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Abstract

We introduce a novel Bayesian hybrid matrix
factorisation model (HMF) for data integra-
tion, based on combining multiple matrix fac-
torisation methods, that can be used for in-
and out-of-matrix prediction of missing val-
ues. The model is very general and can be
used to integrate many datasets across dif-
ferent entity types, including repeated exper-
iments, similarity matrices, and very sparse
datasets. We apply our method on two bio-
logical applications, and extensively compare
it to state-of-the-art machine learning and
matrix factorisation models. For in-matrix
predictions on drug sensitivity datasets we
obtain consistently better performances than
existing methods. This is especially the case
when we increase the sparsity of the datasets.
Furthermore, we perform out-of-matrix pre-
dictions on methylation and gene expression
datasets, and obtain the best results on two
of the three datasets, especially when the pre-
dictivity of datasets is high.

1 INTRODUCTION

Matrix factorisation methods offer an elegant way of
analysing datasets. Here, a matrix relating two en-
tity types is decomposed into two smaller matrices
(so-called latent factors) so that their product approxi-
mates the original one. This extracts hidden structure
in the data, and allows the prediction of missing val-
ues. Non-negativity constraints are often imposed on
the matrices (Lee and Seung [1999]) as this makes the
results easier to interpret, and it is often inherent to
the problem — such as in image processing (Lee and
Seung [1999]) or bioinformatics (Brunet et al. [2004]).
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Non-negative matrix tri-factorisation is an extension of
these methods, first introduced by Ding et al. [2006],
where the matrix is decomposed into three smaller ma-
trices, which again are constrained to be non-negative.
Both methods are shown in Figure 1.

A key question is how to best predict missing values
in these datasets. There are two different settings for
this problem. Firstly, in-matrix predictions, where
if we are trying to predict an unknown value for a pair
of drug D1 and cancer type C1, we will have at least
one known value for D1 with another cancer type C2,
and for C1 with another drug D1. The other setting is
out-of-matrix predictions, where we predict values
for entirely unseen rows or columns, such as a new
drug for which we have no observed values inside the
matrix. This is illustrated in Figure 1.

In practice we often have many different datasets,
relating different entity types. Matrix factorisation
methods can be effectively used for data integration,
by jointly decomposing multiple datasets and sharing
the latent matrices (Zhang et al. [2005]). This can
improve our matrix factorisations, and hence our in-
matrix predictions, and also allows us to do out-of-
matrix predictions. Another approach, based on mul-
tiple matrix tri-factorisation, was introduced by Wang
et al. [2008], where they shared two of the three la-
tent matrices. By sharing more factors than the mul-
tiple matrix factorisation method, and hence having a
much smaller dataset-specific matrix in the middle, we
can more effectively integrate similar datasets. This is
particularly interesting for integrating repeated exper-
iments, where different biological labs perform simi-
lar experiments between the same two entity types,
such as gene expression profiles and methylation lev-
els. Both approaches are illustrated in Figure 2.

We propose a novel Bayesian model for data inte-
gration, which combines multiple matrix factorisa-
tion and tri-factorisation. Our method can integrate
many datasets across different entity types, including
repeated experiments, similarity matrices, and very
sparse datasets. In our method, the user can spec-
ify for each dataset whether it should be decomposed
into two matrices, in which case only the row factor
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Figure 1: Difference between in- and out-of-matrix predictions for missing values in matrices; and the
difference between matrix factorisation and matrix tri-factorisation.
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Figure 2: Difference between multiple matrix fac-
torisation and multiple matrix tri-factorisation.
The shared factor matrices are highlighted in grey.

matrices are shared, or into three, in which case the
row and column matrices are shared. This gives a hy-
brid between matrix factorisation and tri-factorisation.
Additionally, the user can also specify for each of the
latent matrices whether the factors should be nonneg-
ative or real-valued, giving a hybrid between nonnega-
tive, semi-nonnegative, and real-valued factorisations.
By using a probabilistic approach, our method can ef-
fectively handle missing values and predict them, both
for in- and out-of-matrix predictions, and the Bayesian
approach is much less prone to overfitting than non-
probabilistic models. Furthermore, the rank of each
matrix is automatically chosen using Automatic Rele-
vance Determination, eliminating the need to perform
model selection. Related work is discussed in Section
4.

To demonstrate our method, we apply it to two dif-
ferent settings. Firstly, we consider four drug sensitiv-
ity datasets, where the matrices are similar and hence
have high predictivity. We measure the in-matrix pre-
dictive performance of our method, as well as Bayesian
and non-probabilistic matrix factorisation methods,
and several state-of-the-art machine learning methods.
Our model consistently outperforms all other methods,
especially when the sparsity of the data increases. Sec-
ondly, we integrate gene expression, promoter region
methylation, and gene body methylation profiles for
breast cancer patients. These datasets are much more
dissimilar, hence predicting one dataset given the oth-
ers is much harder. However, in out-of-matrix predic-
tion experiments our method achieves better perfor-
mance than state-of-the-art machine learning methods
on two of the three combinations.

2 MATRIX FACTORISATION

The problem of non-negative matrix factorisation
(NMF) can be formulated as decomposing a matrix
R € R into two latent (unobserved) factor matri-
ces F ¢ RLXK , G ¢ RiXK . In other words, solv-
ing R = FGT + E, where noise is captured by ma-
trix E € R™7. Some entries in the dataset R may
not be known — we represent the indices of observed
entries by the set Q = {(7,7) | R;; observed}. Sim-
ilarly, non-negative matrix tri-factorisation (NMTF)
can be formulated as finding three latent factor ma-
trices F' € Rﬁ_XK, S € RfXL, G ¢ RiXK, such that
R=FSG" + E.

Some NMF methods such as Lee and Seung [2001] rely
on optimisation-based techniques, where a cost func-
tion between the observed matrix R and the predicted
matrix FGT is minimised, like the mean squared error
or I-divergence, using multiplicative updates. Alter-
natively, probabilistic models formulate the problem of
NMF by treating the entries in F', G as unobserved or
latent variables, and the entries in R as observed dat-
apoints. Bayesian approaches furthermore place prior
distributions over the latent variables. The problem
then involves finding the distribution over F', G after
observing R, p(F, G|R). This Bayesian approach has
several benefits: it is less prone to overfitting, espe-
cially on small or sparse datasets; a distribution over
the factors is obtained, rather than just a point esti-
mate; it allows for flexible and elegant models (such as
automatic model selection using Automatic Relevance
Determination); and missing entries are easily handled
(we simply do not include them in the observed data,
through the € set introduced earlier). However, find-
ing this posterior distribution can be very inefficient.

Schmidt et al. [2009] introduced a Bayesian model for
non-negative matrix factorisation, by using Exponen-
tial priors and a Gaussian likelihood. For the precision
7 of the likelihood they used a Gamma distribution
with shape o > 0 and rate 8§ > 0. The full set of
parameters for this model is denoted 8 = {F, G, T}.

Rij NN(RZJ‘FZ . Gj,’Til)

Fy. ~ E(FiklAr) G~ E(Gjelda) T~ G(T]a, B)
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Inference to find the posterior p(F, G|R) can be effi-
ciently performed using Gibbs sampling. This method
works by sampling new values for each parameter 6;
from its marginal p(6;|60_;, D) given the current values
of the other parameters @_;, and the observed data
D. If we sample new values in turn for each param-
eter 0; from p(6;|0_;, D), we will eventually converge
to draws from the posterior p(8|D), which can be used
to approximate it. When doing so we have to discard
the first n draws because it takes a while to converge
(burn-in), and since consecutive draws are correlated
we only use every ith value (thinning).

For this model we draw from the following distribu-
tions:

p(Fik|7-7 F—ika G7 D)
p(t|F, G, D)

where F'_;;, denotes all elements in F' except Fjj, and
similarly for G_j;;. Using Bayes’ theorem we obtain
the following posterior distributions:

p(7|F,G, D) = G(r]a*, B*)
P(Fik|r, F-ix, G, D) = TN (Fir| iy, 7iy)
p(Gjl |T’ F, Gijk’ D) = TN(GJ'IC|M§];7 TjCI:c)7

where

p(ijITa Fa G—jka D)

Vg exp{—F(z —p)?}
1= ®(—py/7)

TN (elps, ) = =0

ifz <0

is a truncated normal: a normal distribution with zero
density below x = 0 and renormalised to integrate to
one. ®(-) is the cumulative distribution function of

N(0,1).

The extension of this model to non-negative matrix tri-
factorisation is straightforward. We can also choose to
remove the nonnegativity constraint, by instead using
a Gaussian prior for the factor matrices. This results in
a Gaussian posterior in the Gibbs sampling algorithm,
with slightly different parameters. A semi-nonnegative
model, with only one real-valued matrix (G for MF,
and S for MTF), is illustrated below. Gibbs samplers
for all mentioned models are given in the Supplemen-
tary Materials (Section 1).

Prior: Posterior:
Fi, ~ E(Fix|Ar) Fy, ~ TN (Fig|pe, 7i50)
Gk ~ N(Gkl0, 26" G ~ N (Giluy, (757)7)

3 HYBRID MATRIX
FACTORISATION

The idea behind Hybrid Matrix Factorisation (HMF)
is to integrate multiple datasets by jointly decompos-
ing them, and sharing their latent factors. Formally,

1) R" — F'» " (F)T . ~ D E
Eu,

2) D' = F*(G")T B ~ E
Features -

vorrmwny v |+ [0 [
Bt

Figure 3: The three different types of datasets and
factorisations. Shared factor matrices are grey, and
dataset-specific ones are white. The two grey matri-
ces for the third factorisation type are the same (*).

we are given a number of datasets spanning T different
entity types E1,.., Ep. Each entity type E; has I; in-
stances, K, factors, and a factor matrix F' € Rt *Kt,
which is shared across the matrix factorisations of
datasets that relate this entity type. We consider three
dataset types, which we decompose in different ways
(see Figure 3):

1. Main datasets R = {R', .., RN}7 relating two en-
tity types, both of which we have other datasets
for (such as features or repeated experiments).
Each dataset R™ € Rt»*Tun relates entity types
E.,, E,,. We use matrix tri-factorisation to de-
compose it into two entity type factor matrices

F'» F“» and a dataset-specific matrix S" €
RKMXKU%.

2. Feature datasets D = {D*,.., D"}, giving fea-
ture values for an entity type. FEach dataset
D' € Rt relates an entity type Ey, to J; fea-
tures. We use matrix factorisation to decompose
it into one entity type factor matrix F", and a
dataset-specific matrix G! € R/ <K

3. Similarity datasets C = {C*, .., C’M}7 giving sim-
ilarities between entities of the same entity type
(such as Jaccard kernels). Each dataset C™ €
RItm XItm relates an entity type F;, to itself. We
use matrix tri-factorisation to decompose it into a
entity type factor matrix F'™, a dataset-specific
matrix §” € REtm *XKim and F'™ again.

R"=F"S"(F'"")" + E"
D'=F"(GY" + E'
Cm — thSm(th)T + Em

The above formulation allows the user to very easily
choose the kind of joint factorisation. By passing a set
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of matrices as Dy, .., Dy, multiple matrix factorisation
is performed. Instead, passing them as Ry, .., Ry gives
multiple matrix tri-factorisation. A hybrid combina-
tion is also possible, as illustrated in Figure 4. Further-
more, each of the factor matrices can either be non-
negative (using an exponential prior), or real-valued
(using a Gaussian prior), additionally giving a hybrid
of nonnegative, semi-nonnegative and real-valued ma-
trix factorisation. The model likelihood functions are

R ~ N(RY|Fy - S™ - Fi" ("))
m 1|t I 1\—1
Dij NN(Dij‘Fil 'ij(T) )
m m tm m 125 my—1
CijNN(Cij|Fz’ ) 'Fj’(T )7 )s

with Bayesian priors

™l ™~ G(T |, Br)

Ffy ~ E(FINL) - or Fi ~ N(F10,(A) ™)
Gé‘k ~ 5(G§'z|)\g> or Gé‘k ~ N(G§I|O, ()\?)_1)
S~ E(SHING)  or  Si~ N(SH10,(A5) )
St ~ E(SHINE)  or  Si ~ N(S0,(Ag) 7).

Automatic Relevance Determination (ARD)
We employ a Bayesian ARD prior, which helps per-
form automatic model selection. Note the A param-
eters in the prior of F; and Gé-k. This parameter is
shared by all entities of type E;, and hence the entire
factor k is either activated (if A}, has a low value) or
“turned off” (if A}, has a high value). The ARD works
by placing a Gamma prior over each of these variables,

Ak ~ G(Akle, o).

Through this construction, factors that are active for
only a few entities will be pushed further to zero, turn-
ing the factor off. This prior has been used extensively
for model selection in Virtanen et al. [2011, 2012] for
real-valued matrix factorisation, and Tan and Févotte
[2013] for nonnegative matrix factorisation. Instead of
having to choose the correct values for the K;, we can
give an upper bound and our model will automatically
determine the number of factors to use.

Dataset importance One challenge with multiple
matrix factorisation is that it relies on finding common
patterns in multiple datasets. If two datasets are very
different, the methods may end up finding a solution
that fits one dataset much better, resulting in poor pre-
dictions for the other one. To address this, we add an
importance value for each of the R", D', C™ datasets,
respectively o, o, a,,, to ensure that the method will
converge to a solution that better fits datasets with
higher importance values. We modify the likelihood

Row feature datasets Column feature datasets

Repeated experiments 2 2

Figure 4: Overview of HMF, combining the multiple
matrix tri-factorisation of two repeated experiments
with multiple matrix factorisations of row and column
feature datasets. Shared factor matrices are grey.

of the model by using these importance values,

N
p(0|R, D, C) x p(0) x H p(R"|F', 8™ FU )"
n=1
L ) M
> Hp(Dl‘Ftl,Gl,Tl)a % H p(Cm|Ft"”, Smﬂ_m)am
=1 m=1

where 6 is the set of model parameters. This tech-
nique was used by Remes et al. [2015] to ensure their
model fits the binary training labels. This technique
can be interpreted as repeating each of the values in
the dataset D' ! times, hence forcing the model to fit
better to that dataset.

Inference An efficient Gibbs sampling algorithm
can be used for inference due to the model’s conjugacy.
For details see Supplementary Materials (Section 1).

4 RELATED WORK

The idea of using matrix factorisation and tri-
factorisation to integrate multiple datasets can be
traced back to the CANDECOMP/PARAFAC (CP)
and PARAFAC2 tensor decompositions (Harshman
[1970, 1972]). These models are in fact a less gen-
eral version of multiple matrix tri-factorisation. If we
are given multiple datasets for the same two entity
types and concatenate them to form a tensor, the CP
method will perform multiple matrix tri-factorisation,
where the dataset-specific middle matrices S are re-
stricted to being diagonal.

Multiple matrix factorisation models for integrating
datasets between two entity types (such as multiple
gene expression profiles), by sharing one of the two
factor matrices, can be found amongst others in Zhang
et al. [2005] and Lee et al. [2012], with Bayesian mod-
els given by Virtanen et al. [2012] and Chatzis [2014].
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Some approaches focus on jointly decomposing two
datasets spanning three entity types and sharing two
latent matrices (Shi et al. [2010]), sometimes using su-
pervised labels for learning (Zhu et al. [2007]). Others
do not explicitly share the latent matrices but instead
add a penalisation term based on the consensus be-
tween the matrices (Seichepine et al. [2013]).

More general matrix factorisation methods are pre-
sented by Lippert et al. [2008] and Singh and Gor-
don [2008], where each entity type has its own la-
tent matrix, with a Bayesian version given in Klami
et al. [2014]. However, these approaches cannot inte-
grate multiple datasets between the same two entity
types, since all matrices are shared. We would require
a third, dataset-specific matrix to solve this problem
— which is exactly what matrix tri-factorisation allows
us to do. Models for multiple non-negative matrix tri-
factorisation are given by Wang et al. [2008] and Zitnik
and Zupan [2015], which can also handle constraint
matrices, but require all given datasets to be fully ob-
served. As a result, missing values inside each matrix
need to be imputed. For binary datasets a missing
association can easily be imputed as a zero, but for
real-valued datasets this is not a viable option.

Overall, our method is novel in several aspects. Firstly,
it is the first general hybrid model between matrix fac-
torisation and tri-factorisation. A non-probabilistic
version can be found in Zhu et al. [2007], but this
model only combined a single matrix tri-factorisation
with a single matrix factorisation. Secondly, our model
is a hybrid between nonnegative and real-valued fac-
tors. If multiple datasets are jointly decomposed, one
can be a nonnegative matrix factorisation, where an-
other can be semi-nonnegative, and another can be
real-valued. Finally, through formulating the method
as a Bayesian probabilistic model, it can deal with
missing values, perform automatic model selection,
and is much less prone to overfitting (especially for
sparse datasets).

In this paper we are demonstrating our method on two
specific biological datasets. However, it can be widely
applied to other biological applications such as pre-
dicting drug-target interactions (Gonen [2012]) or gene
functions (Lippert et al. [2008]), as well as other fields
like collaborative filtering (Salakhutdinov and Mnih
[2008]) and image analysis (Zhang et al. [2005]).

5 DATASETS

To demonstrate the advantages of our approach for
missing values prediction, we consider two different
applications. Firstly, integrating four drug sensitiv-
ity datasets, where the datasets are similar and hence
predictivity of the datasets is high. Here we perform

in-matrix predictions of missing values. Secondly, inte-
grating gene expression and methylation level datasets
for breast cancer patients and cancer driver genes,
where the datasets are much more dissimilar. We per-
form out-of-matrix predictions, using the methylation
levels of patients to predict gene expression values, and
vice versa. We briefly introduce the datasets below; a
more thorough description of the datasets can be found
in the Supplementary Materials (Section 3).

5.1 Drug Sensitivity Data

We consider four different drug sensitivity datasets,
containing 650 unique drugs and 1209 cell lines. Each
of these datasets shows the response (sensitivity) of
a given cell line (cancer type in a tissue) to a given
drug, either measuring the drug concentration needed
to inhibit undesired cell line activity by half (ICjsg), or
the drug concentration that achieves half the maximal
desired effect on the cell line (ECs).

e Genomics of Drug Sensitivity in Cancer (GDSC
v5.0, Yang et al. [2013]). Natural log of IC5g val-
ues for 139 drugs across 707 cell lines, with 80%
observed entries.

e Cancer Therapeutics Response Portal (CTRP v2,
Seashore-Ludlow et al. [2015]). ECjo values for
545 drugs across 887 cell lines, with 80% observed
entries.

e Cancer Cell Line Encyclopedia (CCLE, Barretina
et al. [2012]). Both ICsy and EC5q values for
24 drugs across 504 cell lines, with 96% and 63%
observed entries, respectively.

We selected the drugs and cell lines that are present
in at least two of the four datasets, and for which we
had side information like gene expression profiles avail-
able. This resulted in a lot of drugs and cell lines be-
ing filtered. For the GDSC dataset we undid the log
transform. We rescaled the values per cell line to the
range [0,1] in each dataset. We used the cell line fea-
tures provided by the GDSC dataset (gene expression
levels, copy number variations, and mutation infor-
mation), and for the drugs we extracted 1D and 2D
descriptors and structural fingerprints. We obtained
primary protein targets from GDSC for 48 of the 52
drugs.

After preprocessing and filtering, the four datasets
span 52 unique drugs and 399 cell lines, with 95.1%
of the entries having at least one observed value, and
62.9% of the entries having at least two observed val-
ues. The information on the four datasets is sum-
marised in Table 1, along with the fraction of over-
lapping observed entries.
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Table 1: Overview of the four drug sensitivity dataset after preprocessing and filtering.

Number Number Fraction Overlap with other datasets
Dataset cell lines drugs observed GDSC ICyy CTRP EC5y CCLE IC5y CCLE ECs
GDSC IC5q 399 48 73.57% - 52.25% 9.34% 6.00%
CTRP ECjx 379 46 86.03% 57.39% - 11.96% 7.37%
CCLE ICjxg 253 16 96.42% 44.19% 51.51% - 55.06%
CCLE ECsyg 252 16 58.88% 28.52% 31.87% 55.28% -

5.2 Methylation and Gene Expression Data

Our second application is that of integrating promoter-
region methylation (PM) and gene body methylation
(GM) datasets with a gene expression (GE) profile
for breast cancer patients, coming from the The Can-
cer Genome Atlas (TCGA, Koboldt et al. [2012]).
There are 254 different samples (both healthy and tu-
mor tissues), across 13966 genes. We focus on 160
breast cancer driver genes, from the IntOGen database
(Gonzalez-Perez et al. [2013]). We standardise the
datasets to have zero mean and unit standard devi-
ation per gene. Note that this dataset is not nonneg-
ative. In our experiments we predict values in one of
the three datasets, given the values of the other two.

6 IN-MATRIX PREDICTIONS

We performed 10-fold cross-validation on each of the
four drug sensitivity datasets to predict missing values.
We tested two variants of our HMF model: multiple
matrix tri-factorisation using all four drug sensitivity
datasets (HMF D-MTF, R,,), and multiple matrix fac-
torisation on all four drug sensitivity datasets, sharing
the cell line factors (HMF D-MF, D).

We compared our model to several state of the art
methods. Since the four datasets are all nonnegative,
we can use nonnegative matrix factorisation (NMF)
and tri-factorisation (NMTF) models. We compare
with non-probabilistic NMF by Lee and Seung [2001]
(NP-NMF), Bayesian NMF by Schmidt et al. [2009]
(BNMF), non-probabilistic NMTF by Yoo and Choi
2009] (NP-NMTF), Bayesian NMTF (BNMTF), and
Multiple NMF (sharing the cell line factors). We
also applied several state-of-the-art machine learning
models using the skikit-learn Python package, par-
ticularly: Linear Regression (LR), Random Forests
(RF, 100 trees), and Support Vector Regression (SVR,
rbf kernel). These methods were given the drug and
cell line features for training. Finally, we used a
method called Kernelised Bayesian Matrix Factorisa-
tion (KBMF, Gonen and Kaski [2014]), which was used
by Ammad-ud din et al. [2014] to predict drug sensitiv-
ity values for the GDSC dataset. This method lever-

ages similarity kernels of the drugs and cell lines, which
we reconstructed for the feature datasets (Jaccard ker-
nel for binary features, Gaussian for real-valued fea-
tures after standardising each feature).

We performed nested cross-validation to select the
dimensionality K for the matrix factorisation mod-
els and KBMF. In contrast, our model simply used
K; = 10 for each entity type Ej, and let the ARD
choose the correct number of factors. We used nonneg-
ative factors for the entity type factor matrices (F),
and real-valued for all other factors. We used K-means
and least squares initialisation, and set all importance
values to one.

The results for cross-validation are given in Table 2.
We see that our HMF models outperform all other
methods, giving predictive gains of up to 30%. The
multiple matrix tri-factorisation approach (HMF D-
MTF) achieves the best performance on three of the
datasets, and is a close second on the fourth. We also
see that the Bayesian matrix factorisation models out-
perform both the non-probabilistic approaches, and
the state-of-the-art machine learning methods, demon-
strating that Bayesian matrix factorisation is a power-
ful paradigm for in-matrix predictions, with our pro-
posed HMF model giving significant gains in predictive
performance.

7 SPARSE DATA PREDICTIONS

A very important use case is when there are few ob-
served entries, leading to a sparse matrix. We mea-
sured the performances of in-matrix predictions on
sparse matrices, focusing on the GDSC and CTRP
drug sensitivity datasets as these are the largest.
We vary the fraction of missing values and predict
those entries, taking the average of twenty random
training-test data splits per fraction. We compared
our model’s multiple matrix factorisation and tri-
factorisation models (HMF D-MF and HMF D-MTF)
with the other matrix factorisation models (NMF,
NMTF, BNMF, BNMTF). For the dimensionality of
HMF we use K; = 10 as before, and for the matrix
factorisation models we use the most common dimen-



Thomas Brouwer, Pietro Lio’

Table 2: Mean squared error (MSE) of 10-fold in-matrix cross-validation results on the drug sensitivity datasets.
We also give the relative improvement (% impr.) compared to NMF. The best performances are highlighted in

bold.

GDSC IC5q CTRP ECsq CCLE ICjsq CCLE ECjy
Method MSE % impr. MSE % impr. MSE % impr. MSE % impr.
NMF 0.0896 - 0.0959 - 0.0746 - 0.1535 -
NMTF 0.0879 1.91% 0.0954 0.44% 0.0747 -0.18% 0.1506 1.91%
Multiple NMF 0.0859 4.10% 0.0928 3.18% 0.0666 10.64%  0.1157  24.66%
BNMF 0.0805 10.20% 0.0919 4.05% 0.0594 20.29% 0.1318 14.19%
BNMTF 0.0799 10.81% 0.0920 4.03% 0.0593 20.52% 0.1292 15.84%
KBMF 0.0819 8.60% 0.0919 4.13% 0.0618 17.13%  0.1303 15.13%
LR 0.0886 1.10% 0.0949 1.00% 0.0719 3.62% 0.1342 12.60%
RF 0.0876 2.21% 0.0989 -3.15% 0.0668 10.47% 0.1219 20.62%
SVR 0.1091  -21.72%  0.1091 -13.80% 0.0916 -22.76%  0.1230 19.92%
HMF D-MF 0.0775 13.54%  0.0919 4.11% 0.0592  20.65% 0.1062 30.81%
HMF D-MTF 0.0768 14.25% 0.0908 5.28% 0.0558 25.17% 0.1073 30.12%

sionality used in the cross-validation from Section 6.

Figure 5 shows that the non-probabilistic models start
overfitting very quickly as the sparsity levels of two
datasets increase, on both the GDSC (5a) and CTRP
(5b) datasets. The Bayesian versions perform lot bet-
ter, but our HMF models consistently outperform all
other models, even when only 10% of the values are
observed. The multiple matrix tri-factorisation model
(HMF D-MTF) performs particularly well.

8 OUT-OF-MATRIX PREDICTIONS

We did three out-of-matrix prediction experiments on
the methylation and gene expression data. We per-
formed ten-fold cross-validation, splitting the 254 sam-
ples into ten folds. We predicted the gene expression
values for new samples, given the gene expression val-
ues of the other samples and both of the methylation
datasets (PM, GM to GE). We also did this for the
other two combinations (GE, GM to PM; GE, PM
to GM). Methylation data is known to be correlated
with gene expression values (Kundaje et al. [2015]),
although this correlation is generally weak. We there-
fore expected a weak predictive performance, but it is
interesting to see which methods perform best.

We used the HMF D-MF and HMF D-MTF models
described earlier. We also considered the similarity
dataset part of our model (C,) by constructing a sim-
ilarity kernel for the samples using each of the datasets
(see Supplementary Materials, Section 3.4). We give
the model the dataset we are trying to predict (e.g.

'GDSC: K =2, (K,L) = (4,4), K =4, (K,L) = (7,7).
CTRP: K =2, (K,L) = (2,4), K =3, (K, L) = (3,3).

GE), decomposing it using matrix factorisation, and
also give it the similarity kernels for the other two
(e.g. GM and PM). We call this approach HMF S-
MF. We could have also used matrix tri-factorisation,
but since the third matrix is not shared this is effec-
tively the same model.

For the HMF D-MF models we used K; = 40, 0.5 as
the importance value for the dataset we are trying to
predict, and 1.5 for the other two. For HMF D-MTF
we used K; = 40, and 0.5 as importance for all three
datasets. Finally, for HMF S-MF we used K; = 30,
and 1.0 as importance for all three datasets. For all
three, we used nonnegative factors for shared matri-
ces (K-means initialisation), and real-valued ones for
private matrices (least squares initialisation).

We compared with the LR, RF, and SVR algorithms,
giving two datasets as features, and the third as regres-
sion values. We used the gene average as a baseline.
Since the datasets are real-valued, we cannot compare
with any nonnegative matrix factorisation models.

The results for this out-of-matrix cross-validation are
given in Table 3. The HMF D-MF model outper-
forms all state-of-the-art machine learning methods
on two of the three datasets, and is only beaten by
SVR on the first one. Our model performs especially
well on the third case (GE, PM to GM), implying our
method works best when the predictivity of values is
high (lower MSE). The HMF D-MTF and HMF S-MF
methods perform slightly worse, but are still competi-
tive with the other machine learning methods.

Many of the model choices in the experiments (such as
model selection, initialisation, factorisation and nega-
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Figure 5: Graphs showing average mean squared error (MSE) and standard deviation of in-matrix predictions on
the GDSC (left) and CTRP (right) drug sensitivity datasets. We vary the fraction of missing entries, averaging
performance across 20 random splits between train and test data, and compare our HMF models (HMF D-MF,
HMF D-MTF) with several matrix factorisation models (NMF, NMTF, BNMF, BNMTF).

Table 3: Mean squared error (MSE) of 10-fold out-of-
matrix cross-validation results on the promoter-region
methylation (PM), gene body methylation (GM), and
gene expression (GE) datasets. We use two datasets
as features, and predict values for new samples in the
third dataset. The best results are highlighted in bold.

GM,PM GE,GM GE, PM

Method to GE to PM to GM
Gene average 1.009 1.008 1.009
LR 2.847 2.036 1.478
RF 0.811 0.799 0.714
SVR 0.767 0.749 0.657
HMF D-MF 0.788 0.735 0.602
HMF D-MTF 0.850 0.798 0.640
HMF S-MF 0.820 0.794 0.672

tivity choices, and importance values) are explored ex-
tensively in Section 4 of the Supplementary Materials.

9 CONCLUSION

We have presented a fully Bayesian model for data
integration, based on a hybrid of nonnegative, semi-
nonnegative, and real-valued matrix factorisation and
tri-factorisation models. The general nature of this
model allows it to easily integrate many datasets across
different entity types, including repeated experiments,
similarity matrices, and very sparse datasets.

We demonstrated the model on two different biological

applications. On four drug sensitivity datasets we ob-
tained significant in-matrix prediction improvements
compared to state-of-the-art matrix factorisation and
machine learning methods. Our data fusion approach
based on multiple matrix tri-factorisation (HMF D-
MTF) is particularly powerful, achieving the best per-
formance on three of the four datasets. We also show
that our proposed model can provide consistently bet-
ter predictions on very sparse datasets, outperforming
all other matrix factorisation models. Finally, we inte-
grated methylation and gene expression data in an out-
of-matrix prediction setting, and here the approach
based on multiple matrix factorisation (HMF D-MF)
proved to be very powerful, beating all state-of-the-art
machine learning methods on two of the three datasets.
The approaches using multiple matrix tri-factorisation
and similarity datasets are also promising.

We showcased our model on different biological
datasets, but we believe that this is a powerful and
general framework that can also be applied to many
other fields.
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