm 1 EWA-LL

Data A sequence of datasets
S
t

=
�

(x
t,1

, y
t,1

), . . . , (x
t,mt , yt,mt)

�

, 1 t T .
associated with di↵erent learning tasks; the points
within each dataset are also given sequentially.

Input A prior ⇡
1

, a learning parameter ⌘ > 0 and a
learning algorithm for each task t which, for any
representation g returns a sequence of predictions
ŷg
t,i

and su↵ers a loss

L̂
t

(g) :=
1

m
t

mt
X

i=1

`
�

ŷg
t,i

, y
t,i

�

.

Loop For t = 1, . . . , T

i Draw ĝ
t

⇠ ⇡
t

.

ii Run the within-task learning algorithm on S
t

and su↵er loss L̂
t

(ĝ
t

).

iii Update

⇡
t+1

(dg) :=
exp(�⌘L̂

t

(g))⇡
t

(dg)
R

exp(�⌘L̂
t

(�))⇡
t

(d�)
.

3 ALGORITHM

In this section, we present our lifelong learning algo-
rithm, derive its regret bound and then specify it to
two common within-task online algorithms.

3.1 EWA-LL Algorithm

Our EWA-LL algorithm is outlined in Algorithm 1.
The algorithm is based on the exponentially weighted
aggregation procedure (see e.g. Cesa-Bianchi and Lu-
gosi, 2006, and references therein), and it updates a
probability distribution ⇡

t

on the set of representa-
tions G before the encounter of each task t. The e↵ect
of Step iii is that any representation g which does not
perform well on task t, is less likely to be reused on
the next task. We insist on the fact that this proce-
dure allows the user to freely choose the within-task
algorithm, which does not even need to be the same
for each task.

3.2 Bounding the Expected Regret

Since Algorithm 1 involves a randomization strategy,
we can only get a bound on the expected regret, the
expectation being with respect to the drawing of the
function ĝ

t

at step i in the algorithm. Let E
g⇠⇡

[F (g)]
denote the expectation of F (g) when g ⇠ ⇡. Note
that the expected overall-average loss that we want to

Regret Bounds for Lifelong Learning

upper bound is then

1

T

T

X

t=1

E
ĝt⇠⇡t [L̂t

(ĝ
t

)].

Theorem 3.1. If, for any g 2 G, L̂
t

(g) 2 [0, C] and
the within-task algorithm has a regret bound R

t

(g)
�(g,m

t

), then

1

T

T

X

t=1

E
ĝt⇠⇡t

"

1

m
t

mt
X

i=1

ˆ̀
t,i

#

 inf
⇢

(

E
g⇠⇢

"

1

T

T

X

t=1

inf
ht2H

1

m
t

mt
X

i=1

`
�

h
t

� g(x
t,i

), y
t,i

�

+
1

T

T

X

t=1

�(g,m
t

)

#

+
⌘C2

8
+

K(⇢,⇡
1

)

⌘T

)

,

where the infimum is taken over all probability mea-
sures ⇢ and K(⇢,⇡

1

) is the Kullback-Leibler divergence
between ⇢ and ⇡

1

.

The proof is given in Appendix A. Some comments are
in order as the bound in Theorem 3.1 might not be
easy to read. First, similar to standard analyses in on-
line learning, the parameter ⌘ is a decreasing function
of T , hence the bound vanishes as T grows. Second,
corollaries are derived in Section 4 that are easier to
read, as they are more similar to usual regret inequali-
ties (Cesa-Bianchi and Lugosi, 2006), that is, the right
hand side of the bound is of the form

inf
g2G

1

T

T

X

t=1

inf
ht2H

1

m
t

mt
X

i=1

`
�

h
t

�g(x
t,i

), y
t,i

�

+“rate”. (3.1)

The bound in Theorem 1 looks slightly di↵erent, but
is quite similar in spirit. Indeed, instead of an infimum
with respect to g we have an infimum over all possible
aggregations with respect to g,

inf
⇢

E
g⇠⇢

1

T

T

X

t=1

inf
ht2H

1

m
t

mt
X

i=1

`
�

h
t

� g(x
t,i

), y
t,i

�

+ “remainder”

where the remainder term depends on K(⇢,⇡
1

). In
order to look like (3.1), we could consider a mea-
sure ⇢ highly concentrated around the representation
g minimizing (3.1). When G is finite, this is a rea-
sonable strategy and the bound is given explicitly in
Section 4.1 below. However, in some situations, this
would cause the term K(⇢,⇡

1

) to diverge. Studying
accurately the minimizer in ⇢ usually leads to an in-
teresting regret bound, and this is exactly what is done
in Section 4.

Algorithm 2 OGA

Data A task S
t

=
�

(x
t,1

, y
t,1

), . . . , (x
t,mt , yt,mt)

�

.

Input Stepsize ⇣ > 0, and ✓
1

= 0.

Loop For i = 1, . . . ,m
t

,

i Predict ŷg
t,i

= h
✓i � g(xt,i

),

ii y
t,i

is revealed, update
✓
i+1

= ✓
i

� ⇣r
✓

`
�

h
✓

� g(x
t,i

), y
t,i

�

�

�

✓=✓i
.

Finally note that the bound in Theorem 3.1 is given
in expectation. In online learning, uniform bounds are
usually prefered (Cesa-Bianchi and Lugosi, 2006). In
Section 5 we show that it is possible to derive such
bounds under additional assumptions.

3.3 Examples of Within Task Algorithms

We now specify the general bound in Theorem 1 to two
common online algorithms which we use within tasks.

3.3.1 Online Gradient

The first algorithm assumes that H is a parametric
family of functionsH = {h

✓

, ✓ 2 Rp, k✓k B}, and for
any (x, y, g), ✓ 7! `(h

✓

�g(x), y) is convex, L-Lipschitz,
upper bounded by C and denote by r

✓

a subgradient.

Corollary 3.2. The EWA-LL algorithm using the
OGA within task with step size ⇣ = B

L

p
2mt

satisfies

1

T

T

X

t=1

E
ĝt⇠⇡t

"

1

m
t

mt
X

i=1

ˆ̀
t,i

#

 inf
⇢

(

E
g⇠⇢

"

1

T

T

X

t=1

inf
ht2H

1

m
t

mt
X

i=1

`(h
t

� g(x
t,i

), y
t,i

)

+
BL

T

T

X

t=1

r

2

m
t

#

+
⌘C2

8
+

K(⇢,⇡
1

)

⌘T

)

.

Proof. Apply Theorem 3.1 and use the bound R
t

(g)
�(g,m

t

) := BL
p

2/m
t

that can be found, for example,
in (Shalev-Shwartz, 2011, Corollary 2.7).

We note that under additional assumptions on loss
functions, (Hazan et al., 2007, Theorem 1) provides
bounds for �(g,m

t

) that are in log(m
t

)/m
t

.

3.3.2 Exponentially Weighted Aggregation

The second algorithm is based on the EWA procedure
on the spaceH�g for a prescribed representation g 2 G.
Recall that a function ' : R ! R is called ⇣

0

-exp-

Pierre Alquier, The Tien Mai, Massimiliano Pontil

Algorithm 3 EWA

Data A task S
t

=
�

(x
t,1

, y
t,1

), . . . , (x
t,mt , yt,mt)

�

.

Input Learning rate ⇣ > 0; a prior probability distri-
bution µ

1

on H.

Loop For i = 1, . . . ,m
t

,

i Predict ŷg
t,i

=
R

H h � g(x
t,i

)µ
i

(dh),

ii y
t,i

is revealed, update

µ
i+1

(dh) =
exp(�⇣`(h � g(x

t,i

), y
t,i

))µ
i

(dh)
R

exp(�⇣`(u � g(x
t,i

), y
t,i

))µ
i

(du)
.

concave if exp(�⇣
0

') is concave.

Corollary 3.3. Assume that H is finite and that there
exists ⇣

0

> 0 such that for any y, the function `(·, y)
is ⇣

0

-exp-concave and upper bounded by a constant C.
Then the EWA-LL algorithm using the EWA within
task with ⇣ = ⇣

0

satisfies

1

T

T

X

t=1

E
ĝt⇠⇡t

"

1

m
t

mt
X

i=1

ˆ̀
t,i

#

 inf
⇢

(

E
g⇠⇢

"

1

T

T

X

t=1

inf
ht2H

1

m
t

mt
X

i=1

`
�

h
t

� g(x
t,i

), y
t,i

�

+
1

T

T

X

t=1

⇣
0

log |H|
m

t

#

+
⌘C2

8
+

K(⇢,⇡
1

)

⌘T

)

.

Proof. Apply Theorem 3.1 and use the bound R
t

(g)
�(g,m

t

) := ⇣
0

log |H|/m
t

that can be found, for exam-
ple, in (Gerchinovitz, 2011, Theorem 2.2).

A typical example is the quadratic loss function
`(y0, y) = (y0 � y)2. When there is some B such
that |y

t,i

| B and |h � g(x
t,i

)| B, then the exp-
concavity assumption is verified with ⇣

0

= 1/(8B) and
the boundedness assumption with C = 4B2.

Note that when the exp-concavity assumption does
not hold, Gerchinovitz (2011) derives a bound
�(g,m

t

) = B
p

log(|H|)/(2m
t

) with the choice ⇣ =

(2/B)
p

2 log(|H|)/m
t

. Moreover, PAC-Bayesian type
bounds in various settings (including infiniteH) can be
found in (Catoni, 2004; Audibert, 2006; Gerchinovitz,
2013). We refer the reader to (Gerchinovitz, 2011) for
a comprehensive survey.

4 APPLICATIONS

In this section, we discuss two important applications.
To ease our presentation, we assume that all the tasks
have the same sample size, that is m

t

= m for all t.

4.1 Finite Subset of Relevant Predictors

We give details on Example 2.2, that is we assume
that G is a set of K functions. Note that step iii in
Algorithm 1 boils down to update K weights,

⇡
t

(g
k

) =
exp(�⌘L̂

t

(g
k

))⇡
t�1

(g
k

)
P

K

j=1

exp(�⌘L̂
t

(g
j

))⇡
t�1

(g
j

)
.

Theorem 4.1. Under the assumptions of Theorem

3.1, if we set ⌘ = 2

C

q

2 logK

T

and ⇡
1

uniform on G,

1

T

T

X

t=1

E
ĝt⇠⇡t

"

1

m

m

X

i=1

ˆ̀
t,i

#

 min
1kK

(

1

T

T

X

t=1

inf
ht2H

1

m

m

X

i=1

`(h
t

� g
k

(x
t,i

), y
t,i

)

+ �(g
k

,m)

)

+ C

r

logK

2T
.

Proof. Fix g 2 G, ⇢ as the Dirac mass on g and note
that K(⇢,⇡

1

) = logK.

We discussed in Sections 3.3.1 and 3.3.2 that typi-
cal orders for �(g,m) are O(1/

p
m), O(log(m)/m) or

O(1/m). We state a precise result in the finite case.

Corollary 4.2. Assume that H is finite, that for some
⇣
0

> 0, for any y, the function `(·, y) is ⇣
0

-exp-concave
and upper bounded by a constant C. Then the EWA-
LL algorithm using the EWA within task with ⇣ = ⇣

0

satisfies

1

T

T

X

t=1

E
ĝt⇠⇡t

"

1

m

m

X

i=1

ˆ̀
t,i

#

 min
1kK

1

T

T

X

t=1

min
ht2H

1

m

m

X

i=1

`(h
t

� g
k

(x
t,i

), y
t,i

)

+
⇣
0

log |H|
m

+ C

r

logK

2T
.

In Section 6, we derive from Theorem 3.1 a bound in
the batch setting. As we shall see, in the finite case
the bound is exactly the same as the bound on the
compound regret. This allows us to compare our re-
sults to previous ones obtained in the learning-to-learn
setting. In particular, our O(1/m) bound improves
upon (Pentina and Lampert, 2014) who derived an
O(1/

p
m) bound.

4.2 Dictionary Learning

We now give details on Example 2.1 in the linear case.
Specifically, we let X = Rd, we let D

K

be the set

Regret Bounds for Lifelong Learning

formed by all d⇥K matrices D, whose columns have
euclidean norm equal to one, and we define G = {x 7!
Dx : D 2 D

K

}. Within this subsection we assume that
the loss ` is convex and �-Lipschitz with respect to its
first argument, that is, for every y 2 Y and a

1

, a
2

2 R,
it holds |`(a

1

, y) � `(a
2

, y)| �|a
1

� a
2

|. We also
assume that for all (t, i) 2 {1, . . . , T} ⇥ {1, . . . ,m},
kx

t,i

k 1, and �(m) := sup
g2G �(m, g) < +1.

We define the prior ⇡
1

as follows: the columns of D
are i.i.d., uniformly distributed on the d-dimensional
unit sphere.

Theorem 4.3. Under the assumptions of Theorem

3.1, with ⌘ = 2

C

q

Kd

T

,

1

T

T

X

t=1

E
ĝt⇠⇡t

"

1

m

m

X

i=1

ˆ̀
t,i

#

 inf
D2DK

(

1

T

T

X

t=1

inf
ht2H

1

m

m

X

i=1

`
�

hh
t

, Dx
t,i

i, y
t,i

�

+
C

4

r

Kd

T
(log(T) + 7) + �(m)

)

+
B�p
T

v

u

u

t

1

T

T

X

t=1

�
max

1

m

m

X

i=1

x
t,i

xT

t,i

!

.

The proof relies on an application of Theorem 3.1. The
calculations being tedious, we postpone the proof to
Appendix A.

When we use OGA within tasks, we can use Corol-
lary 3.2 with L = �

p
K and so �(m) �B

p

2K/m
for any D 2 D

K

. Moreover,

�
max

1

m

m

X

i=1

x
t,i

xT

t,i

!

 tr

1

m

m

X

i=1

x
t,i

xT

t,i

!

 1 (4.1)

so Theorem 4.3 leads to the following corollary.

Corollary 4.4. Algorithm EWA-LL for dictionary
learning, with ⌘ = (2/C)

p

Kd/T , and using the OGA

algorithm within tasks, with step ⇣ = B/(�
p
2mK),

satisfies

1

T

T

X

t=1

E
ĝt⇠⇡t

"

1

m

m

X

i=1

ˆ̀
t,i

#

 inf
D2DK

1

T

T

X

t=1

inf
ht2H

1

m

m

X

i=1

`
�

hh
t

, Dx
t,i

i, y
t,i

�

+
C

4

r

Kd

T
(log(T) + 7) +

B�p
T

+
�B

p
2Kp
m

.

Note that the upper bound (4.1) may be loose. For
example, when the x

t,i

are i.i.d. on the unit sphere,

Algorithm 4 EWA-LL for dictionary learning

Data As in Algorithm 1.

Input A learning rate ⌘ for EWA and a learning rate
⇣ for the online gradient. A number of steps N
for the Metropolis-Hastings algorithm.

Start Draw ĝ
1

⇠ ⇡
1

.

Loop For t = 1, . . . , T

i Run the within-task learning algorithm S
t

and
su↵er loss L̂

t

(ĝ
t

).

ii Set g̃ := ĝ
t

.

iii Metropolis-Hastings algorithm. Repeat N
times

a Draw g̃0 ⇠ N (g̃,�2I) and then set g̃0 :=
g̃0/kg̃0k.

b Set g̃ := g̃0 with probability

min

(

1, exp

"

⌘

t

X

h=1

⇣

L̂
h

(g̃)� L̂
h

(g̃0)
⌘

#)

,

g̃ remains unchanged otherwise.

iv Set ĝ
t

:= g̃.

�
max

�

P

m

i=1

x
t,i

xT

t,i

/m
�

is close to 1/d. In this case,
it is possible to improve the term �(m) employed in
the calculation of the bound, we postpone the lengthy
details to Appendix B.

4.2.1 Algorithmic Details and Simulations

We implement our meta-algorithm Randomized EWA
in this setting. The algorithm used within each task
is the simple version of the online gradient algorithm
outlined in Section 3.3.1. In order to draw ĝ

t

from
⇡
t

, we use N -steps of Metropolis-Hastings algorithm
with a normalized Gaussian proposal (see, for example,
Robert and Casella, 2013). In order to ensure a short
burn-in period, we use the previous drawing ĝ

t�1

as a
starting point. The procedure is given in Algorithm 4.
Note the bottleneck of the algorithm: in step b we
have to compare g̃ and g̃0 on the whole dataset so far.

We now present a short simulation study. We gener-
ate data in the following way: we let K = 2, d = 5,
T = 150 and m = 100. The columns of D are drawn
uniformly on the unit sphere, and task regression vec-
tors ✓

t

are also independent and have i.i.d. coordinates
in U [�1, 1]. We generate the datasets S

t

as follows: all
the x

t,i

are i.i.d. from the same distribution as ✓
t

, and
y
t,i

= h✓
t

, Dx
t,i

i+"
t,i

where the "
t,i

are i.i.d. N (0,�2)
and � = 0.1.

Pierre Alquier, The Tien Mai, Massimiliano Pontil

Figure 1: The cumulative loss of the oracle for the first
15 tasks.

We compare Algorithm 4 with N = 10 to an oracle
who knows the representation D, but not the task re-
gression vectors ✓

t

, and learns them using the online
gradient algorithm with step size ⇣ = 0.1. Notice that
after each chunk of 100 observations, a new task starts,
so the parameter ✓

t

changes. Thus, the oracle incurs
a large loss until it learns the new ✓

t

(usually within a
few steps). This explains the “stair” shape of the cu-
mulative loss of the oracle in Figure 1. Figure 2 indi-
cates that after a few tasks, the dictionary D is learnt
by EWA-LL: its cumulative loss becomes parallel to
the one of the oracle. Due to the bottleneck mentioned
above, the algorithm becomes quite slow to run when t
grows. In order to improve the speed of the algorithm,
we also tried Algorithm 4 with N = 1. There is ab-
solutely no theoretical justification for this, however,
obviously the algorithm is 10 times faster. As we can
see on the red line in Figure 2, this version of the algo-
rithm still learns D, but it takes more steps. Note that
this is not completely unexpected: the Markov chain
generated by this algorithm is no longer stationary,
but it can still enjoy good mixing properties. It would
be interesting to study the theoretical performance of
Algorithm 4. However, this would require consider-
ably technical tools from Markov chain theory which
are beyond the scope of this paper.

5 UNIFORM BOUNDS

In this section, we show that it possible to obtain a
uniform bound, as opposed to a bound in expectation
as in Theorem 3.1. From a theoretical perspective, the
price to pay is very low: we only have to assume that
the loss function is convex with respect to its first ar-
gument. However, in practice, there is an aggregation
step that might not be feasible. This is discussed at
the end of the section. The algorithm is outlined in
Algorithm 5.

Figure 2: Cumulative loss of EWA-LL (N = 1 in red
and N = 10 in blue) and cumulative loss of the oracle.

Theorem 5.1. Assume that for any g, 0 L̂
t

(g) C
and that the algorithm used within-task has a regret
R

t

(g) �(g,m
t

). Assume that ` is convex with respect
to its first argument. Then it holds that

1

T

T

X

t=1

1

m
t

mt
X

i=1

` (ŷ
t,i

, y
t,i

)

 inf
⇢

(

E
g⇠⇢

"

1

T

T

X

t=1

inf
ht2H

1

m
t

mt
X

i=1

`(h
t

� g(x
t,i

), y
t,i

)

+
1

T

T

X

t=1

�(g,m
t

)

#

+
⌘C2

8
+

K(⇢,⇡
1

)

⌘T

)

.

Proof. At each step t, the loss su↵ered by the algo-
rithm is

1

m
t

mt
X

i=1

`
�

ŷ
t,i

, y
t,i

�

=
1

m
t

mt
X

i=1

`

✓

Z

ŷg
t,i

⇡
t

(dg), y
t,i

◆

 1

m
t

mt
X

i=1

Z

`
�

ŷg
t,i

, y
t,i

�

⇡
t

(dg) =

Z

L̂
t

(g)⇡
t

(dg)

and we can just apply Theorem 3.1.

In practice, for an infinite set G we are not able to run
simultaneously the within-task algorithm for all g 2 G.
So, we cannot compute the prediction (5.1) exactly. A
possible strategy is to draw N elements of G i.i.d. from
⇡
t

, say ĝ
t

(1), . . . , ĝ
t

(N), and to replace (5.1) by

ŷ
(N)

t,i

=
1

N

N

X

j=1

ŷ
ĝt(j)

t,i

.

An application of Hoe↵ding’s inequality shows for any
� > 0, with probability at least 1 � �, the bound in
Theorem 5.1 will still hold, up to an additional term
C
p

log(T/�)/2N .

Regret Bounds for Lifelong Learning

Algorithm 5 Integrated EWA-LL

Data and Input same as in Algorithm 1.

Loop For t = 1, . . . , T

i Run the within-task learning algorithm on S
t

for each g 2 G and return as predictions:

ŷ
t,i

=

Z

ŷg
t,i

⇡
t

(dg). (5.1)

ii Update ⇡
t+1

(dg) := exp(�⌘

ˆ

Lt(g))⇡t(dg)R
exp(�⌘

ˆ

Lt(�))⇡t(d�)
.

6 LEARNING-TO-LEARN

In this section, we show how our analysis of lifelong
learning can be used to derive bounds for learning-to-
learn. In this setting, the tasks and their datasets
are generated by first sampling task distributions
P
1

, . . . , P
T

i.i.d. from a“meta-distribution”Q, called
environment by Baxter (2000), and then for each task
t, a dataset S

t

= ((x
t,1

, y
t,1

), . . . , (x
t,m

, y
t,m

)) is sam-
pled i.i.d. from P

t

. We stress that in this setting, the
entire data (x

t,i

, y
t,i

)
1im,1tT

is given all at once
to the learner. Note that for simplicity, we assumed
that all the sample sizes are the same.

We wish to design a strategy which, given a new task
P ⇠ Q and a new sample (x

1

, y
1

), . . . , (x
m

, y
m

) i.i.d.
from P , computes a function f : X ! Y, that will
predict y well when (x, y) ⇠ P . For this purpose we
propose the following strategy:

1. Run EWA-LL on (x
t,i

, y
t,i

)
1im,1tT

. We ob-
tain a sequence of representations ĝ

1

, . . . , ĝ
T

,

2. Draw uniformly T 2 {1, . . . , T} and put ĝ = ĝT ,

3. Run the within task algorithm on the sample
(x

i

, y
i

)
1im

, obtaining a sequence hĝ

1

, . . . , hĝ

m

of
functions,

4. Draw uniformly I 2 {1, . . . ,m} and put ĥ = hĝ

I .

Our next result establishes that this strategy leads in-
deed to safe predictions.

Theorem 6.1. Let E be the expectation over all
data pairs (x

t,i

, y
t,i

)
1im

⇠ P
t

, (P
t

)
1tT

⇠ Q,
(x

i

, y
i

)
1im

⇠ P , (x, y) ⇠ P , P ⇠ Q and also over
the randomized decisions of the learner (ĝ

t

)
1tT

, T
and I. Then

E[`(ĥ � ĝ(x), y)] inf
⇢

(

E
g⇠⇢

"

E
P⇠Q

inf
h2H

E
(x,y)⇠P

h

`(h � g(x), y)
i

+ �(g,m)

#

+
⌘C2

8
+

K(⇢,⇡
1

)

⌘T

)

.

The proof is given in Appendix A. As in Theorem 3.1,
the result is given in expectation with respect to the
randomized decisions of the learner. Assuming that
` is convex with respect to its first argument, we can
state a similar result for a non-random procedure, as
was done in Section 5. Details are left to the reader.

Remark 6.1. In (Baxter, 2000; Maurer et al., 2013;
Pentina and Lampert, 2014), the results on learning-
to-learn are given with large probability with respect
to (x

t,i

, y
t,i

)
1im,1tT

, rather than in expectation.
Using the machinery in (Cesa-Bianchi and Lugosi,
2006, Lemma 4.1) we conjecture that it is possible to
derive a bound in probability from Theorem 6.1.

7 CONCLUDING REMARKS

We presented a meta-algorithm for lifelong learning
and derived a fully online analysis of its regret. An
important advantage of this algorithm is that it inher-
its the good properties of any algorithm used to learn
within tasks. Furthermore, using online-to-batch con-
version techniques, we derived bounds for the related
framework of learning-to-learn.

We discussed the implications of our general regret
bounds for two applications: dictionary learning and
finite set G of representations. Further applications
of this algorithm which may be studied within our
framework are deep neural networks and kernel learn-
ing. In the latter case, which has been addressed by
Pentina and Ben-David (2015) in the learning-to-learn
setting, g : X ! Z is a feature map to a reproducing
kernel Hilbert space Z, and h

t

(g(x)) = hz(t), g(x)iZ .
In the former case, X = Rd and g : X ! RK is a
multilayer network, that is a vector-valued function
obtained by successive application of a linear trans-
formation and a nonlinear activation function. The
predictor h : RK ! R is typically a linear function.
The vector-valued function (h

1

� g, . . . , h
T

� g)) mod-
els a multilayer network with shared hidden weights.
This is discussed in (Maurer et al., 2016), again in the
learning-to-learn setting.

Perhaps the most fundamental question is to extend
our analysis to more computationally e�cient algo-
rithms such as approximations of EWA, like Algo-
rithm 4, or fully gradient based algorithms.

Acknowledgements

We are grateful to Mark Herbster for useful com-
ments. This work was supported by the research pro-
gramme New Challenges for New Data from LCL and
GENES, hosted by the Fondation du Risque, from
Labex ECODEC (ANR - 11-LABEX-0047) and EP-
SRC grant EP/P009069/1.

Pierre Alquier, The Tien Mai, Massimiliano Pontil

References

Audibert, J.-Y. (2006). A randomized online learning
algorithm for better variance control. In Proc. 19th
Annual Conference on Learning Theory, pages 392–
407. Springer.

Balcan, M.-F., Blum, A., and Vempala, S. (2015). Ef-
ficient representations for lifelong learning and au-
toencoding. In Proc. 28th Conference on Learning
Theory, pages 191–210.

Baxter, J. (1997). A bayesian/information theoretic
model of learning to learn via multiple task sam-
pling. Machine Learning, 28(1):7–39.

Baxter, J. (2000). A model of inductive bias learning.
Journal of Artificial Intelligence Research, 12:149–
198.

Catoni, O. (2004). Statistical learning theory and
stochastic optimization, volume 1851 of Saint-
Flour Summer School on Probability Theory 2001
(Jean Picard ed.), Lecture Notes in Mathematics.
Springer-Verlag, Berlin.

Cavallanti, G., Cesa-Bianchi, N., and Gentile, C.
(2010). Linear algorithms for online multitask clas-
sification. Journal of Machine Learning Research,
1:2901–2934.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction,
learning, and games. Cambridge University Press.

Crammer, K. and Mansour, Y. (2012). Learning mul-
tiple tasks using shared hypotheses. In Advances
in Neural Information Processing Systems 25, pages
1475–1483.

Gerchinovitz, S. (2011). Prédiction de suites individu-
elles et cadre statistique classique: étude de quelques
liens autour de la régression parcimonieuse et des
techniques d’agrégation. PhD thesis, Paris 11.

Gerchinovitz, S. (2013). Sparsity regret bounds for in-
dividual sequences in online linear regression. Jour-
nal of Machine Learning Research, 14(1):729–769.

Hazan, E., Agarwal, A., and Kale, S. (2007). Log-
arithmic regret algorithms for online convex opti-
mization. Machine Learning, 69(2-3):169–192.

Herbster, M., Pasteris, S., and Pontil, M. (2016). Mis-
take bounds for binary matrix completion. In Lee,
D. D., Sugiyama, M., Luxburg, U. V., Guyon, I.,
and Garnett, R., editors, Advances in Neural Infor-
mation Processing Systems 29, pages 3954–3962.

Maurer, A. (2005). Algorithmic stability and meta-
learning. Journal of Machine Learning Research,
6:967–994.

Maurer, A., Pontil, M., and Romera-Paredes, B.
(2013). Sparse coding for multitask and transfer

learning. In Proc. 30th International Conference on
Machine Learning, pages 343–351.

Maurer, A., Pontil, M., and Romera-Paredes, B.
(2016). The benefit of multitask representation
learning. Journal of Machine Learning Research,
17(81):1–32.

McAllester, D. A. (1998). Some pac-bayesian theo-
rems. In Proc. 11th Annual Conference on Compu-
tational Learning Theory, pages 230–234. ACM.

Pentina, A. and Ben-David, S. (2015). Multi-task and
lifelong learning of kernels. In Proc. 26th Interna-
tional Conference on Algorithmic Learning Theory,
pages 194–208.

Pentina, A. and Lampert, C. (2014). A pac-bayesian
bound for lifelong learning. In Proc. 31st Interna-
tional Conference on Machine Learning, pages 991–
999.

Pentina, A. and Urner, R. (2016). Lifelong learn-
ing with weighted majority votes. In Lee, D. D.,
Sugiyama, M., Luxburg, U. V., Guyon, I., and Gar-
nett, R., editors, Advances in Neural Information
Processing Systems 29, pages 3612–3620. Curran
Associates, Inc.

Robert, C. and Casella, G. (2013). Monte Carlo statis-
tical methods. Springer Science & Business Media.

Ruvolo, P. and Eaton, E. (2013). Ella: An e�cient life-
long learning algorithm. In Proc. 30th International
Conference on Machine Learning, pages 507–515.

Shalev-Shwartz, S. (2011). Online learning and on-
line convex optimization. Foundations and Trends
in Machine Learning, 4(2):107–194.

Thrun, S. (1996). Is learning the n-th thing any eas-
ier than learning the first? In Advances in neural
information processing systems, pages 640–646.

Thrun, S. and Pratt, L. (1998). Learning to Learn.
Kluwer Academic Publishers.

Vapnik, V. (1998). Statistical Learning Theory. Wiley.

