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Abstract

We consider an efficient computational frame-
work for speeding up several machine learning
algorithms with almost no loss of accuracy.
The proposed framework relies on projections
via structured matrices that we call Struc-
tured Spinners, which are formed as prod-
ucts of three structured matrix-blocks that
incorporate rotations. The approach is highly
generic, i.e. i) structured matrices under con-
sideration can either be fully-randomized or
learned, ii) our structured family contains as
special cases all previously considered struc-
tured schemes, iii) the setting extends to the
non-linear case where the projections are fol-
lowed by non-linear functions, and iv) the
method finds numerous applications includ-
ing kernel approximations via random feature
maps, dimensionality reduction algorithms,
new fast cross-polytope LSH techniques, deep
learning, convex optimization algorithms via
Newton sketches, quantization with random
projection trees, and more. The proposed
framework comes with theoretical guarantees
characterizing the capacity of the structured
model in reference to its unstructured coun-
terpart and is based on a general theoretical
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principle that we describe in the paper. As
a consequence of our theoretical analysis, we
provide the first theoretical guarantees for one
of the most efficient existing LSH algorithms
based on the HD3HD2HD1 structured ma-
trix [Andoni et al., 2015]. The exhaustive ex-
perimental evaluation confirms the accuracy
and efficiency of structured spinners for a va-
riety of different applications.

1 Introduction

A striking majority of machine learning frameworks
performs projections of input data via matrices of
parameters, where the obtained projections are often
passed to a possibly highly nonlinear function. In
the case of randomized machine learning algorithms,
the projection matrix is typically Gaussian with i.i.d.
entries taken from N (0, 1). Otherwise, it is learned
through the optimization scheme. A plethora of
machine learning algorithms admits this form. In the
randomized setting, a few examples include variants
of the Johnson-Lindenstrauss Transform applying
random projections to reduce data dimensionality
while approximately preserving Euclidean dis-
tance [Ailon and Chazelle, 2006, Liberty et al., 2008,
Ailon and Liberty, 2011], kernel approximation tech-
niques based on random feature maps produced from
linear projections with Gaussian matrices followed
by nonlinear mappings [Rahimi and Recht, 2007],
[Le et al., 2013, Choromanski and Sindhwani, 2016,
Huang et al., 2014], [Choromanska et al., 2016],
LSH-based schemes [Har-Peled et al., 2012,
Charikar, 2002, Terasawa and Tanaka, 2007], in-
cluding the fastest known variant of the cross-polytope
LSH [Andoni et al., 2015], algorithms solving convex
optimization problems with random sketches of
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Hessian matrices [Pilanci and Wainwright, 2015,
Pilanci and Wainwright, 2014], quantization tech-
niques using random projection trees, where splitting
in each node is determined by a projection of data
onto Gaussian direction [Dasgupta and Freund, 2008],
and many more.

The classical example of machine learning nonlin-
ear models where linear projections are learned is
a multi-layered neural network [LeCun et al., 2015,
Goodfellow et al., 2016], where the operations of linear
projection via matrices with learned parameters fol-
lowed by the pointwise nonlinear feature transformation
are the building blocks of the network’s architecture.
These two operations are typically stacked multiple
times to form a deep network.

The computation of projections takes Θ(mn|X |) time,
where m× n is the size of the projection matrix, and
|X | denotes the number of data samples from a dataset
X . In case of high-dimensional data, this comprises a
significant fraction of the overall computational time,
while storing the projection matrix frequently becomes
a bottleneck in terms of space complexity.

In this paper, we propose the remedy for both problems,
which relies on replacing the aforementioned algorithms
by their “structured variants”. The projection is per-
formed by applying a structured matrix from the family
that we introduce as Structured Spinners. Depending
on the setting, the structured matrix is either learned
or its parameters are taken from a random distribution
(either continuous or discrete if further compression
is required). Each structured spinner is a product of
three matrix-blocks that incoporate rotations. A no-
table member of this family is a matrix of the form
HD3HD2HD1, where Dis are either random diago-
nal ±1-matrices or adaptive diagonal matrices and H
is the Hadamard matrix. This matrix is used in the
fastest known cross-polytope LSH method introduced
in [Andoni et al., 2015].

In the structured case, the computational speedups are
significant, i.e. projections can be calculated in o(mn)
time, often in O(n logm) time if Fast Fourier Trans-
form techniques are applied. At the same time, using
matrices from the family of structured spinners leads
to the reduction of space complexity to sub-quadratic,
usually at most linear, or sometimes even constant.

The key contributions of this paper are:

• The family of structured spinners providing a
highly parametrized class of structured methods
and, as we show in this paper, with applications in
various randomized settings such as: kernel approx-
imations via random feature maps, dimensionality
reduction algorithms, new fast cross-polytope LSH
techniques, deep learning, convex optimization al-
gorithms via Newton sketches, quantization with
random projection trees, and more.

• A comprehensive theoretical explanation of the
effectiveness of the structured approach based
on structured spinners. Such analysis was pro-
vided in the literature before for a strict subclass
of a very general family of structured matrices
that we consider in this paper, i.e. the proposed
family of structured spinners contains all previ-
ously considered structured matrices as special
cases, including the recently introduced P -model
[Choromanski and Sindhwani, 2016]. To the best
of our knowledge, we are the first to theoreti-
cally explain the effectiveness of structured neural
network architectures. Furthermore, we provide
first theoretical guarantees for a wide range of
discrete structured transforms, in particular for
the fastest known cross-polytope LSH method
[Andoni et al., 2015] based HD3HD2HD1 dis-
crete matrices.

Our theoretical methods in the random setting apply
the relatively new Berry-Esseen type Central Limit
Theorem results for random vectors.

Our theoretical findings are supported by empirical
evidence regarding the accuracy and efficiency of struc-
tured spinners in a wide range of different applications.
Not only do structured spinners cover all already exist-
ing structured transforms as special instances, but also
many other structured matrices that can be applied in
all aforementioned applications.

2 Related work

This paper focuses on structured matrices, which
were previously explored in the literature mostly
in the context of the Johnson-Lindenstrauss Trans-
form (JLT) [Johnson and Lindenstrauss, 1984],
where the high-dimensional data is linearly
transformed and embedded into a much lower
dimensional space while approximately preserv-
ing the Euclidean distance between data points.
Several extensions of JLT have been proposed,
e.g. [Liberty et al., 2008, Ailon and Liberty, 2011,
Ailon and Chazelle, 2006, Vyb́ıral, 2011].
Most of these structured constructions
involve sparse [Ailon and Chazelle, 2006,
Dasgupta et al., 2010] or circulant matri-
ces [Vyb́ıral, 2011, Hinrichs and Vybral, 2011]
providing computational speedups and space compres-
sion.

More recently, the so-called Ψ-regular structured ma-
trices (Toeplitz and circulant matrices belong to
this wider family of matrices) were used to approx-
imate angular distances [Choromanska et al., 2016]
and signed Circulant Random Matrices were used
to approximate Gaussian kernels [Feng et al., 2015].
Another work [Choromanski and Sindhwani, 2016] ap-
plies structured matrices coming from the so-called
P-model, which further generalizes the Ψ-regular fam-
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ily, to speed up random feature map computations of
some special kernels (angular, arc-cosine and Gaussian).
These techniques did not work for discrete structured
constructions, such as the HD3HD2HD1 matrices, or
their direct non-discrete modifications, since they re-
quire matrices with low (polylog) chromatic number of
the corresponding coherence graphs.

Linear projections are used in the LSH setting to con-
struct codes for given datapoints which speed up such
tasks as approximate nearest neighbor search. A no-
table set of methods are the so-called cross-polytope
techniques introduced in [Terasawa and Tanaka, 2007]
and their aforementioned discrete structured variants
proposed in [Andoni et al., 2015] that are based on the
Walsh-Hadamard transform. Before our work, they
were only experimentally verified to produce good qual-
ity codes.

Furthermore, a recently proposed technique based
on the so-called Newton Sketch provides yet an-
other example of application for structured ma-
trices. The method [Pilanci and Wainwright, 2015,
Pilanci and Wainwright, 2014] is used for speeding up
algorithms solving convex optimization problems by
approximating Hessian matrices using so-called sketch
matrices. Initially, the sub-Gaussian sketches based
on i.i.d. sub-Gaussian random variables were used.
The disadvantage of the sub-Gaussian sketches lies
in the fact that computing the sketch of the given
matrix of size n × d requires O(mnd) time, where
m × n in the size of the sketch matrix. Thus the
method is too slow in practice and could be acceler-
ated with the use of structured matrices. Some struc-
tured approaches were already considered, e.g. sketches
based on randomized orthonormal systems were pro-
posed [Pilanci and Wainwright, 2015].

All previously considered methods focus on the ran-
domized setting, whereas the structured matrix in-
stead of being learned is fully random. In the context
of adaptive setting, where the parameters are being
learned instead, we focus in this paper on multi-layer
neural networks. We emphasize though that our ap-
proach is much more general and extends beyond this
setting. Structured neural networks were considered
before, for instance in [Yang et al., 2015], where the
so-called Deep Fried Neural Convnets were proposed.
Those architectures are based on the adaptive version
of the Fastfood transform used for approximating vari-
ous kernels [Le et al., 2013], which is a special case of
structured spinner matrices.

Deep Fried Convnets apply adaptive structured ma-
trices for fully connected layers of the convolutional
networks. The structured matrix is of the form:
SHGΠHB, where S, G, and B are adaptive diag-
onal matrices, Π is a random permutation matrix, and
H is the Walsh-Hadamard matrix. The method reduces
the storage and computational costs of matrix multi-

plication step from, often prohibitive, O(nd) down to
O(n) storage and O(n log d) computational cost, where
d and n denote the size of consequitive layers of the
network. At the same time, this approach does not sac-
rifice the network’s predictive performance. Another
work [Moczulski et al., 2016] that offers an improve-
ment over Deep Fried Convnets, looks at a structured
matrix family that is very similar to HD3HD2HD1

(however is significantly less general than the family of
structured spinners). Their theoretical results rely on
the analysis in [Huhtanen and Perämäki, 2015].

The Adaptive Fastfood approach elegantly comple-
ments previous works dedicated to address the problem
of huge overparametrization of deep models with struc-
tured matrices, e.g. the method of [Denil et al., 2013]
represents the parameter matrix as a product of two low
rank factors and, similarly to Adaptive Fastfood, ap-
plies both at train and test time, [Sainath et al., 2013]
introduces low-rank matrix factorization to reduce
the size of the fully connected layers at train time,
and [Li, 2013] uses low-rank factorizations with SVD
after training the full model. These methods, as
well as approaches that consider kernel methods in
deep learning [Cho and Saul, 2009, Mairal et al., 2014,
Dai et al., 2014, Huang et al., 2014], are conveniently
discussed in [Yang et al., 2015].

Structured neural networks are also considered in
[Sindhwani et al., 2015], where low-displacement rank
matrices are applied for linear projections. The ad-
vantage of this approach over Deep Fried Convnets is
due to the high parametrization of the family of low-
displacement rank matrices allowing the adjustment of
the number of parameters learned based on accuracy
and speedup requirements.

The class of structured spinners proposed in this work is
more general than Deep Fried Convnets or low displace-
ment rank matrices, but it also provides much easier
structured constructions, such as HD3HD2HD1 ma-
trices, where Dis are adaptive diagonal matrices. Fur-
thermore, to the best of our knowledge we are the first
to prove theoretically that structured neural networks
learn good quality models, by analyzing the capacity
of the family of structured spinners.

3 The family of Structured Spinners

Before introducing the family of structured spinners,
we explain notation. If not specified otherwise, matrix
D is a random diagonal matrix with diagonal entries
taken independently at random from {−1,+1}. By
Dt1,...,tn we denote the diagonal matrix with diagonal
equal to (t1, ..., tn). For a matrix A = {ai,j}i,j=1,...,n ∈
Rn×n, we denote by ‖A‖F its Frobenius norm, i.e.

‖A‖F =
√∑

i,j∈{1,...,n} a
2
i,j , and by ‖A‖2 its spectral

norm, i.e. ‖A‖2 = supx6=0
‖Ax‖2
‖x‖2 . We denote by H
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the L2-normalized Hadamard matrix. We say that r is
a random Rademacher vector if every element of r is
chosen independently at random from {−1,+1}.

For a vector r ∈ Rk and n > 0 let C(r, n) ∈ Rn×nk be
a matrix, where the first row is of the form (rT , 0, ..., 0)
and each subsequent row is obtained from the previous
one by right-shifting in a circulant manner the previous
one by k. For a sequence of matrices W1, ...,Wn ∈
Rk×n we denote by V(W1, ...,Wn) ∈ Rnk×n a matrix
obtained by vertically stacking matrices: W1, ...,Wn.

Each structured matrix Gstruct ∈ Rn×n from the fam-
ily of structured spinners is a product of three main
structured components/blocks, i.e.:

Gstruct = M3M2M1, (1)

where matrices M1,M2 and M3 satisfy conditions:

Condition 1: Matrices: M1 and M2M1 are
(δ(n), p(n))-balanced isometries.
Condition 2: M2 = V(W1, ...,Wn)Dρ1,...,ρn for

some (∆F ,∆2)-smooth set: W1, ...,Wn ∈ Rk×n
and some i.i.d sub-Gaussian random variables
ρ1, ..., ρn with sub-Gaussian norm K.
Condition 3: M3 = C(r, n) for r ∈ Rk, where r
is random Rademacher/Gaussian in the random
setting and is learned in the adaptive setting.

Matrix Gstruct is a structured spinner with parame-
ters: δ(n), p(n),K,ΛF ,Λ2. We explain the introduced
conditions below.

Definition 1 ((δ(n), p(n))-balanced matrices)
A randomized matrix M ∈ Rn×m is (δ(n), p(n))-
balanced if for every x ∈ Rm with ‖x‖2 = 1 we have:

P[‖Mx‖∞ > δ(n)√
n

] ≤ p(n).

Remark 1 One can take as M1 a matrix HD1 since,
as we will show in the Supplement, matrix HD1 is

(log(n), 2ne−
log2(n)

8 )-balanced.

Definition 2 ((∆F ,∆2)-smooth sets) A determin-
istic set of matrices W1, ...,Wn ∈ Rk×n is (ΛF ,Λ2)-
smooth if:

• ‖Wi
1‖2 = .. = ‖Wi

n‖2 for i = 1, ..., n, where Wi
j

stands for the jth column of Wi,
• for i 6= j and l = 1, ..., n we have: (Wi

l)
T ·Wj

l = 0,

• maxi,j ‖(Wj)TWi‖F ≤ ΛF and

maxi,j ‖(Wj)TWi‖2 ≤ Λ2.

Remark 2 If the unstructured matrix G has rows
taken from the general multivariate Gaussian distri-
bution with diagonal covariance matrix Σ 6= I then one
needs to rescale vectors r accordingly. For clarity, we
assume here that Σ = I and we present our theoretical
results for that setting.

All structured matrices previously considered are spe-
cial cases of a wider family of structured spinners (for
clarity, we will explicitly show it for some important
special cases). We have:

Lemma 1 The following matrices: GcircD2HD1,√
nHD3HD2HD1 and

√
nHDg1,...,gnHD2HD1,

where Gcirc is Gaussian circulant, are valid structured

spinners for δ(n) = log(n), p(n) = 2ne−
log2(n)

8 , K = 1,
ΛF = O(

√
n) and Λ2 = O(1). The same is true if

one replaces Gcirc by a Gaussian Hankel or Toeplitz
matrix.

3.1 The role of three blocks M1, M2, and M3

The role of blocks M1, M2, M3 can be intuitively
explained. Matrix M1 makes vectors “balanced”, so
that there is no dimension that carries too much of
the L2-norm of the vector. The balanceness prop-
erty was already applied in the structured setting
[Ailon and Chazelle, 2006].

The role of M2 is more subtle and differs between
adaptive and random settings. In the random setting,
the cost of applying the structured mechanism is the
loss of independence. For instance, the dot products of
the rows of a circulant Gaussian matrix with a given
vector x are no longer independent, as it is the case
in the fully random setup. Those dot products can
be expressed as a dot product of a fixed Gaussian
row with different vectors v. Matrix M2 makes these
vectors close to orthogonal. In the adaptive setup,
the “close to orthogonality” property is replaced by
the independence property.

Finally, matrix M3 defines the capacity of the en-
tire structured transform by providing a vector of
parameters (either random or to be learned). The
near-independence of the aforementioned dot products
in the random setting is now implied by the near-
orthogonality property achieved by M2 and the fact
that the projections of the Gaussian vector or the
random Rademacher vector onto “almost orthogonal
directions” are “close to independent”. The role of the
three matrices is described pictorially in Figure 1.

3.2 Stacking together Structured Spinners

We described structured spinners as square matrices,
but in practice we are not restricted to those, i.e. one
can construct an m× n structured spinner for m ≤ n
from the square n × n structured spinner by taking
its first m rows. We can then stack vertically these
independently constructed m × n matrices to obtain
an k × n matrix for both: k ≤ n and k > n. We
think about m as another parameter of the model that
tunes the “structuredness” level, i.e. larger values of m
indicate more structured approach while smaller values
lead to more random matrices (m = 1 case is the fully
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Figure 1: Pictorial explanation of the role of three matrix-blocks in the construction of the structured spinner.
Left picture: M1 rotates v such that the rotated version vr is balanced. Middle picture: M2 transforms vectors
v,w,u such that their images vr,wr,ur are near-orthogonal. Right picture: The projections of the random
vector r onto such two near-orthogonal vectors v, w are near-independent.

unstructured one).

4 Theoretical results

We now show that structured spinners can replace their
unstructured counterparts in many machine learning
algorithms with minimal loss of accuracy.

Let AG be a machine learning algorithm applied to
a fixed dataset X ⊆ Rn and parametrized by a set
G of matrices G ∈ Rm×n, where each G is either
learned or Gaussian with independent entries taken
from N (0, 1). Assume furthermore, that AG consists
of functions f1, ..., fs, where each fi applies a certain
matrix Gi from G to vectors from some linear space
Li of dimensionality at most d. Note that for a fixed
dataset X function fi is a function of a random vector

qfi = ((Gix
1)T , ..., (Gix

di)T )T ∈ Rdi·m,

where dim(Li) = di ≤ d and x1, ...,xdi stands for some
fixed basis of Li.

Denote by f ′i the structured counterpart of fi, where
Gi is replaced by the structured spinner (for which
vector r is either learned or random). We will show
that f ′is “resemble” fis distribution-wise. Surprisingly,
we will show it under very weak conditions regarding
fis, In particular, they can be nondifferentiable, even
non-continuous.

Note that the above setting covers a wide range of
machine learning algorithms. In particular:

Remark 3 In the kernel approximation setting with
random feature maps one can match each pair of vectors
x,y ∈ X to a different f = fx,y. Each f computes the
approximate value of the kernel for vectors x and y.

Thus in that scenario s =
(|X |

2

)
and d = 2 (since one

can take: Lf(x,y) = span(x,y)).

Remark 4 In the vector quantization algorithms using
random projection trees one can take s = 1 (the algo-
rithm A itself is a function f outputting the partitioning

of space into cells) and d = dintrinsic, where dintrinsic
is an intrinsic dimensionality of a given dataset X (ran-
dom projection trees are often used if dintrinsic � n).

4.1 Random setting

We need the following definition.

Definition 3 A set S is b-convex if it is a union of at
most b pairwise disjoint convex sets.

Fix a funcion fi : Rdi·m → V , for some domain V . Our
main result states that for any S ⊆ V such that f−1

i (S)
is measurable and b-convex for b not too large, the
probability that fi(qfi) belongs to S is close to the
probability that f ′i(qf ′i ) belongs to S.

Theorem 1 (structured random setting) Let A
be a randomized algorithm using unstructured Gaussian
matrices G and let s, d and fis be as at the beginning of
the section. Replace the unstructured matrix G by one
of structured spinners defined in Section 3 with blocks
of m rows each. Then for n large enough, ε = omd(1)
and fixed fi with probability psucc at least:

1−2p(n)d−2

(
md

2

)
e
−Ω(min( ε2n2

K4Λ2
F
δ4(n)

, εn
K2Λ2δ

2(n)
))

(2)

with respect to the random choices of M1 and M2 the
following holds for any S such that f−1

i (S) is measur-
able and b-convex:

|P[fi(qfi) ∈ S]− P[f ′i(qf ′i ) ∈ S]| ≤ bη,

where the the probabilities in the last formula are with

respect to the random choice of M3, η = δ3(n)

n
2
5

, and

δ(n), p(n),K,ΛF ,Λ2 are as in the definition of struc-
tured spinners from Section 3.

Remark 5 The theorem does not require any strong
regularity conditions regarding fis (such as differen-
tiability or even continuity). In practice, b is often a
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small constant. For instance, for the angular kernel
approximation where fis are non-continuous and for
S-singletons, we can take b = 1 (see Supplement).

Now let us think of fi and f ′i as random variables,
where randomness is generated by vectors qfi and qf ′i
respectively. Then, from Theorem 1, we get:

Theorem 2 Denote by FX the cdf of the random vari-
able X and by φX its characteristic function. If fi is
convex or concave in respect to qfi , then for every t the

following holds: |Ffi(t)− Ff ′i (t)| = O( δ
3(n)

n
2
5

). Further-

more, if fi is bounded then: |φfi(t)−φf ′i (t)| = O( δ
3(n)

n
2
5

).

Theorem 1 implies strong accuracy guarantees for the
specific structured spinners. As a corollary we get:

Theorem 3 Under assumptions from Theorem 1 the
probability psucc from Theorem 1 reduces to: 1 −
4ne−

log2(n)
8 d − 2

(
md
2

)
e
−Ω( ε2n

log4(n)
)

for the structured

matrices
√
nHD3HD2HD1,

√
nHDg1,...,gnHD2HD1

as well as for the structured matrices of the form
GstructD2HD1, where Gstruct is Gaussian circulant,
Gaussian Toeplitz or Gaussian Hankel matrix.

As a corollary of Theorem 3, we obtain the following re-
sult showing the effectiveness of the cross-polytope LSH
with structured matrices HD3HD2HD1 that was only
heuristically confirmed before [Andoni et al., 2015].

Theorem 4 Let x,y ∈ Rn be two unit L2-norm vec-
tors. Let vx,y be the vector indexed by all (2m)2 or-
dered pairs of canonical directions (±ei,±ej), where
the value of the entry indexed by (u,w) is the probabil-
ity that: h(x) = u and h(y) = w, and h(v) stands
for the hash of v. Then with probability at least:

psuccess = 1 − 8ne−
log2(n)

8 − 2
(

2m
2

)
e
−Ω( ε2n

log4(n)
)

the ver-

sion of the stochastic vector v1
x,y for the unstructured

Gaussian matrix G and its structured counterpart v2
x,y

for the matrix HD3HD2HD1 satisfy: ‖v1
x,y−v2

x,y‖∞ ≤
log3(n)n−

2
5 + cε, for n large enough, where c > 0 is a

universal constant. The probability above is taken with
respect to random choices of D1 and D2.

For angles in the range [0, π3 ] the result above leads to
the same asymptotics of the probabilities of collisions
as these in Theorem 1 of [Andoni et al., 2015] given
for the unstructured cross-polytope LSH.

The proof for the discrete structured setting applies
Berry-Esseen-type results for random vectors (details
are in the Supplement) showing that for n large enough
±1 random vectors r act similarly to Gaussian vectors.

4.2 Adaptive setting

The following theorem explains that structured spinners
can be used to replace unstructured fully connected

neural network layers performing dimensionality reduc-
tion (such as hidden layers in certain autoencoders)
provided that input data has low intrinsic dimension-
ality. These theoretical findings were confirmed in
experiments that will be presented in the next section.
We will use notation from Theorem 1.

Theorem 5 Consider a matrix M ∈ Rm×n encoding
the weights of connections between a layer l0 of size n
and a layer l1 of size m in some learned unstructured
neural network model. Assume that the input to layer
l0 is taken from the d-dimensional space L (although
potentially embedded in a much higher dimensional
space). Then with probability at least

1−2p(n)d−2

(
md

2

)
e
−Ω(min( t2n2

K4Λ2
F
δ4(n)

, tn
K2Λ2δ

2(n)
))

(3)

for t = 1
md and with respect to random choices of M1

and M2, there exists a vector r defining M3 (see: defini-
tion of the structured spinner) such that the structured
spinner Mstruct = M3M2M1 equals to M on L.

5 Experiments

In this section we consider a wide range of dif-
ferent applications of structured spinners: locality-
sensitive hashing, kernel approximations, and finally
neural networks. Experiments with Newton sketches
are deferred to the Supplement. Experiments were
conducted using Python. In particular, NumPy is
linked against a highly optimized BLAS library (In-
tel MKL). Fast Fourier Transform is performed using
numpy.fft and Fast Hadamard Transform is using ffht
from [Andoni et al., 2015]. To have a fair comparison,
we have set up: OMP NUM THREADS = 1 so that
every experiment is done on a single thread. Every
parameter of the structured spinner matrix is com-
puted in advance, such that obtained speedups take
only matrix-vector products into account. All figures
should be read in color.

5.1 Locality-Sensitive Hashing (LSH)

In the first experiment, we consider cross-polytope
LSH. In Figure 2, we compare collision probabilities
for the low dimensional case (n = 256), where for
each interval, collision probability has been computed
for 20000 points. Results are shown for one hash
function (averaged over 100 runs). We report results
for a random 256 × 64 Gaussian matrix G and five
other types of matrices from a family of structured
spinners (descending order of number of parameters):
GcircK2K1, GToeplitzD2HD1, Gskew−circD2HD1,
HDg1,...,gnHD2HD1, and HD3HD2HD1, where Ki,
GToeplitz, and Gskew−circ are respectively a Kronecker
matrix with discrete entries, Gaussian Toeplitz and
Gaussian skew-circulant matrices.



Mariusz Bojarski1, Anna Choromanska1, Krzysztof Choromanski1

+ + +
+

+
+

+
+

+
+

+

+

+

+

Collision probabilities with cross−polytope LSH

Distance

C
ol

lis
io

n 
pr

ob
ab

ili
ty

+ + + +
+

+
+

+
+

+
+

+

+

+

+ + +
+

+
+

+
+

+
+

+

+

+

+

+ + + +
+

+
+

+
+

+
+

+

+

+

+ + +
+

+
+

+
+

+
+

+

+

+

+

+ + + +
+

+
+

+
+

+
+

+

+

+

0.
01

0.
05

0.
20

0.
50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 2

G
GcircK2K1
GToeplitzD2HD1

Gskew−circD2HD1
HDg1, g2, …, gn

HD2HD1

HD3HD2HD1

+

+

+

+

Distance

C
ol

lis
io

n 
pr

ob
ab

ili
ty

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0.
01

0.
02

0.
05

0.
10

1.1 1.2 1.3 1.4

G
GcircK2K1
GToeplitzD2HD1

Gskew−circD2HD1
HDg1, g2, …, gn

HD2HD1

HD3HD2HD1

Figure 2: Cross-polytope LSH - collision probabilities.
(bottom) A zoom on higher distances enables to distin-
guish the curves which are almost superposed.

All matrices from the family of structured spinners
show high collision probabilities for small distances and
low ones for large distances. As theoretically predicted,
structured spinners do not lead to accuracy losses. All
considered matrices give almost identical results.

5.2 Kernel approximation

In the second experiment, we approximate the Gaus-
sian and angular kernels using Random Fourier fea-
tures. The Gaussian random matrix (with i.i.d. Gaus-
sian entries) can be used to sample random Fourier
features with a specified σ. This Gaussian random
matrix is replaced with specific matrices from a family
of structured spinners for Gaussian and angular ker-
nels. The obtained feature maps are compared. To
test the quality of the structured kernels’ approxima-
tions, we compute Gram-matrix reconstruction error

as in [Choromanski and Sindhwani, 2016] : ||K−K̃||F||K||F ,

where K, K̃ are respectively the exact and approximate
Gram-matrices, as a function of the number of random
features. When number of random features k is greater
than data dimensionality n, we apply block-mechanism
described in 3.2.

For the Gaussian kernel, Kij = e
−||xi−xj ||

2
2

2σ2 and for the

angular kernel, Kij = 1− θ
π with θ = cos−1(

xTi xj
||xi||2||xj ||2 ).

For the approximation, K̃i,j = 1√
d′
s(Axi)

T 1√
d′
s(Axj)

where s(x) = e
−ix
σ and K̃i,j = 1 − dH(s(Axi),s(Axj))

d′

where s(x) = sign(x) respectively. In both cases, func-
tion s is applied pointwise. dH stands for the Hamming
distance and xi, xj are points from the dataset.

We used two datasets: G50C (550 points, n = 50)
and USPST (test set, 2007 points, n = 256). The
results for the USPST dataset are given in the Sup-
plement. For Gaussian kernel, bandwidth σ is set to
17.4734 for G50C and to 9.4338 for USPST. The choice
of σ comes from [Choromanski and Sindhwani, 2016]
in order to have comparable results. The results
are averaged over 10 runs and the following matri-
ces have been tested: Gaussian random matrix G,
GcircK2K1, GToeplitzD2HD1, Gskew−circD2HD1,
HDg1,...,gnHD2HD1 and HD3HD2HD1.

Figure 5 shows results for the G50C dataset. In case
of G50C dataset, for both kernels, all matrices from
the family of structured spinners perform similarly to
a random Gaussian matrix. HD3HD2HD1 performs
better than all other matrices for a wide range of sizes
of random feature maps. In case of USPST dataset
(see: Supplement), for both kernels, all matrices from
the family of structured spinners again perform simi-
larly to a random Gaussian matrix (except GcircK2K1

which gives relatively poor results) and HD3HD2HD1

is giving the best results. Finally, the efficiency of
structured spinners does not depend on the dataset.

Table 1 shows substantial speedups obtained by
the structured spinner matrices. The speedups are
computed as time(G)/time(T), where time(G) and
time(T) are the runtimes for respectively a random
Gaussian matrix and a structured spinner matrix.

5.3 Neural networks

Finally, we performed experiments with neural net-
works using two different network architectures. The
first one is a fully-connected network with two fully
connected layers (we call it MLP), where we refer to
the size of the hidden layer as h, and the second one is
a convolutional network with following architecture:

• Convolution layer with filter size 5× 5, 4 feature
maps + ReLU + Max Pooling (region 2× 2 and
step 2× 2)
• Convolution layer with filter size 5× 5, 6 feature

maps + ReLU + Max Pooling (region 2× 2 and
step 2× 2)

• Fully-connected layer (h outputs) + ReLU

• Fully-connected layer (10 outputs)

• LogSoftMax.

Experiments were performed on the MNIST data set.
In both experiments, we re-parametrized each matrix
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Figure 3: Accuracy of random feature map kernel approximation for the G50C dataset.

MATRIX DIM. 29 210 211 212 213 214 215

GToeplitzD2HD1 x1.4 x3.4 x6.4 x12.9 x28.0 x42.3 x89.6
Gskew−circD2HD1 x1.5 x3.6 x6.8 x14.9 x31.2 x49.7 x96.5

HDg1,...,gnHD2HD1 x2.3 x6.0 x13.8 x31.5 x75.7 x137.0 x308.8
HD3HD2HD1 x2.2 x6.0 x14.1 x33.3 x74.3 x140.4 x316.8

Table 1: Speedups for Gaussian kernel approximation via structured spinners.

h 24 25 26 27 28 29 210 211 212

unstructured 42.9 51.9 72.7 99.9 163.9 350.5 716.7 1271.5 2317.4
HD3HD2HD1 109.2 121.3 109.7 114.2 117.4 123.9 130.6 214.3 389.8

Table 2: Running time (in [µs]) for the MLP - unstructured matrices vs structured spinners.
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Figure 4: Test error for MLP (top) and convolutional network (bottom).

of weights of fully connected layers with a structured
HD3HD2HD1 matrix from a family of structured spin-
ners. We compare this setting with the case where the
unstructured parameter matrix is used. Note that in
case when we use HD3HD2HD1 only linear number
of parameters is learned (the Hadamard matrix is deter-
ministic and even does not need to be explicitly stored,
instead Walsh-Hadamard transform is used). Thus the
network has significantly less parameters than in the
unstructured case, e.g. for the MLP network we have
O(h) instead of O(input size× h) parameters.

In Figure 4 and Table 2 we compare respectively the test
error and running time of the unstructured and struc-
tured approaches. Figure 4 shows that for large enough
h, neural networks with structured spinners achieve
similar performance to those with unstructured projec-
tions, while at the same time using structured spinners
lead to significant computational savings as shown in
Table 2. As mentioned before, the HD3HD2HD1-
neural network is a simpler construction than the Deep
Friend Convnet, however one can replace it with any
structured spinner to obtain compressed neural network
architecture of a good capacity.
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[Huhtanen and Perämäki, 2015] Huhtanen, M. and
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