Appendix

Proof of Theorem 1 Proof: The moment form of Lemma 1 can be represented as [18],

$$
\begin{align*}
& \mathbb{E}\left(h_{1}^{r_{1}} h_{2}^{r_{2}} \ldots h_{n}^{r_{n}}\right)= \\
& \frac{1}{\Gamma(r)} \int_{0}^{\infty} u^{r-1} e^{-\sum_{i=n+1}^{k} \Psi_{i}(u)} \prod_{j \in[n]}(-1)^{r_{j}} \frac{\mathrm{~d}^{r_{j}}}{\mathrm{~d} u^{r_{j}}} e^{-\Psi_{j}(u)} \mathrm{d} u . \tag{19}
\end{align*}
$$

We use the above general form of the moments to compute and diagonalize the following moment tensors,

$$
\begin{align*}
\mathbf{M}_{2}^{(\mathbf{h})} & =\mathbb{E}(\mathbf{h} \otimes \mathbf{h})+\eta \mathbb{E}(\mathbf{h}) \otimes \mathbb{E}(\mathbf{h}) \tag{20}\\
\mathbf{M}_{3}^{(\mathbf{h})} & =\mathbb{E}(\mathbf{h} \otimes \mathbf{h} \otimes \mathbf{h}) \\
& +\eta_{1} \mathbb{E}(\mathbf{h} \otimes \mathbf{h}) \otimes \mathbb{E}(\mathbf{h}) \\
& +\eta_{2} \mathbb{E}(\mathbf{h} \otimes \mathbb{E}(\mathbf{h}) \otimes \mathbf{h}) \\
& +\eta_{3} \mathbb{E}(\mathbf{h}) \otimes \mathbb{E}(\mathbf{h} \otimes \mathbf{h}) \\
& +\eta_{4} \mathbb{E}(\mathbf{h}) \otimes \mathbb{E}(\mathbf{h}) \otimes \mathbb{E}(\mathbf{h}) . \tag{21}
\end{align*}
$$

Setting the off-diagonal entries of Equations (20) and (21) to 0 and get the following set of equations

$$
\begin{align*}
& \mathbb{E}\left(h_{i} h_{j}\right)+\eta \mathbb{E}\left(h_{i}\right) \mathbb{E}\left(h_{j}\right)=0 \quad \text { for } \quad i \neq j, \tag{22}\\
& \mathbb{E}\left(h_{i} h_{j} h_{l}\right) \\
& \quad+\eta_{1} \mathbb{E}\left(h_{i} h_{j}\right) \mathbb{E}\left(h_{l}\right) \\
& \quad+\eta_{2} \mathbb{E}\left(h_{i} h_{l}\right) \mathbb{E}\left(h_{j}\right) \\
& \quad+\eta_{3} \mathbb{E}\left(h_{j} h_{l}\right) \mathbb{E}\left(h_{i}\right) \\
& \quad+\eta_{4} \mathbb{E}\left(h_{i}\right) \mathbb{E}\left(h_{j}\right) \mathbb{E}\left(h_{l}\right)=0 \\
& \quad \text { for } \quad i \neq j \neq l=0 \tag{23}\\
& \mathbb{E}\left(h_{i}^{2} h_{l}\right) \\
& \quad+\eta_{1} \mathbb{E}\left(h_{i}^{2}\right) \mathbb{E}\left(h_{l}\right) \\
& \quad+\eta_{2} \mathbb{E}\left(h_{i} h_{l}\right) \mathbb{E}\left(h_{i}\right) \\
& +\eta_{3} \mathbb{E}\left(h_{i} h_{l}\right) \mathbb{E}\left(h_{i}\right) \\
& +\eta_{4} \mathbb{E}\left(h_{i}\right) \mathbb{E}\left(h_{i}\right) \mathbb{E}\left(h_{l}\right)=0 \\
& \quad \text { for } \quad i \neq l . \tag{24}
\end{align*}
$$

Writing the moments using Equation (19), assuming $\Phi_{i}(u)=\alpha_{i} \Psi(u)$, we get the following weights by some simple algebraic manipulations,

$$
\begin{align*}
\eta & =\frac{\int_{0}^{\infty} u e^{-\alpha_{0} \Psi(u)}\left(\frac{\mathrm{d}}{\mathrm{~d} u} \Psi(u)\right)^{2} \mathrm{~d} u}{\left(\int_{0}^{\infty} e^{-\alpha_{0} \Psi(u)} \frac{\mathrm{d}}{\mathrm{~d} u} \Psi(u) \mathrm{d} u\right)^{2}} \tag{25}\\
\eta_{1} & =\eta_{2}=\eta_{3} \\
& =-\frac{\frac{1}{2} \int_{0}^{\infty} u^{2} e^{-\alpha_{0} \Psi(u)} \frac{\mathrm{d}^{2}}{\mathrm{~d} u^{2}} \Psi(u) \frac{\mathrm{d}}{\mathrm{~d} u} \Psi(u) \mathrm{d} u}{\int_{0}^{\infty} u e^{-\alpha_{0} \Psi(u)} \frac{\mathrm{d}^{2}}{\mathrm{~d} u^{2}} \Psi(u) \mathrm{d} u \int_{0}^{\infty} e^{-\alpha_{0} \Psi(u)} \frac{\mathrm{d}}{\mathrm{~d} u} \Psi(u) \mathrm{d} u} \tag{26}
\end{align*}
$$

$$
\begin{equation*}
\eta_{4}=\frac{f(\psi(u))}{\left(\int_{0}^{\infty} e^{-\alpha_{0} \Psi(u)} \frac{\mathrm{d}}{\mathrm{~d} u} \Psi(u) \mathrm{d} u\right)^{3}} \tag{27}
\end{equation*}
$$

Where

$$
\begin{align*}
f(\psi(u)) & =-\frac{1}{2} \int_{0}^{\infty} u^{2} e^{-\alpha_{0} \Psi(u)}\left(\frac{\mathrm{d}}{\mathrm{~d} u} \Psi(u)\right)^{3} \mathrm{~d} u \\
& +\left(\eta_{1}+\eta_{2}+\eta_{3}\right) \int_{0}^{\infty} u e^{-\alpha_{0} \Psi(u)}\left(\frac{\mathrm{d}}{\mathrm{~d} u} \Psi(u)\right)^{2} \mathrm{~d} u \\
& \cdot \int_{0}^{\infty} e^{-\alpha_{0} \Psi(u)} \frac{\mathrm{d}}{\mathrm{~d} u} \Psi(u) \mathrm{d} u \tag{28}
\end{align*}
$$

Setting $v=\eta, v_{1}=\eta_{1}=\eta_{2}=\eta_{3}$ and $v_{2}=\eta_{4}$ and defining

$$
\begin{equation*}
\Omega(m, n, p):=\int_{0}^{\infty} u^{m} \frac{\mathrm{~d}^{n}}{\mathrm{~d} u^{n}} \Psi(u)\left(\frac{\mathrm{d}}{\mathrm{~d} u} \Psi(u)\right)^{p} e^{-\alpha_{0} \Psi(u)} \mathrm{d} u \tag{29}
\end{equation*}
$$

the set of weights v, v_{1} and v_{2} have the following form,

$$
\begin{align*}
v & =\frac{\Omega(1,1,1)}{(\Omega(0,1,0))^{2}} \tag{30}\\
v_{1} & =-\frac{\Omega(2,2,1)}{2 \Omega(1,2,0) \Omega(0,1,0)} \tag{31}\\
v_{2} & =\frac{-0.5 \Omega(2,1,2)+3 v_{1} \Omega(1,1,1) \Omega(0,1,0)}{(\Omega(0,1,0))^{3}} \tag{32}
\end{align*}
$$

Weights v, v_{1} and v_{2} ensure that moment tensors $\mathbf{M}_{2}^{(\mathbf{h})}$ and $\mathbf{M}_{3}^{(\mathbf{h})}$ form diagonal tensors. Therefore they can be represented as,

$$
\begin{align*}
\mathbf{M}_{2}^{(\mathbf{h})} & =\sum_{i \in[k]} \kappa_{i} \mathbf{e}_{i}^{\otimes 2}, \tag{34}\\
\mathbf{M}_{3}^{(\mathbf{h})} & =\sum_{i \in[k]} \lambda_{i} \mathbf{e}_{i}^{\otimes 3}, \tag{35}
\end{align*}
$$

where,

$$
\begin{align*}
\kappa_{i} & =\mathbb{E}\left[h_{i}^{2}\right]+v \mathbb{E}\left[h_{i}\right]^{2} \tag{36}\\
\lambda_{i} & =\mathbb{E}\left[h_{i}^{3}\right]+3 v_{1}\left(\mathbb{E}\left[h_{i}^{2}\right] \mathbb{E}\left[h_{i}\right]\right)+v_{2}\left(\mathbb{E}\left[h_{i}\right]^{3}\right) \tag{37}
\end{align*}
$$

The exchangeability assumption on the word space gives,

$$
\begin{gather*}
\mathbb{E}\left[\mathbf{x}_{1}\right]=\mathbb{E}\left(\mathbb{E}\left[\mathbf{x}_{1} \mid \mathbf{h}\right]\right)=\mathbf{A} \mathbb{E}(\mathbf{h}) \tag{38}\\
\mathbb{E}\left[\mathbf{x}_{1} \otimes \mathbf{x}_{2}\right]=\mathbb{E}\left(\mathbb{E}\left[\mathbf{x}_{1} \otimes \mathbf{x}_{2} \mid \mathbf{h}\right]\right)=\mathbf{A} \mathbb{E}(\mathbf{h} \otimes \mathbf{h}) \mathbf{A}^{\top} \tag{39}
\end{gather*}
$$

$$
\begin{align*}
\mathbb{E}\left[\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3}\right] & =\mathbb{E}\left(\mathbb{E}\left[\mathbf{x}_{1} \otimes \mathbf{x}_{2} \otimes \mathbf{x}_{3} \mid \mathbf{h}\right]\right) \\
& =\mathbb{E}[\mathbf{h} \otimes \mathbf{h} \otimes \mathbf{h}](\mathbf{A}, \mathbf{A}, \mathbf{A}) \tag{40}
\end{align*}
$$

Therefore,

$$
\begin{align*}
& \mathbf{M}_{2}=\mathbf{A M}_{2}^{(\mathbf{h})} \mathbf{A}^{\top}=\sum_{j \in[k]} \kappa_{j}\left(\mathbf{a}_{j} \otimes \mathbf{a}_{j}\right), \tag{41}\\
& \mathbf{M}_{3}=\mathbf{M}_{3}^{(\mathbf{h})}(\mathbf{A}, \mathbf{A}, \mathbf{A})=\sum_{j \in[k]} \lambda_{j}\left(\mathbf{a}_{j} \otimes \mathbf{a}_{j} \otimes \mathbf{a}_{j}\right) \tag{42}
\end{align*}
$$

Extended results

Table 4: NID Top 10 Words for NYtimes, $\mathrm{K}=20$

Topic	Top Words in descending order of importance
1	seeded, soldier, firestone, bobby-braswell, michigan-state, actresses, gary-william, preview, school- 2 3
district, netanyahu	
4	diane, question, newspaper, copy, fall, held, tonight, send, guard, slugged
5	abides, acclimate, acetate, alderman, analogues, annexing, ansar, antitax, antitobacco, argyle
6	test, deal, contract, tiger-wood, question, houston-chronicle, copy, won, seattle-post-intelligencer ,tax
7	tonight, diane, question, newspaper, file, copy, fall, slugged, onlytest, xxx
8	company, com, market, stock, won, los-angeles-daily-new, business, eastern, web, commentary
9	abides, acclimate, acetate, alderman, analogues, annexing, ansar, antitax, antitobacco, argyle
10	company, game, run, los-angeles-daily-new, percent, team, season, stock, companies, games
11	diane, newspaper, fall, tonight, question, held, copy, bush, slugged, police
12	hurricanes, policies, surgery, productivity, courageous, emergency, singapore, orange-bowl, regarding,
13	telecast
14	abides, acclimate, acetate, alderman, analogues, annexing, ansar, antitax, antitobacco, argyle
15	company, com, won, stock, market, eastern, commentary, business, web, deal
16	company, stock, market, business, investor, technology, analyst, cash, sell, executives
17	tonight, question, diane, file, newspaper, copy, fall, slugged, onlytest, xxx
18	defense, held, children, fight, assistant, surgery, michael-bloomberg, worker, bird, omar
19	percent, company, stock, companies, quarter, school, market, analyst, high, corp
20	school, student, yard, released, guard, premature, teacher, touchdown, publication, leader
school, percent, student, yard, high, taliban, flight, air, afghanistan, plan	

Table 5: NID top 10 Words for Pubmed, $\mathrm{K}=10$

Topic	Top Words in descending order of importance
1	protein, region, dna, family, sequence, gene, form-12, analysis.abstract, model, tumoural cell, mice.abstract, expression.abstract, activity.abstract, primary, tumor, antigen, human, t-cell, vitro
3	tumor, treatment, receptor, lesional, children-a, effect.abstract, factor, rat1, renal-cell, response-1 4 5
6	patient, treatment, therapy, clinical, disease, level.abstract, effect.abstract, treated, tumor, surgery activity.abstract, rat1, concentration, dna, human, effect.abstract, exposure.abstract, animal-based, reactional, inhibition.abstract patient, children-a, women.abstract, treatment, level.abstract, syndrome, disordered, disease, year-1, therapy effect.abstract, receptor, level.abstract, rat1, mutational, gene, concentration, women.abstract, in- sulin, expression.abstract acid, strain, concentration, women.abstract, test, pregnancy-a, drug, system-a, function.abstract,
9	water strain, protein, system-a, muscle, mutational, species, growth, diagnosis-based, analysis.abstract, gene infection.abstract, hospital, programed, strain, medical, alpha, information, health, children-a, data.abstract
10	

Table 6: Spectral LDA top 10 Words for NYtimes, $\mathrm{K}=20$

Topic	Top Words in descending order of importance
1	newspaper, question, copy, fall, diane, chante-lagon, kill, mandatory, drug, patient
2	held, guard, send, publication, released, advisory, premature, attn-editor, undatelined, washington-
3	datelined
4	los-angeles-daily-new, slugged, com, xxx, www, $\mathrm{x}-\mathrm{x}-\mathrm{x}$, web, information, site, eastern
5	million, shares, offering, boston-globe, debt, public, initial, player, bill, contract
6	onlytest, point, tax, case, court, lawyer, police, minutes, death, shot
held, released, publication, guard, advisory, premature, send, attn-editor, undatelined, washington-	
7	datelined
8	com, information, www, web, eastern, daily, commentary, business, separate, marked
9	boston-globe, spot, file, killed, tonight, women, earlier, article, george-bush, incorrectly
10	million, shares, offering, debt, public, initial, player, contract, bond, revenue
11	boston-globe, spot, file, held, killed, attn-editor, earlier, article, court, women
12	percent, market, stock, point, quarter, economy, rate, women, growth, companies
13	boston-globe, spot, file, tonight, killed, earlier, article, women, incorrectly, news-feature
	held, guard, publication, released, send, advisory, premature, attn-editor, undatelined, washington-
14	datelined
15	los-angeles-daily-new, slugged, xxx, new-york, x-x-x, fund, bush, goal, king, evening
tonight, copy, question, diane, fall, newspaper, russia, terrorist, russian, black	
16	slugged, los-angeles-daily-new, xxx, new-york, x-x-x, bush, run, school, inning, student
17	onlytest, file, film, onlyendpar, movie, new-york, seattle-pi, los-angeles, sport, patient
18	los-angeles-daily-new, slugged, xxx, x-x-x, student, inning, send, program, enron, game
19	los-angeles-daily-new, slugged, xxx, new-york, x-x-x, fund, evening, program, student, enron
20	test, houston-chronicle, hearst-news-service, seattle-post-intelligencer, ignore, patient, kansas-city,

Figure 5: Perplexity and PMI scores for the NYtimes dataset across different number of topics

