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Abstract

We provide proofs that were skipped in the main paper. We also provide some additional experimental results and
related work concerning multi-armed bandits that was skipped in the main paper.

1 Preliminaries
We shall repeat a proposition that was stated in the main paper for the sake of completeness.

Proposition 1.1. Let L be any SPSD matrix of size K. Given a subset C ⊂ {1, 2, . . . ,K}, the columns of the
matrix L indexed by the set C are independent iff the principal submatrix LC,C is non-degenerate, equivalently iff,
λmin(LC,C) > 0.

We would also need the classical matrix Bernstein inequality, which we borrow from the work of Joel Tropp [Tropp,
2015].

Theorem 1.2. Let S1, . . . ,Sn be independent, centered random matrices with dimension d1 × d2 and assume that
each one is uniformly bounded

ESk = 0, ‖Sk‖ ≤ Lfor each k = 1, . . . , n.

Introduce the sum Z =
∑n
k=1 Sk, and let ν(Z) denote the matrix variance statistic of the sum:

ν(Z) = max
{∥∥EZZ>

∥∥ ,∥∥EZ>Z
∥∥} (1)

= max

{∥∥∥∥∥
n∑
k=1

ESkS
>
k

∥∥∥∥∥ ,
∥∥∥∥∥
n∑
k=1

ES>k Sk

∥∥∥∥∥
}

(2)

Then,

P(‖Z‖ ≥ t) ≤ (d1 + d2) exp

(
− t2/2

ν(Z) + Lt
3

)

2 Sample complexity of MCANS algorithm: Proof of Theorem 3.2 in the
main paper

Theorem 2.1. If L ∈ RK×K is an SPSD matrix of rank r, then the matrix L̂ output by the MCANS algorithm satisfies
L̂ = L. Moreover, the number of oracle calls made by MCANS is at mostK(r+1). The sampling algorithm requires:
K + (K − 1) + (K − 2) + . . .+ (K − (r − 1)) + (K − r) ≤ (r + 1)K samples from the matrix L.
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Proof. MCANS checks one column at a time starting from the second column, and uses the test in line 5 to determine if
the current column is independent of the previous columns. The validity of this test is guaranteed by proposition (1.1).
Each such test needs just one additional sample corresponding to the index (c, c). If a column c is found to be
independent of the columns 1, 2, . . . , c − 1 then rest of the entries in column c are queried. Notice, that by now we
have already queried all the columns and rows of matrix L indexed by the set C, and also queried the element (c, c) in
line 4. Hence we need to query only K − |C| − 1 more entries in column c in order to have all the entries of column c.
Combined with the fact that we query only r columns completely and in the worst case all the diagonal entries might
be queried, we get the total query complexity to be (K − 1) + (K − 2) + . . . (K − r) +K ≤ K(r + 1).

3 Proof of Lemma 4.1 in the main paper
We begin by stating the lemma.

Lemma. Let P̂ be a p × p random matrix that is constructed as follows. For each index (i, j) independent of other
indices, set P̂i,j =

Hi,j

ni,j
, where Hi,j is a random variable drawn from the distribution Binomial(ni,j , pi,j). Let

Z = P̂ − P . Then,

||Z||2 ≤
2 log(2p/δ)

3 min
i,j

ni,j
+

√√√√ log(2p/δ)

2

∑
i,j

1

ni,j
. (3)

Furthermore, if we denote by ∆ the R.H.S. in Equation (3), then |σmin(P̂ )− σmin(P )| ≤ ∆.

Proof. Define, Sti,j = 1
ni,j

(Xt
i,j−pi,j)Ei,j , where Ei,j is a p×pmatrix with a 1 in the (i, j)th entry and 0 everywhere

else, and Xt
i,j is a random variable sampled from the distribution Bern(pi,j). If Xt

i,j are independent for all t, i, j,
then it is easy to see that Z =

∑
i,j

1
ni,j

∑ni,j

t=1 S
t
i,j . Hence S is a sum of independent random matrices and this allows

to apply matrix Bernstein type inequalities. In order to apply the matrix Bernstein inequality, we would need upper
bound on maximum spectral norm of the summands, and an upper bound on the variance of Z. We next bound these
two quantities as follows,

||Sti,j ||2 = || 1

ni,j
(Xt

i,j − pi,j)Ei,j ||2 =
1

ni,j
|Xt

i,j − pi,j | ≤
1

ni,j
. (4)

To bound the variance of Z we proceed as follows

ν(Z) = ||
∑
i,j

ni,j∑
t=1

E(Sti,j)
>Sti,j ||

∧
||
∑
i,j

ni,j∑
t=1

ESti,j(S
t
i,j)
>|| (5)

Via elementary algebra and using the fact that Var(Xt
i,j) = pi,j(1− pi,j)It is easy to see that,

E(Sti,j)
>Sti,j =

1

n2
i,j

E(Xt
i,j − pi,j)2(Et

i,j)
>Et

i,j (6)

=
1

4n2
i,j

Ei,i. (7)

Using similar calculations we get ESti,j(S
t
i,j)
> = 1

4n2
i,j
Ej,j . Hence, ν(Z) =

∑
i,j

∑ni,j

t=1
1

4n2
i,j

=
∑
i,j

1
4ni,j

. Applying

matrix Bernstein, we get with probability at least 1− δ

||Z||2 ≤
2 log(2p/δ)

3 min
i,j

ni,j
+

√√√√ log(2p/δ)

2

∑
i,j

1

ni,j
. (8)

The second part of the result follows immediately from Weyl’s inequality which says that |σmin(P̂ ) − σmin(P )| ≤
||P̂ − P || = ||Z||.
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4 Sample complexity of successive elimination algorithm: Proof of Lemma
4.2 in the main paper

Lemma. The successive elimination algorithm shown in Figure (6.2) on m square matrices of size A1, . . . ,Am each
of size p × p outputs an index i? such that, with probability at least 1 − δ, the matrix Ai? has the largest smallest
singular value among all the input matrices. The total number of queries to the stochastic oracle are

m∑
k=2

O

(
p3 log(2pπ2m2/3∆2

kδ)

∆2
k

)
+O

(
p4 max

k

(
log(2pπ2m2/3∆2

kδ)

∆2
k

))
(9)

where ∆k,p := maxj=1,...,m σmin(Aj)− σmin(Ak)

Proof. Suppose matrix A1 has the largest smallest singular value. From lemma (3), we know that with probability

at least 1 − δt, |σmin(Âk) − σmin(Ak)| ≤ 2 log(2p/δt)
3 min

i,j
ni,j(A) +

√
log(2p/δt)

2

∑
i,j

1
ni,j(A) . Hence, by union bound the

probability that the matrix A1 is eliminated in one of the rounds is at most
∑
t

∑m
k=1 δt ≤

∑max
t=1

∑m
k=1

6δ
π2mt2 = δ.

This proves that the successive elimination step identifies the matrix with the largest smallest singular value.
An arm k is eliminated in round t if αt,1 + αt,k ≤ σ̂max

t − σmin(Âk). By definition,

∆k,p − (αt,1 + αt,k) = (σmin(A1)− αt,1)− (σmin(Ak) + αt,k) ≥ σmin(Â1)− σmin(Ak) ≥ αt,1 + αt,k (10)

That is if αt,1+αt,k ≤ ∆k,p

2 , then arm k is eliminated in round t. By construction, since in round t each element in each

of the surviving set of matrices has been queried at least t times, we can say that αt,j ≤ 2 log(2p/δt)
3t +

√
p2 log(2p/δt)

2t

for any index j corresponding to the set of surviving arms. Hence arm k gets eliminated after

tk = O

(
p2 log(2pπ2m2/3∆2

k,pδ)

∆2
k,p

)
(11)

In each round t the number of queries made are O(p) for each of the m matrices corresponding to the row and column
which is different among them, and O(p2) corresponding to the left p− 1× p− 1 submatrix that is common to all of
the matrices A1, . . . , Am. Hence, the total number of queries to the stochastic oracle is

p

m∑
k=2

tk + p2 max
k

tk =

m∑
k=2

O

(
p3 log(2pπ2m2/3∆2

k,pδ)

∆2
k,p

)
+O

(
p4 max

k

(
log(2pπ2m2/3∆2

k,pδ)

∆2
k,p

))

5 Proof of Nystrom method
In this supplementary material we provide a proof of Nystrom extension in max norm when we use a stochastic oracle
to obtain estimators Ĉ, Ŵ of the matrices C,W . The question that we are interested in is how good is the estimate
of the Nystrom extension obtained using matrices Ĉ, Ŵ w.r.t. the Nystrom extension obtained using matrices C,W .
This is answered in the theorem below.

Theorem 5.1. Suppose the matrix W is an invertible r × r matrix. Suppose, by multiple calls to a stochastic oracle
we construct estimators Ĉ, Ŵ of C,W . Now, consider the matrix ĈŴ−1Ĉ> as an estimate CW−1C>. Given
any δ ∈ (0, 1), with probability atleast 1− δ,∥∥∥CW−1C> − ĈŴ−1Ĉ>

∥∥∥
max
≤ ε

after making M number of oracle calls to a stochastic oracle, where

M ≥ 100C1(W,C) log(2Kr/δ) max

(
Kr7/2

ε
,
Kr3

ε2

)
+ 200C2(W,C) log(2r/δ) max

(
r5

ε
,
r7

ε2

)
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where C1(W ,C) and C2(W ,C) are given by the following equations

C1(W ,C) = max
(∥∥W−1C>

∥∥
max

,
∥∥W−1C>

∥∥2

max
,
∥∥W−1

∥∥
max

,
∥∥CW−1

∥∥2

1
,
∥∥W−1

∥∥
2

∥∥W−1
∥∥

max

)
C2(W ,C) = max

(∥∥W−1
∥∥2

2

∥∥W−1
∥∥2

max
,
∥∥W−1

∥∥
2

∥∥W−1
∥∥

max
,
∥∥W−1

∥∥
2
,
∥∥W−1

∥∥2

2

)
Our proof proceeds by a series of lemmas, which we state next.

Lemma 5.2.∥∥∥CW−1C> − ĈŴ−1Ĉ>
∥∥∥

max
≤
∥∥∥(C − Ĉ)W−1C>

∥∥∥
max

+
∥∥∥ĈŴ−1(C − Ĉ)>

∥∥∥
max

+
∥∥∥Ĉ(W−1 − Ŵ−1)C>

∥∥∥
max

Proof.∥∥∥CW−1C> − ĈŴ−1Ĉ>
∥∥∥

max
=
∥∥∥CW−1C> − ĈW−1C> + ĈW−1C> − ĈŴ−1Ĉ>

∥∥∥
max

≤
∥∥∥CW−1C> − ĈW−1C>

∥∥∥
max

+
∥∥∥ĈW−1C> − ĈŴ−1Ĉ>

∥∥∥
max

=
∥∥∥CW−1C> − ĈW−1C>

∥∥∥
max

+∥∥∥ĈW−1C> − ĈŴ−1C> + ĈŴ−1C> − ĈŴ−1Ĉ>
∥∥∥

max

≤
∥∥∥CW−1C> − ĈW−1C>

∥∥∥
max

+
∥∥∥ĈW−1C> − ĈŴ−1C>

∥∥∥
max

+∥∥∥ĈŴ−1C> − ĈŴ−1Ĉ>
∥∥∥

max

=
∥∥∥(C − Ĉ)W−1C>

∥∥∥
max

+
∥∥∥ĈŴ−1(C − Ĉ)>

∥∥∥
max

+
∥∥∥Ĉ(W−1 − Ŵ−1)C>

∥∥∥
max

In the following lemmas we shall bound the three terms that appear in the R.H.S of the bound of Lemma (5.2).

Lemma 5.3.∥∥∥(C − Ĉ)W−1C>
∥∥∥

max
≤ 2||W−1C>||max

3m
log(2Kr/δ) +

√
r ||W−1C>||2max log(2Kr/δ)

2m
(12)

Proof. Let M = W−1C>, then
∥∥∥(C − Ĉ)W−1C>

∥∥∥
max

=
∥∥∥(C − Ĉ)M

∥∥∥
max

. By the definition of max norm we
have ∥∥∥(C − Ĉ)M

∥∥∥
max

= max
i,j

∣∣∣∣∣
l∑

p=1

(C − Ĉ)i,pMp,j

∣∣∣∣∣
Fix a pair of indices (i, j), and consider the expression

∣∣∣∑l
p=1(C − Ĉ)i,pMp,j

∣∣∣
Define ri,p = (C − Ĉ)i,p. By definition of ri,p we can write ri,p = 1

m

∑m
t=1 r

t
i,p, where rti,p are a set of

independent random variables with mean 0 and variance at most 1/4. This decomposition combined with scalar
Bernstein inequality gives that with probability at least 1− δ∣∣∣∣∣

l∑
p=1

(Ĉ − Ĉ)i,pMp,j

∣∣∣∣∣ =

∣∣∣∣∣
l∑

p=1

ri,pMp,j

∣∣∣∣∣
=

∣∣∣∣∣
l∑

p=1

m∑
t=1

1

m
rti,pMp,j

∣∣∣∣∣
≤ 2||M ||max

3m
log(2/δ) +

√
r ||M ||2max log(2/δ)

2m
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Applying a union bound over all possible Kr choices of index pairs (i, j), we get the desired result.

Before we establish bounds on the remaining two terms in the RHS of Lemma (5.2) we state and prove a simple
proposition that will be used at many places in the rest of the proof.

Proposition 5.4. For any two real matrices M1 ∈ Rn1×n2 ,M2 ∈ Rn2×n3 the following set of inequalities are true:

1. ‖M1M2‖max ≤ ‖M1‖max ‖M2‖1
2. ‖M1M2‖max ≤

∥∥M>
1

∥∥
1
‖M2‖max

3. ‖M1M2‖max ≤ ‖M1‖2 ‖M2‖max

4. ‖M1M2‖max ≤ ‖M2‖2 ‖M1‖max

where, the ‖·‖p is the induced p norm.

Proof. Let ei denote the ith canonical basis vectors in RK . We have,

‖M1M2‖max = max
i,j

∣∣e>i M1M2ej
∣∣

≤ max
i,j

∥∥e>i M1

∥∥
max
‖M2ej‖1

= max
i

∥∥e>i M1

∥∥
max

max
i
‖M2ej‖1

= ‖M1‖max ‖M2‖1 .

To obtain the first inequality above we used Holder’s inequality and the last equality follows from the definition of ||·||1
norm. To get the second inequality, we use the observations that ‖M1M2‖max =

∥∥M>
2 M>

1

∥∥
max

. Now applying the
first inequality to this expression we get the desired result. Similar techniques yield the other two inequalities.

Lemma 5.5. With probability at least 1− δ, we have∥∥∥ĈŴ−1(C − Ĉ)>
∥∥∥

max
≤ r2

2m

(∥∥∥Ŵ−1 −W−1
∥∥∥

max
+
∥∥W−1

∥∥
max

)
log(2Kr/δ)+

r2
∥∥∥Ŵ−1 −W−1

∥∥∥
max

√
log(2Kr/δ)

2m
+ r

∥∥CW−1
∥∥

1

√
log(2Kr/δ)

2m

Proof.∥∥∥ĈŴ−1(C − Ĉ)>
∥∥∥

max
≤
∥∥∥(ĈŴ−1 −CW−1 + CW−1)(C − Ĉ)>

∥∥∥
max

(a)
≤
∥∥∥(ĈŴ−1 −CW−1)(C − Ĉ)>

∥∥∥
max

+
∥∥∥CW−1(C − Ĉ)>

∥∥∥
max

(b)
≤
∥∥∥ĈŴ−1 −CW−1

∥∥∥
max

∥∥∥(C − Ĉ)>
∥∥∥

1
+
∥∥CW−1

∥∥
max

∥∥∥(C − Ĉ)>
∥∥∥

1
(13)

To obtain inequality (a) we used triangle inequality for matrix norms, and to obtain inequality (b) we used Proposi-
tion (5.4). We next upper bound the first term in the R.H.S. of Equation (13).

We bound the term
∥∥∥ĈŴ−1 −CW−1

∥∥∥
max

next.∥∥∥ĈŴ−1 −CW−1
∥∥∥

max
≤
∥∥∥ĈŴ−1 −CŴ−1 + CŴ−1 −CW−1

∥∥∥
max

≤
∥∥∥ĈŴ−1 −CŴ−1

∥∥∥
max

+
∥∥∥CŴ−1 −CW−1

∥∥∥
max

=
∥∥∥(Ĉ −C)Ŵ−1

∥∥∥
max

+
∥∥∥C(Ŵ−1 −W−1)

∥∥∥
max

(a)
≤
∥∥∥(Ĉ −C)>

∥∥∥
1

∥∥∥Ŵ−1
∥∥∥

max
+
∥∥C>∥∥

1

∥∥∥Ŵ−1 −W−1
∥∥∥

max
(14)
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We used Proposition (5.4) to obtain inequality (a). Combining Equations (13) and (14) we get,∥∥∥ĈŴ−1(C − Ĉ)>
∥∥∥

max
≤
∥∥∥(Ĉ −C)>

∥∥∥
1

(∥∥∥(Ĉ −C)>
∥∥∥

1

∥∥∥Ŵ−1
∥∥∥

max
+
∥∥C>∥∥

1

∥∥∥Ŵ−1 −W−1
∥∥∥

max
+
∥∥CW−1

∥∥
max

)
=
∥∥∥(Ĉ −C)>

∥∥∥2

1

∥∥∥Ŵ−1
∥∥∥

max
+
∥∥∥(Ĉ −C)>

∥∥∥
1

∥∥C>∥∥
1

∥∥∥Ŵ−1 −W−1
∥∥∥

max
+∥∥∥(Ĉ −C)>

∥∥∥
1

∥∥CW−1
∥∥

max
(15)

Since all the entries of the matrix C are probabilities we have ‖C‖max ≤ 1 and
∥∥C>∥∥

1
≤ r. Moreover, since each

entry of the matrix Ĉ−C is the average of m independent random variables with mean 0, and each bounded between
[−1, 1], by Hoeffding’s inequality and union bound, we get that with probability at least 1− δ∥∥∥(Ĉ −C)>

∥∥∥
1
≤ r
√

log(2Kr/δ)

2m
(16)

The next proposition takes the first steps towards obtaining an upper bound on
∥∥∥Ĉ(W−1 − Ŵ−1)C>

∥∥∥
max

Proposition 5.6.∥∥∥Ĉ(W−1 − Ŵ−1)C>
∥∥∥

max
≤ min

{
r2
∥∥∥W−1 − Ŵ−1

∥∥∥
max

, r
∥∥∥W−1 − Ŵ−1

∥∥∥
1

}
Proof. ∥∥∥Ĉ(W−1 − Ŵ−1)C>

∥∥∥
max

(a)
≤
∥∥∥Ĉ(W−1 − Ŵ−1)

∥∥∥
max

∥∥C>∥∥
1

(b)
≤ r

∥∥∥Ĉ(W−1 − Ŵ−1)
∥∥∥

max

(c)
≤ min

{
r2
∥∥∥W−1 − Ŵ−1

∥∥∥
max

, r
∥∥∥W−1 − Ŵ−1

∥∥∥
1

}
(17)

In the above bunch of inequalities (a) and (c) we used Proposition (5.4) and to obtain inequality (b) we used the fact
that ||C>||max ≤ r.

Hence, we need to bound
∥∥∥W−1 − Ŵ−1

∥∥∥
max

and
∥∥∥W−1 − Ŵ−1

∥∥∥
1
.

Let us define Ŵ = W + EW where EW is the error-matrix and Ŵ is the sample average of m independent
samples of a random matrix where EŴk(i, j) = W (i, j).

Lemma 5.7. Let us define Ŵ −W = EW . Suppose,
∥∥W−1EW

∥∥
2
≤ 1

2 , then∥∥∥Ŵ−1 −W−1
∥∥∥

max
≤ 2

∥∥W−1
∥∥

2
‖EW ‖2

∥∥W−1
∥∥

max

.

Proof. Since
∥∥W−1EW

∥∥
2
< 1, we can apply the Taylor series expansion:

(W + EW )−1 = W−1 −W−1EWW−1 + W−1EWW−1EWW−1 + · · ·

Therefore:∥∥∥Ŵ−1 −W−1
∥∥∥

max
=
∥∥W−1 −W−1EWW−1 + W−1EWW−1EWW−1 + · · · −W−1

∥∥
max

(a)
≤
∥∥W−1EWW−1

∥∥
max

+
∥∥W−1EWW−1EWW−1

∥∥
max

+ · · ·
(b)
≤
∥∥W−1EW

∥∥
2

∥∥W−1
∥∥

max
+
∥∥W−1EW

∥∥2

2

∥∥W−1
∥∥

max
+ . . .

(c)
≤ 2

∥∥W−1
∥∥

2
‖EW ‖2

∥∥W−1
∥∥

max
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To obtain the last inequality we used the hypothesis of the lemma, and to obtain inequality (a) we used the triangle
inequality for norms, and to obtain inequality (b) we used proposition (5.4). Inequlaity (c) follows from the triangle
inequality.

Thanks to Lemma (5.7) and proposition (5.6) we know that
∥∥∥Ĉ(W−1 − Ŵ−1)C>

∥∥∥
max
≤ r2ε. We now need to

guarantee that the hypothesis of lemma (5.7) applies. The next lemma helps in doing that.

Lemma 5.8. With probability at least 1− δ we have

‖EW ‖ =
∥∥∥Ŵ −W

∥∥∥ ≤ 2r

3m
log(2r/δ) +

√
r log(2r/δ)

2m
(18)

Proof. The proof is via matrix Bernstein inequality. By the definition of Ŵ , we know that Ŵ−W = 1
m

∑
(Wi−W ),

where Ŵ is 0− 1 random matrix where the (i, j)th entry of the matrix Ŵ is a single Bernoulli sample sampled from
Bern(Wi,j). For notational convenience denote Zi := 1

mŴi −W This makes Ŵ −W = 1
m

∑
Wi −W an

average of m independent random matrices each of whose entry is a 0 mean random variable with variance at most
1/4, with each entry being in [−1, 1]. In order to apply the matrix Bernstein inequality we need to upper bound ν, L
(see Theorem (1.2)), which we do next. ∥∥∥∥ 1

m
(Ŵi −W )

∥∥∥∥
2

≤ 1

m

√
r2 =

r

m
. (19)

In the above inequality we used the fact that each entry of (Ŵi −W ) is between [−1, 1] and hence the spectral norm
of this matrix is at most

√
r2. We next bound the parameter ν.

ν =
1

m2
max

{∥∥∥∥∥∑
i

EZiZ
>
i

∥∥∥∥∥ ,
∥∥∥∥∥∑

i

EZ>i Zi

∥∥∥∥∥
}

(20)

It is not hard to see that the matrix EZiZ>i is a diagonal matrix, where each diagonal entry is at most l
4 . The same

holds true for EZiZ>i . Putting this back in Equation (20) we get ν ≤ r
4m . Putting L = r

m and ν = r
4m , we get∥∥∥Ŵ −W

∥∥∥ ≤ 2r

3m
log(2r/δ) +

√
r log(2r/δ)

2m
(21)

We are now ready to establish the following bound

Lemma 5.9. Assuming that m ≥ m0 :=
4r‖W−1‖

3 + 2r log(2r/δ)
∥∥W−1

∥∥2

2
, with probability at least 1 − δ we will

have ∥∥∥Ĉ(W−1 − Ŵ−1)C>
∥∥∥

max
≤ 2r2

∥∥W−1
∥∥

2

∥∥W−1
∥∥

max

(
2r

3m
log(2r/δ) +

√
r log(2r/δ)

2m

)
. (22)

Proof. ∥∥∥Ĉ(W−1 − Ŵ−1)C>
∥∥∥

max

(a)
≤ r2

∥∥∥W−1 − Ŵ−1
∥∥∥

max

(b)
≤ 2r2

∥∥W−1EW

∥∥
2

∥∥W−1
∥∥

max

(c)
≤ 2r2

∥∥W−1
∥∥

2
‖EW ‖2

∥∥W−1
∥∥

max

(d)
≤ 2r2

∥∥W−1
∥∥

2

∥∥W−1
∥∥

max

(
2r

3m
log(2r/δ) +

√
r log(2r/δ)

2m

)
To obtain inequality (a) above we used proposition (5.6), to obtain inequality (b) we used lemma (5.7), and finally to
obtain inequality (c) we used the fact that matrix 2-norms are submultiplicative.
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With this we now have bounds on all the necessary quantities. The proof of our theorem essentially requires us to
put all these terms together.

6 Proof of Theorem 4.3 in the main paper
Since we need the total error in max norm to be at most ε, we will enforce that each term of our expression be atmost
ε

10 . From lemma (5.2) we know that the maxnorm is the sum of three terms. Let us call the three terms in the R.H.S.
of Lemma (5.2) T1, T2, T3 repsectively. We then have that if we have m1 number of copies of the matrix C, where

m1 ≥
20
∥∥W−1C>

∥∥
max

log(2Kr/δ)

3ε

∧ 100r
∥∥W−1C>

∥∥2

max
log(2Kr/δ)

2ε2
(23)

then T1 ≤ ε/5. Next we look at T3. From lemma (5.9) it is easy to see that we need m3 independent copies of the
matrix W so that T3 ≤ ε/5, where m3 is equal to

m3 ≥
40r3

∥∥W−1
∥∥

2

∥∥W−1
∥∥

max
log(2r/δ)

3ε

∧ 400r5
∥∥W−1

∥∥2

2

∥∥W−1
∥∥2

max
log(2r/δ)

2ε2
(24)

Finally we now look at T2. Combining lemma (5.5), and lemma (5.7) and (5.8) and after some elementary algebraic
calculations we get that we need m2 independent copies of the matrix C and W to get T2 ≤ 3ε

5 , where m2 is

m2 ≥ 100 max(
∥∥W−1

∥∥
max

,
∥∥CW−1

∥∥2

1
,
∥∥W−1

∥∥
2

∥∥W−1
∥∥

max
) log(2Kr/δ)

(
r5/2

ε
,
r2

ε2

)
(25)

The number of calls to stochastic oracle is r2(m0 + m3) + Kr(m1 + m2), where m0 is the number as stated in
Lemma (5.9). Using the above derived bounds for m0 +m1,m2,m3 we get

Kr(m1 +m2) + r2(m0 +m3) ≥ 100 log(2Kr/δ)C1(W,C) max

(
Kr7/2

ε
,
Kr3

ε2

)
+

200C2(W,C) log(2r/δ) max

(
r5

ε
,
r7

ε2

)
where C1(W ,C) and C2(W ,C) are given by the following equations

C1(W ,C) = max
(∥∥W−1C>

∥∥
max

,
∥∥W−1C>

∥∥2

max
,
∥∥W−1

∥∥
max

,
∥∥CW−1

∥∥2

1
,
∥∥W−1

∥∥
2

∥∥W−1
∥∥

max

)
C2(W ,C) = max

(∥∥W−1
∥∥2

2

∥∥W−1
∥∥2

max
,
∥∥W−1

∥∥
2

∥∥W−1
∥∥

max
,
∥∥W−1

∥∥
2
,
∥∥W−1

∥∥2

2

)
7 Additional experimental results: Comparison with LRMC on Movie Lens

datasets
First we present the results on the synthetic dataset. To generate a low-rank matrix, we take a random matrix in
L1 = [0, 1]K×r and then define L2 = L1L

>
1 . Then get L = L2/maxi,j(L2)i,j . This matrix L will be K ×K and

have rank r.
In Figure 2, you can find the comparison of LRMC and S-MCANS on the ML-100K dataset.

7.1 Further discussion and related work
Bandit problems where multiple actions are selected have also been considered in the past. Kale et al. [2010] consider
a setup where on choosing multiple arms the reward obtained is the sum of the rewards of the chosen arms, and
the reward of each chosen arm is revealed to the algorithm. Both these works focus on obtaining guarantees on the

8



Number of samples #104
0 2 4 6 8 10

Er
ro

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of learning rates

LRMC 
LIL
Naive 
S-MCANS

(a) Synthetic; (80, 2)

Number of samples #106
0 0.5 1 1.5 2

Er
ro

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Comparison of learning rates

LRMC 
LIL 
Naive 
S-MCANS

(b) Synthetic; (400, 2)

Figure 1: Error of various algorithms with increasing budget. Numbers in the brackets represent values for (K, r). The error is defined as
Lî,ĵ −Li?,j? where (̂i, ĵ) is a pair of optimal choices as estimated by each algorithm.

cumulative regret compared to the best set of arms in hindsight. Radlinski et al. [2008] consider a problem, in the
context of information retrieval, where multiple bandit arms are chosen and the reward obtained is the maximum of
the rewards corresponding to the chosen arms. Apart from this reward information the algorithm also gets a feedback
that tells which one of the chosen arms has the highest reward. Similar models have also been studied in Streeter and
Golovin [2009] and Yue and Guestrin [2011]. A major difference between the above mentioned works and our work is
the feedback and reward model and the fact that we are not interested in regret guarantees but rather in finding a good
pair of arms as quickly as possible. Furthermore our linear-algebraic approach to the problem is very different from
previous approaches which were either based on multiplicative weights [Kale et al., 2010] or online greedy submodular
maximization [Streeter and Golovin, 2009, Yue and Guestrin, 2011, Radlinski et al., 2008]. Simchowitz et al. [2016]
also consider similar subset selection problems and provide algorithms to identify the top set of arms. In the Web
search literature click models have been proposed to model user behaviour [Guo et al., 2009, Craswell et al., 2008]
and a bandit analysis of such models have also been proposed [Kveton et al., 2015]. However, these models assume
that all the users come from a single population and tend to use richer information in their formulations (for example
information about which exact link was clicked). Finally we would like to mention that our model shown in Figure 5.1
of the main paper on the surface bears resemblance to dueling bandit problems [Yue et al., 2012]. However, in duleing
bandits two arms are compared which is not the case in the bandit problem that we study.Interactive collaborative
filtering (CF) and bandit approaches to such problems have also been investigated [Kawale et al., 2015]. Though, the
end goal in CF is different from our goal in this paper.

References
N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental comparison of click position-bias models. In WSDM. ACM,

2008.

F. Guo, C. Liu, A. Kannan, T. Minka, M. Taylor, Y.-M. Wang, and C. Faloutsos. Click chain model in web search. In WWW. ACM,
2009.

S. Kale, L. Reyzin, and R. E. Schapire. Non-stochastic bandit slate problems. In NIPS, 2010.

J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh, and S. Chawla. Efficient thompson sampling for online matrix-factorization
recommendation. In NIPS, 2015.

9



Number of samples #106
0 0.5 1 1.5 2 2.5 3

Er
ro

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Comparison of learning rates

LRMC 
S-MCANS

(a) ML-100K; (200, 2)

Number of samples #105
0 2 4 6 8 10 12

Er
ro

r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Comparison of learning rates

LRMC 
S-MCANS

(b) ML-100K; (200, 4)
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