
Complementary Sum Sampling for Likelihood Approximation in
Large Scale Classification

Aleksandar Botev1 Bowen Zheng1 David Barber1,2

University College London1 Alan Turing Institute2

Abstract

We consider training probabilistic classifiers
in the case that the number of classes is too
large to perform exact normalisation over all
classes. We show that the source of high vari-
ance in standard sampling approximations is
due to simply not including the correct class
of the datapoint into the approximation. To
account for this we explicitly sum over a sub-
set of classes and sample the remaining. We
show that this simple approach is competi-
tive with recently introduced non likelihood-
based approximations.

1 Probabilistic Classifier

Given an input x, we define a distribution over class
labels c ∈ {1, . . . , C} as

pθ(c|x) =
uθ(c, x)

Zθ(x)
, uθ ≥ 0 (1)

with normalisation

Zθ(x) ≡
C∑
c=1

uθ(c, x) (2)

Here θ represents the parameters of the model. A
well known example is the softmax model in which
uθ(c, x) = exp (sθ(c, x)), with a typical setting for the
score function sθ(c, x) = wT

c x for input vector x and
parameters θ = {w1, . . . ,wC}.

Computing the exact probability requires the normali-
sation to be computed over all C classes and we are in-
terested in the situation in which the number of classes
is large. For example, in language models, it is not un-
usual to have of the order of C = 100, 000 classes, each

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copy-
right 2017 by the author(s).

class corresponding to a specific word. In maximum
likelihood parameter estimation, this causes a bottle-
neck in the computation. Particularly in language
modelling several attempts have been considered to al-
leviate this difficulty. Early attempts were to approxi-
mate the normalisation term by Importance Sampling
[1, 2]. Alternative, non-likelihood based training ap-
proaches such as Noise Contrastive Estimation [7, 14],
Negative Sampling [12] and BlackOut [10] have been
recently introduced. Whilst each approach has its mer-
its, we introduce a very simple modification of a stan-
dard sampling approximation and find that this gives
excellent comparative performance.

1.1 Maximum Likelihood

Given data D ≡ {(xn, cn), n = 1, . . . , N} a natural1

way to train the model is to maximise the log likeli-
hood L(θ) ≡

∑N
n=1 Ln(θ) where the log likelihood of

an individual datapoint is

Ln(θ) = log pθ(cn|xn) = log uθ(cn, xn)− logZθ(xn)

The gradient is given by g(θ) =
∑N
n=1 gn(θ) where the

gradient associated with an individual datapoint n is
given by

gn(θ) = ∂θ log uθ(cn, xn)− 1

Zθ(xn)

C∑
c=1

∂θuθ(c, xn)

The gradient can be expressed as a weighted combina-
tion of vectors,

gn(θ) =

C∑
c=1

γn(c)∂θ log uθ(c, xn) (3)

with weights given by2

γn(c) ≡ δ(c, cn)− pθ(c|xn) (4)

where the Kronecker delta δ(c, cn) is 1 if c = cn and
zero otherwise. This has the natural property that

1Maximum Likelihood has the well-known property
that is is asymptotically efficient.

2We drop the dependence of γ on θ for convenience.

Complementary Sum Sampling for Likelihood Approximation in Large Scale Classification

when the model pθ(c|xn) predicts the correct class la-
bel cn for each datapoint n, then the gradient is zero.
Since p ∈ [0, 1], we note that the weights are bounded
γn(c) ∈ [−1, 1].

In practice, rather than calculating the gradient on
the full batch of data, we use a much smaller ran-
domly sampled minibatchM of datapoints, |M| � N
(typically of the order of 100 examples) and use the
minibatch gradient g(θ) =

∑
n∈M gn(θ) to update the

parameters at each iteration (for example by Stochas-
tic Gradient Ascent).

2 Approximating a Sum by Sampling

The exact log-likelihood requires the calculation of
a sum over all classes, which we assume to be pro-
hibitively expensive. We consider therefore the gen-
eral problem of summing over a collection of elements
Z =

∑C
c=1 zc.

2.1 Importance Sampling

A standard approach to estimating a sum is to use
Importance Sampling (IS). Based on the identity
Z =

∑
c q(c)zc/q(c) we draw a set of indices S ≡

{i1, . . . , iS} from q, where is ∈ {1, . . . , C}, and form
the approximation

Z̃ =
1

S

∑
s∈S

zs
q(s)

(5)

where the sum is over all elements of S, including rep-
etitions. Z̃ is an unbiased estimator of Z with variance

1

S

(
C∑
c=1

z2c
q(c)

− Z2

)
(6)

Even as the number of samples S is increased beyond
the number of elements C, Z̃ generally remains an ap-
proximation (unless q(c) ∝ zc). That is, even if the
method uses more computation than the exact cal-
culation would require, it remains an approximation.
For this reason, we consider an alternative sampling
approach with bounded computation.

2.2 Bernoulli Sampling

An alternative to IS is to consider the identity

Z =

C∑
c=1

zc = Es∼b

(
C∑
c=1

sc
bc
zc

)
(7)

where each independent Bernoulli variable sc ∈ {0, 1}
and p(sc = 1) = bc. Unlike IS, no samples can be

repeated. We propose to take a single joint sample s
to form the Bernoulli sample approximation

Z ≈
∑
c:sc=1

zc
bc

(8)

where the sum is over the components corresponding
to the non-zero elements of the vector s. This Bernoulli
sampler of Z is unbiased with variance

C∑
c=1

(
1

bc
− 1

)
z2c (9)

For bc → 1, sc is sampled in state 1 with probability 1
and the approximation recovers the exact summation.

3 Likelihood Approximation by IS

For the classification model the log likelihood contri-
bution for an individual datapoint n is given by

Ln(θ) = uθ(cn, xn)− logZθ(xn) (10)

A standard approximation [6, 1] of Z uses IS3. By
drawing a set of samples S from an importance distri-
bution q over the C classes, a sampling approximation
is then given by

Zθ(xn) ≈ 1

S

∑
s∈S

uθ(s, xn)

q(s)
(11)

This approximate Z is used to replace the exact Z in
eq(10). Gradients are then taken based on this ap-
proximate objective, which will now only contain a
summation over the sampled classes, not all classes.
We call this the ‘standard’ IS approach.

Whilst this is an unbiased estimator of Z (but not
logZ), the variance of this estimator is high [2] and in
practice can cause divergent parameter updates.

3.1 IS Gives Unstable Updates

This standard IS approach has the undesirable prop-
erty that the approximated gradient scalar (from
eq(4))

γn(c) ≈ δ(c, cn)− uθ(c, xn)
1
S

∑
s∈S

uθ(s,xn)
q(s)

(12)

is not bounded between −1 and 1. This can create
highly inaccurate gradient updates; even the sign of
the gradient direction gn(θ) is not guaranteed to be
correct. Whilst there have been attempts to adapt q

3Note that this approximation is an unbiased estima-
tor of Z, but a biased estimator of logZ. The resulting
approximate gradient is thus also biased.

Aleksandar Botev1, Bowen Zheng1, David Barber1,2

to reduce the variance these are typically more com-
plex and may require significant computation to cor-
rect wild gradient estimates [2].

Note that the standard IS gradient approximation be-
ing not bound between 0 and 1 is likely to happen in
practice. As training progresses, the term pθ(cn|xn)
should ideally approach 1 as the model learns to clas-
sify the training points accurately. As the probability
of the correct class approaches 1, uθ(cn, xn) dominates
all uθ(d, xn), for d 6= cn. For this scenario, and con-
sidering the IS approximation:

pθ(cn|xn) ≈ uθ(cn, xn)
1
S

∑
s∈S

uθ(s,xn)
q(s)

(13)

if the term uθ(cn, xn) is not included in the sample
set S, the ratio will be very large and the gradient
estimate highly inaccurate. Thus, unless q accounts for
the importance of including the sample class cn, it is
almost guaranteed that learning will become unstable.

We show this phenomenon in fig(1) in which we con-
sider evaluating an expression of the form

p(c = 1|x) =
u(1)∑C
c=1 u(c)

(14)

for different randomly chosen u. Using IS with a uni-
form q to approximate the denominator

p(c = 1|x) ≈ u(1)
1
S

∑
s∈S

u(s)
q(s)

(15)

gives rise to highly inaccurate estimates, see fig(1).

4 Complementary Sum Sampling

For each datapoint n we define a small set of classes Cn
that are explicitly summed over in forming the approx-
imation. This defines for each datapoint n a comple-
mentary set of classes Ccn, (all classes except for those
in Cn). We can then write

Zθ(xn) =
∑
c∈Cn

uθ(c, xn) +
∑
d∈Ccn

uθ(d, xn) (16)

We propose to simply approximate the sum over the
complementary classes by sampling. To ensure that
this results in an approximate −1 ≤ γn(c) ≤ 1, we
require that Cn contains the correct class cn. This set-
ting significantly reduces the variance in the sampling
estimate of the gradient.

In our experiments, we simply set Cn = {cn}. That
is, the normalisation approximation explicitly includes
the correct class with the remaining sum over the ‘neg-
ative’ classes approximated by sampling.

In using sampling to approximate the complemen-
tary class summation in eq(16), both Importance and
Bernoulli Sampling give approximations in the form

Z̃θ(xn) =
∑
c∈Cn

uθ(c, xn) +
∑
d∈Nn

κd,nuθ(d, xn) (17)

where Nn is a set of S negative sampled classes from
the complementary set. dIn the Importance case4,
κd,n = 1/(Sqn(d)); in the Bernoulli case κd,n = 1/bd,n
is the probability that sd = 1.

The approximate log likelihood contribution for an in-
dividual datapoint n is then given by

L̃n(θ) = uθ(cn, xn)− log Z̃θ(xn) (18)

with derivative

∂θL̃n(θ) =
∑
c∈C′n

(δ(c, cn)− p̃(c|xn)) ∂θ log uθ(c, xn)

where

p̃(c|xn) =

{
uθ(c, xn)/Z̃θ(xn) c ∈ Cn
κc,nuθ(c, xn)/Z̃θ(xn) c ∈ Nn

(19)

Note that p̃ is a distribution5 over the classes C′n =
Cn ∪Nn. Hence the approximation

γ̃n(c) ≡ δ(cn, c)− p̃(c|xn) (20)

has the property γ̃n(c) ∈ [−1, 1].

The estimator of p(c|xn) is biased since the estimator
of the inverse normalisation 1/Zθ is biased6. In the
limit of a large number of Importance samples, κ→ 1;
similarly for Bernoulli Sampling, as S tends to the size
of the complementary set, κ→ 1. In this limit Z̃θ(xn)
approaches the exact value Zθ(xn). The resulting es-
timators of p(c|xn) are therefore consistent.

4.1 CSS Gives Stable Updates

We return to estimating eq(14). Using CSS with a
single member of Cn is equivalent to the approximation

4The IS distribution qn(d) depends on the data index
n, since the IS distribution must not include the classes in
the set Cn.

5In [9] IS is used to motivate an approximation that
results in a distribution over a predefined subset of the
classes. However the approximation is based on a biased
estimator of Z(xn) and as such is not an Importance sam-
pler in the standard sense.

6One can form an effectively unbiased estimator of 1/Zθ
by a suitable truncated Taylor expansion of 1/Z, see [3].
However, each term in the expansion requires a separate
independent joint sample from p(s) (for the BS) and as
such is sampling intensive, reducing the effectiveness of the
approach.

Complementary Sum Sampling for Likelihood Approximation in Large Scale Classification

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10
#104

10
20
50

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
20
50

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
20
50

(c)

Figure 1: Approximating the probability p(c = 1|x), eq(14) for C = 10000 classes. Here the ui, i > 1 elements
are sampled uniformly between [0, 1]] and u1 = exp(Cy), where y is sampled from a normal distribution. On
the horizontal axis we plot the exact value p(c = 1|x) and on the vertical axis the approximation. The colours
correspond to the number of samples used in the approximation, S ∈ {10, 20, 50}. (a) Using standard Importance

Sampling with a uniform importance distribution to approximate the normalisation
∑C
c=1 uc. This gives a wildly

inaccurate estimate of the probability since the term u1 is unlikely to be included in the importance samples. This
is already a significant issue for small p(c = 1|x) and becomes increasingly problematic as p(c = 1|x) increases
towards 1 and the classifier fits the training data more accurately. (b) Complementary Sum Sampling with

Importance Sampling (uniform importance distribution) to approximate the term
∑C
c=2 uc. (c) Complementary

Sum Sampling with Bernoulli Sampling (uniform) to approximate
∑C
c=2 uc.

(for Importance Sampling)

p(c = 1|x) ≈ u(1)

u(1) + 1
S

∑
s∈S

u(s)
q(s)

(21)

where q is a distribution over the negative indices
{2, . . . , C} (hence the sample set S does not contain
index 1), and for Bernoulli Sampling:

p(c = 1|x) ≈ u(1)

u(1) +
∑C
c:sc=1

u(c)
bc

(22)

where the negative indices are such that c 6= 1.

As we see in fig(1) this simple modification dramati-
cally reduces the error in the approximation compared
to using the standard IS approach eq(15). In this case
there is no significant difference between using CSS
with Bernoulli or Importance Sampling to approxi-
mate the probability.

5 Relation to Other Approaches

The closest approaches to ours are taken in [1, 2] which
use the maximum likelihood objective, approximated
by ‘standard’ IS, eq(11). Since this has high variance,
alternatives have been considered by several authors.

5.1 Hierarchical Softmax

Hierarchical softmax [15] defines a binary tree such
that the probability of a leaf class is the product of
edges from the root to the leaf. Each (left) edge child
of a node i is associated with a probability σ

(
wT
i x
)
,

with a corresponding weight wi for each node. This
implicitly defines a distribution over all C classes, re-
moving the requirement to explicitly normalise over all
classes.

The computational cost of calculating the probability
of an observed class then scales with logC, rather than
with C in the standard softmax approach. However,
this formally defines a new model and as such we will
not consider it further here.

5.2 Noise Contrastive Estimation

NCE [7, 8] is a general approach that can be used to
perform estimation in unnormalised probability mod-
els and has been successfully applied in the context
of language modelling in [14, 13]. The method gener-
ates data from the ‘noise’ classes7 (which range over
all classes, not just the negative classes) for each dat-

7In our experiments we tried different noise distribu-
tions pν(c) ∝ f(c)α where f(c) is the unigram distribution
and α was set to either 0.75 or 1.

Aleksandar Botev1, Bowen Zheng1, David Barber1,2

apoint in the minibatch.

The objective is related to a supervised learning prob-
lem to distinguish whether a datapoint is drawn from
the data or noise distribution. The method forms a
consistent estimator of θ in the limit of an infinite
number of samples i1, . . . , iS (S → ∞) independently
drawn from a ‘noise’ distribution pν(c), c ∈ {1, . . . , C}.
For minibatch datapoint (cn, xn) the method has gra-
dient

Spν(cn)

p′θ(cn|xn) + Spν(cn)
∂θ log p′θ(cn|xn)

−
S∑
s=1

p′θ(is)

p′θ(is|xn) + Spν(is)
∂θ log p′θ(is|xn)

where

p′θ(is|xn) = uθ(is, xn)/zn (23)

and the total gradient sums the gradients over the
minibatch. The method requires that each datapoint
in the minibatch has a corresponding scalar parameter
zn (part of the full parameter set θ) which approxi-
mates the normalisation Zn(θ). Formally, the objec-
tive is optimised when zn = Zn(θ) which would require
an expensive inner optimisation loop for each mini-
batch over these parameters. For this reason, in prac-
tice, these normalisation parameters are set to zn = 1
[14]. Formally speaking this invalidates the consis-
tency of the approach unless the model is rich enough
that it can implicitly approximate the normalisation
constant8.

In the limit of the number of noise samples tending
to infinity, the optimum of the NCE objective coin-
cides with maximum likelihood optimum. A disad-
vantage of this approach is that (in addition to the
formal requirement of optimising over the zn) it re-
quires unbounded computation to exactly match the
maximum likelihood objective. Whilst this method
has been shown to be effective for complex ‘self nor-
malising’ models, in our experiments with softmax re-
gression this approach (setting zn = 1) did not lead to
a practically usable algorithm.

5.3 Ranking Approaches

An alternative to learning the parameters of the model
by maximum likelihood is to argue that, when the cor-
rect class is cn, we need uθ(cn, xn) to be greater than
uθ(d, xn) for all classes d 6= cn. For example in the soft-
max regression setting uθ(c, x) = exp(sθ(c, x)) we may
stipulate that the score of the correct class sθ(c, x) is

8This is the assumption in [14] in which the model is
assumed to be powerful enough to be ‘self normalising’.

greater than the scores of the incorrect classes, namely

sθ(cn, xn)− sθ(d, xn) > ∆, d 6= cn (24)

for some positive constant ∆. This is the hinge loss
ranking approach taken in [5] in which, without loss of
generality, ∆ = 1 is used. A minor modification that
results in a differentiable objective is to maximise the
log ranking

log σ(sθ(cn, xn)− sθ(d, xn)−∆) (25)

where σ(x) = 1/(1 + e−x).

There is an interesting connection between the ranking
objective and CSS. Following section(4) we write

p(cn|xn) =
uθ(cn, xn)

uθ(cn, xn) +
∑
d 6=cn uθ(d, xn)

(26)

and use IS with a distribution q(d) over the negative
classes (i.e. all classes not equal to cn) to approximate
the term

∑
d 6=cn uθ(d, xn). Using a uniform distribu-

tion q(d) = 1/(C − 1) over the C − 1 negative classes,
and drawing only a single negative sample dn 6= cn
then ∑

d 6=cn

uθ(d, xn) ≈ (C − 1)uθ(dn, xn) (27)

and the approximation to log p(cn|xn) becomes

log σ (sθ(cn, xn)− sθ(dn, xn)− log(C − 1))

This matches the ranking objective using the setting
∆ = log(C − 1).

One can therefore view the ranking approach as a
single-sample estimate of the CSS maximum likelihood
approach. As such, we would generally expect the
ranking approach to be inferior to alternative, more
accurate approximations to the likelihood. The more
general ranking objective is∑

n∈M

∑
d6=cn

log σ (sθ(cn, xn)− sθ(d, xn)−∆)

for subsets of classes d 6= cn (one subset for each mini-
batch member) of randomly selected negative classes
d 6= cn.

5.3.1 Negative Sampling

A similar approach to ranking is to maximise
log σ(sθ(cn, xn)) whilst minimising log σ(sθ(d, xn)),
for a randomly chosen subset of negative classes d 6=
cn. This is motivated in [12] as an approximation of
the NCE method and has the objective

log σ (sθ(cn, xn))+
1

S

∑
d

log (1− σ (sθ(d, xn))) (28)

Complementary Sum Sampling for Likelihood Approximation in Large Scale Classification

0 100 200 300 400 500
-8

-7

-6

-5

-4

-3

-2

-1

0

Exact

Ranking

CSS Bernoulli Sampling

CSS Importance Sampling

Blackout

(a)

0 50 100 150 200 250
−7

−6

−5

−4

−3

−2

−1

0

exact

0

3.1063

6.2126

9.3189

12.4252

15.5315

18.6378

(b)

Figure 2: Softmax Regression. (a) Competing training approaches (CSS Bernoulli and CSS IS are virtually
indistinguishable). The exact log likelihood (y-axis) is plotted against iteration number (x-axis) for a set of
N = 2000 datapoints, each D = 100 dimensional. There are C = 1000 classes and the training data was
generated from the model to make a realisable problem. Each minibatch contains |M| = 50 datapoints. In
all approximations, S = 20 additional ‘negative’ classes were randomly sampled in addition to the classes
in each minibatch. All approximations used roughly 1050 calculations of the form exp(wTx) per minibatch,
compared to 50,000 calculations for the exact approach, leading to a roughly 50 fold decrease in computation
cost. Learning rates for the exact and normalisation approximations were all set the same; the BlackOut and
Ranking learning rates were set to the largest values that ensured convergence. All methods used gradient ascent
with momentum 0.99. The Noise Contrastive Estimation and Negative Sampling approaches are not shown
since the ‘self normalisation’ setting zn = 1 here results in very poor performance. (b) Plotted is the value of
the exact log likelihood based on gradient ascent of the ranking objective for different ∆ values. In this case
log(C − 1) = 6.2126 is the suggested optimal setting.

We included the 1/S scale factor so that the negative
terms contribute similarly to the positive term. As
pointed out in [12] this objective will not, in general,
have its optimum at the same point as the log likeli-
hood. The main motivation for the method is that it is
a fast procedure which has previously been succesfully
used in learing wordvecs [12].

5.4 BlackOut

The recently introduced BlackOut [10] is a discrimina-
tive approach based on an approximation to the true
discrimination probability. This forms the approxima-
tion

p̃(c|x, θ) =
uθ(c, x)/q(c)

uθ(c, x)/q(c) +
∑
d∈Nc uθ(d, x)/q(d)

(29)

Training maximises the discriminative objective

log p̃(cn|xn, θ) +
∑
d∈Ncn

log (1− p̃(d|xn, θ)) (30)

where cn is the correct class for input xn and Ncn
is a set of negative classes for cn. The objective is

summed over all points in the minibatch. BlackOut
shares similarities with NCE but avoids the difficulty
of the unknown normalisation constant. For the IS
distribution the authors propose to use q(c) ∝ f(c)α

where f(c) is the empirically observed class distribu-
tion f(c) ∝

∑
n I [cn = c] and 0 ≤ α < 1 is found by

validation. BlackOut shares similarities with our ap-
proach and includes an explicit summation over the
class cn thus avoiding instability. However, the train-
ing objective is different – BlackOut uses a discrimi-
native criterion rather than the likelihood.

6 Experiments

6.1 Softmax Regression

We consider the simple softmax regression model
u(c, x) = exp(wT

c x). The exact log-likelihood in this
case is concave, as are our approximate objectives.
This convexity means that our results do not depend
on the difficulty of optimisation and focus on the qual-
ity of the objective in terms of mimicking the true log
likelihood. The training data is formed by randomly
sampling a (fixed) set of parameters θ0 and inputs xn

Aleksandar Botev1, Bowen Zheng1, David Barber1,2

from which we then sample training classes cn from
this softmax regression model. Neither standard IS,
Noise Contrastive Estimation (with zn = 1) nor Nega-
tive Sampling are given in the results since these per-
form significantly worse than the other approaches.

In fig(2a) we plot the exact log likelihood against it-
erations of stochastic gradient ascent, comparing the
exact minibatch gradient to our normalisation approx-
imations, ranking and BlackOut. The empirical class
frequency f(c) was used to form the IS distribution,
with S = 20 samples drawn. For Bernoulli Sampling,
using b(c) = f(c)0.54 results in an expected number of
S = 20 samples. For this simple problem all displayed
methods work well.

In fig(2b) we examine the effect of different separa-
tions ∆ in the ranking method; we see that ∆ can
significantly affect the effectiveness of the approach,
with ∆ = log(C − 1) being a reasonable setting. This
is in line with the discussion in section(5.3) which re-
lated ranking to a single sample estimate of the CSS
maximum likelihood criterion.

6.2 Neural Word Prediction Model

Our interest is not to find a state-of-the-art word pre-
diction model, but rather to demonstrate how a large
model can be trained efficiently, as measured by the
true likelihood score. We therefore trained a stan-
dard Recurrent Neural Network Language Model to
predict the next word in a sentence based on all pre-
ceding words. The training data is the English part of
the European Parliament Proceedings Parallel Corpus
[11].

We converted all words to lower case and tokenized
them. We also removed stop words, punctuation and
tokens that occurred less than 4 times. Tokens were
defined to denote the start and end of each sentence
and we discarded any sentence longer than 70 tokens.
This processed corpus contains 2 million sentences
with 28 million words and C = 47170 distinct words.

The prediction model is the Gated Recurrent Unit
(GRU) architecture, as described in [4] with 128 hid-
den units9. The GRU update equations are10:

rt = σ(Wr,xxt +Wr,hht−1 + br)

ut = σ(Wu,xxt +Wu,hht−1 + bu)

ct = σ(Wc,xxt + rt � (Wu,hht−1) + bc)

ht = (1− ut)� ht−1 + ut � ct
At time t the input xt to the network is the word em-
bedding of the corresponding word. The output of

9We also experimented with 100 and 256 hidden units
but found no appreciable difference in log likelihood scores.

10� denotes elementwise multiplication.

the network is the set of scores st(c) = wTc Pht for
the classes required by the approximation. Here wc is
the word embedding for class c, ht is the hidden state
of the RNN and P is a projection matrix. The word
embeddings were chosen to be 100 dimensional. The
predicted probability of the next word is then propor-
tional to the exponentiated score ut(c) = exp(st(c)).
The initial hidden states of the GRU are set to zero.

For each training objective we learned the network
parameters, word embeddings and projection P by
Stochastic Gradient Descent (SGD) optimisation, with
parameters uniformly initialized from the interval
[−0.005, 0.005]. The word embedding matrix was ran-
domly initialized from the uniform distribution over
the interval [−0.1, 0.1].

We compare the different approximations by maximis-
ing the corresponding approximate objective instead of
the true log-likelihood. We evaluate the performance
of each training method by the exact log likelihood (on
the full training set) of the resulting parameters. For
the IS-based methods we chose the Importance Sam-
pling distribution to be proportional to f(w)α, where
f(w) is the empirical distribution of words in the train-
ing dataset (i.e. the unigram). We experimented with
different values α ∈ {0, 0.75, 1}. Generally α = 0,
which corresponds to using a uniform importance dis-
tribution works less well, and for that reason we plot
only the results for α ∈ {0.75, 1}.

We compared a set of different approaches11, see fig(3).
As shown in [10], BlackOut and NCE share the same
objective function but differ slightly in their details,
with BlackOut being found to be a superior method.
For this reason, we conducted experiments only with
the more competitive BlackOut approach.

Each method requires a set of S samples, which are
generated according to the processes described be-
low. The samples are generated identically for every
method in order to aid comparison of the underlying
approximations.

Negative Sampling: As in [12] we generated the neg-
ative samples according to f(w)α.

IS Large Vocab: This is the method described in [9].
The method is inspired by IS and uses a softmax
style objective over a subset of classes, with sam-
pling proportional to f(w)α.

BlackOut: The method is as described in [10]. Note
that BlackOut requires that the negative samples

11We didn’t include Bernoulli Sampling since, from our
softmax regression experiments, the performance benefits
over IS were unclear.

Complementary Sum Sampling for Likelihood Approximation in Large Scale Classification

(a) (b)

Figure 3: Neural Language Model for next word prediction. Plotted is the exact training log likelihood on the full
training set against training epochs, for a variety of training methods. All methods rely on sampling ‘negative’
classes, which are taken from the unigram distribution raised to the power α = 0.75 (shown in (a)) and α = 1
(shown in (b)). The best methods are BlackOut and our simple CSS IS Correct Class approach.

used for each predicted word in the minibatch can-
not contain the correct class.

IS Correct Class: This uses our CSS approach based
on eq(16) with Cn = {cn} and uses IS to approxi-
mate the sum over the remaining classes. There is
a similar requirement to BlackOut that the nega-
tive samples used cannot contain the correct class.

Ranking: We use the ranking objective (section(5.3)).
The negative samples again cannot contain the
correct class and are drawn from f(w)α.

IS: This is the standard IS approach [1] with samples
drawn according to f(w)α.

For all of the methods we used S = 250 samples which
are shared across every word in every sentence in the
minibatch. For the approximations where it is required
that for each word the noise samples cannot contain
the correct class we sample S + S′ samples and for
each word individually we pick the first S noise sam-
ples which do not coincide with the correct one. We
found out that setting S′ = 10 is more than enough
to never encounter a sample where the procedure de-
scribed above cannot be performed. We trained each
model using SGD for 30 epochs and minibatch size
of 128. The learning rate at each epoch is defined as
λi = 0.9iλ0, with initial learning rate λ0 is set to 0.05
(for cases where this led to divergent parameters, we
used a lower initial learning rate of 0.02).

The best performing methods are BlackOut and our
CSS approach in which we explicitly sum over the cor-
rect class and use IS to approximate the remaining
sum for Z. Some methods were unstable, including
the standard IS approach. The ranking based method
was significantly inferior to the likelihood approxima-
tion approaches, as was Negative Sampling.

7 Conclusion

The high variance in the classical sampling approxi-
mation of the log likelihood gradient in probabilistic
classification is caused by not including a term cor-
responding to the correct class in the normalisation.
Without explicitly including this term training is likely
to be unstable.

We introduced Complementary Sum Sampling to sta-
bilise the calculation of gradients in parameter learn-
ing. The method is competitive against recent non-
likelihood based approaches, with good performance
on a large-scale word prediction problem. The advan-
tage of our approach is its simplicity and direct con-
nection to the standard and asymptotically efficient
maximum likelihood objective.

Acknowledgements

This work was supported by The Alan Turing Institute
under the EPSRC grant EP/N510129/1.

Aleksandar Botev1, Bowen Zheng1, David Barber1,2

References

[1] Y. Bengio and J-S. Senécal. Quick Training of
Probabilistic Neural Nets by Importance Sam-
pling. AISTATS, 9, 2003.

[2] Y. Bengio and J-S. Senécal. Adaptive Importance
Sampling to Accelerate Training of a Neural Prob-
abilistic Language Model. IEEE Transactions on
Neural Networks, 19(4):713–722, 2008.

[3] T. E. Booth. Unbiased Monte Carlo Estimation
of the Reciprocal of an Integral. Nuclear Science
and Engineering, 156(3):403–407, 2007.

[4] K. Cho, B. van Merrienboer, D. Bahdanau, and
Y. Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259, 2014.

[5] R. Collobert and J. Weston. A Unified Architec-
ture for Natural Language Processing: Deep Neu-
ral Networks with Multitask Learning. In Proceed-
ings of the 25th International Conference on Ma-
chine Learning, ICML ’08, pages 160–167, New
York, NY, USA, 2008. ACM.

[6] C. J. Geyer. On the convergence of Monte Carlo
maximum likelihood calculations. Journal of the
Royal Statistical Society, Series B (Methodologi-
cal), 56(1):261–274, 1994.

[7] M. Gutmann and A. Hyvärinen. Noise-contrastive
estimation: A new estimation principle for un-
normalized statistical models. AISTATS, pages
297–304, 2010.

[8] M. U. Gutmann and A. Hyvärinen. Noise-
contrastive estimation of unnormalized statistical
models, with applications to natural image statis-
tics. The Journal of Machine Learning Research,
13(1):307–361, 2012.

[9] S. Jean, K. Cho, R. Memisevic, and Y. Bengio.
On Using Very Large Target Vocabulary for Neu-
ral Machine Translation. Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1–10, 2015.

[10] S. Ji, S. V. N. Vishwanathan, N. Satish, M. J.
Anderson, and P. Dubey. BlackOut: Speeding
up Recurrent Neural Network Language Models
With Very Large Vocabularies. ICLR, 2016.

[11] P. Koehn. Europarl: A Parallel Corpus for Sta-
tistical Machine Translation. MT Summit, 2005.

[12] T. Mikolov, I. Sutskever, K. Chen, G. S Cor-
rado, and J. Dean. Distributed Representations
of Words and Phrases and their Compositional-
ity. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors,

Advances in Neural Information Processing Sys-
tems 26, pages 3111–3119. Curran Associates,
Inc., 2013.

[13] A. Mnih and K. Kavukcuoglu. Learning word
embeddings efficiently with noise-contrastive esti-
mation. Neural Information Processing Systems,
pages 2265–2273, 2013.

[14] A. Mnih and Y. W. Teh. A Fast and Sim-
ple Algorithm for Training Neural Probabilis-
tic Language Models. Proceedings of the 29th
International Conference on Machine Learning
(ICML’12), pages 1751–1758, 2012.

[15] F. Morin and Y. Bengio. Hierarchical probabilis-
tic neural network language model. In AISTATS,
pages 246–252. 2005.

