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Abstract

Utilizing expert input often improves clus-
tering performance. However in a knowl-
edge discovery problem, ground truth is un-
known even to an expert. Thus, instead of
one expert, we solicit the opinion from mul-
tiple experts. The key question motivating
this work is: which experts should be as-
signed higher weights when there is disagree-
ment on whether to put a pair of samples in
the same group? To model the uncertainty in
constraints from different experts, we build a
probabilistic model for pairwise constraints
through jointly modeling each expert’s accu-
racy and the mapping from features to la-
tent cluster assignments. After learning our
probabilistic discriminative clustering model
and accuracies of different experts, 1) sam-
ples that were not annotated by any ex-
pert can be clustered using the discriminative
clustering model; and 2) experts with higher
accuracies are automatically assigned higher
weights in determining the latent cluster as-
signments. Experimental results on UCI
benchmark datasets and a real-world disease
subtyping dataset demonstrate that our pro-
posed approach outperforms competing al-
ternatives, including semi-crowdsourced clus-
tering, semi-supervised clustering with con-
straints from majority voting, and consensus
clustering.

1 Introduction

Given a dataset and a notion of similarity between
samples, clustering aims to generate a partition on the
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dataset so that samples in the same group/cluster are
similar and samples in different groups are dissimilar
[9]. A key challenge in data clustering is how to de-
fine the similarity between samples. Depending on the
user’s interest (concept of similarity), the same dataset
can be clustered from different perspectives. For ex-
ample, a face dataset can be grouped based on either
identity or pose; a set of marbles can be grouped based
on either size or color. A way to address this challenge
is to guide the clustering algorithm through human
supervision, also called semi-supervised clustering [2].
Supervision is usually in the form of labels [1] or pair-
wise constraints between samples, including must-link
(ML) and cannot-link (CL) constraints [20].

The accuracy of constraints is crucial to the perfor-
mance of semi-supervised clustering. Instead of di-
rectly using constraints provided by a single expert,
which might contain significant amount of noise and
degrade the clustering performance, the combination
of constraints provided by multiple experts usually
lead to better clustering performance [8, 21, 22].

Crowdclustering combines constraints provided by
multiple workers carrying out human intelligence tasks
(HITs) to guide the clustering algorithm towards a
better solution [8, 21]. The methods in [8, 21] assume
each sample need to be annotated by at least one ex-
pert, limiting their use in practice because the required
number of constraints will be too many if the sam-
ple size becomes large. Semi-crowdsourced Cluster-
ing (SemiCrowd) [22] combines constraints from mul-
tiple workers through computing the average similarity
matrix between samples, applying matrix completion
and then learning a distance metric. SemiCrowd as-
sumes different workers have equal weights in gener-
ating the final solution since the constraints are built
from the average similarity matrix between samples.
This assumption is restrictive because different work-
ers can have different levels of expertise in providing
constraints.

In this paper, we consider a more practical scenario
where there are multiple uncertain experts providing
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constraints for the same dataset. Note that our setup
is close to crowdclustering and SemiCrowd, but we are
using experts in a looser sense by allowing them to be
constraints generated by either computer algorithms
or human supervision. The uncertainties associated
with multiple experts can be due to the following rea-
sons: 1) The ground-truth cluster is unknown and need
to be discovered; 2) There exist disagreements between
experts; 3) Different experts may have varying levels of
expertise. We also do not need every sample to be pro-
vided with constraints by an expert. Our objective is
to determine the best strategy to combine inconsistent
constraints from multiple uncertain experts with differ-
ent accuracies to improve clustering performance.

This problem is motivated from the objective of sub-
typing a complex lung disease called Chronic Obstruc-
tive Pulmonary Disease. COPD is characterized by
airflow limitation resulting from chronic inflammatory
responses in the lungs to noxious particles or gases.
COPD is currently the third leading cause of death
in the United States [15]. It is widely accepted that
COPD is a heterogeneous disease [4]; however, it is cur-
rently classified as one disease. Our goal is to discover
the disease subtypes (clusters) in the hope of strat-
ifying patients to enable personalized prognosis and
treatment of patients. We would like to collect pair-
wise constraints provided by the experts to guide the
clustering algorithm. One challenge is our clinicians
have disagreements on whether to put two patients
in the same subtype. Some investigators also applied
machine learning algorithms on a subset of patients us-
ing variables they considered as important. We need
to combine inconsistent constraints provided by clin-
icians and/or clustering labels generated from differ-
ent machine learning algorithms. Intuitively, different
experts should have varying levels of expertise. Fur-
thermore, not all the patients are provided constraints
by experts. This real-world problem is the primary
motivation of this work.

To tackle the above problem, we build a probabilis-
tic model for pairwise constraints from each expert
by modeling each expert’s accuracy. To avoid mak-
ing assumptions on the generative process of clusters,
we utilize a discriminative clustering model [7]. Com-
pared to generative clustering methods, discriminative
clustering approaches are more flexible and powerful in
practice because they make fewer assumptions about
the nature of clusters with fewer parameters needed
and provides a natural out-of-sample extension. The
learned discriminative clustering model can be used to
cluster all the samples. Experts with higher accuracies
are automatically assigned higher weights in determin-
ing the latent cluster assignments.

1.1 Contributions

In summary, the contributions of this work are: (1) we
build a probabilistic model for constraints from mul-
tiple experts by explicitly modeling each expert’s un-
certainty; (2) we use a discriminative clustering model
to achieve out-of-sample extension; (3) we demon-
strate the proposed approach outperforms existing ap-
proaches on both UCI benchmark datasets and a real-
world disease subtyping dataset.

This paper is organized as follows: in Section 2, we
describe the problem and our approach; and in Section
3, we report experimental results on UCI benchmark
datasets and a real-world disease subtyping dataset.
Finally, we provide our conclusions in Section 4.

2 Proposed Approach

Given data matrix X ∈ Rn×d, where n is the num-
ber of samples and d is the number of features, and
constraints provided by M experts, our objective is to
categorize those n samples into K clusters by combin-
ing (possibly) inconsistent constraints from these M
experts to improve clustering performance.

We assume the pairwise constraints from the m-th ex-
pert can be represented by an n × n similarity ma-
trix S(m). In particular, if an expert provides must-
link/cannot-link constraints, elements in S(m) take bi-

nary values: S
(m)
ij = 1 if the m-th expert gives must-

link constraint for sample pair (xi, xj) and S
(m)
ij = 0

if cannot-link constraint is given. Note that S
(m)
ij is

denoted as unobserved if the m-th expert does not
provide pairwise constraint for sample pair (xi, xj).

2.1 Discriminative Clustering Model

We have the following considerations when designing
the clustering model: 1) It should be able to be used
to model the uncertainties in the constraints provided
by experts. Therefore, instead of hard-clustering,
the cluster assignments of a sample to different clus-
ters should be associated with probabilities. 2) To
avoid making assumptions about the nature of clus-
ters, which could be easily violated in real-world data,
we decided not to use generative clustering models,
such as Gaussian mixture model (GMM). 3) The clus-
tering algorithm should be able to cluster samples that
do not appear in the training set.

A discriminative clustering model satisfies all three re-
quirements above. Assume the latent cluster assign-
ments for n samples are denoted as Z = (z1, · · · , zn)T ,
where zi = k indicates the i-th sample belongs to the
k-th cluster. In a discriminative clustering model, we
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only need to specify p(Z|X) and do not need to model
p(X). We assume p(Z|X) follows a multiple logistic
regression model:

p(zi = k|xi;W,b) =
exp(wk

Txi + bk)∑K
j=1 exp(wj

Txi + bj)
(1)

where W = [w1, · · · ,wK] ∈ Rd×K , b =
[b1, · · · , bK ]T ∈ RK×1 are parameters needed to be
learned. Each sample is assigned to the cluster associ-
ated with the largest probability value.

If only the data matrix X is available, the above
discriminative model can be learned by maximizing
I(X,Z), the mutual information between data matrix
X and cluster label Z with respect to (w.r.t.) param-
eters W and b [7]. Furthermore, to penalize the con-
ditional models p(Z|X) with complex decision bound-
aries, a regularization term R(λ,W ) = λ||W ||2F can be
added to the clustering objective to yield sensible clus-
tering solutions. Instead of only maximizing I(X,Z),
the clustering quality associated with the data matrix,
we also take into account the constraints provided by
the M experts.

2.2 Experts’ Constraint Model

We assume each expert is uncertain when providing
constraints. As a result, the constraints provided by an
expert do not necessarily agree with the latent cluster
assignments Z. To model the uncertainty of the m-th
expert, we assume the elements in matrix S(m), the
pairwise constraints provided by the m-th expert, are
generated from the following Bernoulli distributions.

p(S
(m)
ij |zi = zj) = α

S
(m)
ij
m (1− αm)1−S

(m)
ij (2)

p(S
(m)
ij |zi 6= zj) = β

1−S(m)
ij

m (1− βm)S
(m)
ij (3)

where αm represents the m-th expert’s sensitivity, i.e.,
the probability of assigning two samples that belong
to the same cluster in the latent cluster assignments
to the same cluster in the constraints. βm represents
the m-th expert’s specificity, i.e., the probability of as-
signing two samples that belong to different clusters
in the latent cluster assignments to different clusters
in the constraints. Since different experts will nat-
urally have different levels of expertise, we need to
learn the individual sensitivity/specificity parameters
for each of the M experts. We use α = (α1, · · · , αM ),
β = (β1, · · · , βM ) to denote the sensitivity/specificity
for all the M experts. When αm = 0.5, βm = 0.5,
it means that the constraints from the m-th expert
is equivalent to random guess. On the other hand,
when αm = 1, βm = 1, it means perfect accuracy. We
assume the constraints provided by the m-th expert
cannot be worse than random guess by restricting the

values of αm, βm to be lower bounded by 0.5 (and up-
per bounded by 1).

2.3 Graphical Model

Overall, the graphical model of our proposed approach
is as follows:

S(m) Z

(W,b)(αm, βm)

X

M

where p(Z|X;W,b) is defined by the discriminative
clustering model based on multiple logistic regression
described in subsection 2.1; p(S(m)|Z;αm, βm) is de-
fined by the Bernoulli distributions described in sub-
section 2.2.

2.4 Maximum Likelihood of Experts’
Constraints

Given dataset X and M experts’ constraints S(1:M),
we define our objective as maximizing the regularized
likelihood of experts’ constraints w.r.t. parameters
θ = {W,b,α,β} with constraint conditions on α,β
as follows:

max
θ
p(S(1:M); θ)−R(W ;λ) (4)

s.t. 0.5 ≤ αm, βm ≤ 1 (m = 1, · · · ,M)

Since we have missing variable Z when computing
p(S(1:M)) =

∑
Z p(S

(1:M), Z), we can use the expec-
tation maximization (EM) algorithm to solve our ob-
jective.

E-step: Compute q(Z) = p(Z|X;W, b).

M-step: Maximize the expected complete-data log
likelihood with the regularization term

max
θ
Eq(Z)

[
log p(S(1:M), Z; θ)

]
−R(W ;λ) (5)

According to the rule of probability, we have
p(S(1:M), Z; θ) = p(Z)p(S(1:M)|Z; θ), where p(Z) is
the prior distribution of cluster indicator Z. Assume
p(Z) is balanced, i.e. p(zi = k) = 1/K, we have

Eq(Z)[log p(Z)] =

n∑
i=1

K∑
k=1

p(zi = k|xi) log p(zi = k)

(6)

= −n logK
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Therefore, we only need optimize the expectation of
the log conditional likelihood with the regularization

max
θ
Eq(Z)

[
log p(S(1:M)|Z; θ)

]
−R(W ;λ) (7)

In practice, we divide the first term by N , the to-
tal number of observed entries in S(1:M), to improve
numerical stability. We set the regularization term
R(W ;λ) = λ||W ||2F . We also change the sign of the ob-
jective to convert the optimization problem from max-
imization to minimization. Therefore, we can rewrite
the objective as follows:

min
θ
− 1

N

(
Eq(Z)[log p(S(1:M)|Z; θ)]

)
+ λ||W ||2F (8)

s.t. 0.5 ≤ αm, βm ≤ 1 (m = 1, · · · ,M)

The expectation of the log conditional likelihood can
be expanded as follows:

Eq(Z)[log p(S(1:M)|Z; θ)] (9)

=

M∑
m=1

∑
(i,j)∈E(m)

Eq(Z)[I(zi = zj) log p(S
(m)
ij |zi = zj)+

I(zi 6= zj) log p(S
(m)
ij |zi 6= zj)]

=

M∑
m=1

∑
(i,j)∈E(m)

γij log p(S
(m)
ij |zi = zj) + (1− γij)

log p(S
(m)
ij |zi 6= zj)

where E(m) represents the indices of observed entries
in S(m), γij = Eq(Z)[I(zi = zj)], which can be rewrit-

ten as γij =
∑K
k=1 p(zi = k|xi)p(zj = k|xj). The

above formula can be further expanded by substituting
the likelihood term with the Bernoulli model defined
in subsection 2.2:

log p(S
(m)
ij |zi = zj) = S

(m)
ij logαm + (1− S(m)

ij ) log(1− αm)

log p(S
(m)
ij |zi 6= zj) = (1− S(m)

ij ) log βm + S
(m)
ij log(1− βm)

We can observe that the coefficient of S
(m)
ij , the

constraints provided by the m-th expert, is ωm =
log αmβm

(1−αm)(1−βm) . Because of this property, experts

with higher accuracies (the values of αm, βm are
higher), will be assigned higher weights when comput-
ing the weighted similarity matrix.

2.5 Optimization

The proposed objective can be minimized via alterna-
tive optimization.

2.5.1 Fix b,α,β, optimize w.r.t. W

To optimize the objective w.r.t. W , we apply a quasi-
Newton algorithm, limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) because it has a good con-
vergence rate and linear memory requirement [13, 17].

L-BFGS requires the gradient of the objective w.r.t.
W . The key observation is only γij and the reg-
ularization term R(W ;λ) are related to W . Since
∂R(W ;λ)
∂W = 2λW , it will be sufficient to compute

∂γij
∂W .

For clarity, we use pik to denote p(zi = k|xi), then

γij =
∑K
k=1 pikpjk, which leads to

∂γij
∂W

=

K∑
k=1

(
∂pik
∂W

pjk +
∂pjk
∂W

pik

)

Since ∂pik
∂wt

= pik(I(k = t)− pit)xi, we have

∂pik
∂W

=

[
∂pik
∂w1

, · · · , ∂pik
∂wK

]
= pikxi [I(k = 1)− pi1, · · · , I(k = K)− piK ]

2.5.2 Fix W,α,β, optimize w.r.t. b

Similar with W , it can be optimized with L-BFGS
[13, 17]. Only γij are related to b, it is sufficient to

compute
∂γij
∂b . Since ∂pik

∂bt
= pik(I(k = t) − pit), the

gradient of γij w.r.t. bt can be written as

∂γij
∂bt

=

K∑
k=1

∂pik
∂bt

pjk +
∂pjk
∂bt

pik

=

K∑
k=1

pikpjk [2I(k = t)− pit − pjt]

2.5.3 Fix W,b, optimize w.r.t. α,β

It can be optimized with the L-BFGS optimization
with simple constraints proposed in [18]. Since only

log p(S
(m)
ij |zi = zj) contains αm in the objective, it is

sufficient to compute

∂ log p(S
(m)
ij |zi = zj)

∂αm
= S

(m)
ij

1

αm
+ (1− S(m)

ij )
1

αm − 1

Similarly, since only log p(S
(m)
ij |zi 6= zj) contains βm

in the objective, it is sufficient to compute

∂ log p(S
(m)
ij |zi 6= zj)

∂βm
= (1− S(m)

ij )
1

βm
+ S

(m)
ij

1

βm − 1

The objective function is nonconvex, therefore mul-
tiple initializations are required to help escape from
local minima. In the experiments, we randomly initial-
ize W and b by drawing each of their elements from
a standard Gaussian distribution. α,β are initialized
by drawing their elements from a uniform distribution
between 0.5 and 1. We set the number of random ini-
tializations to be 20 and choose the one resulting in
the minimal objective function value.
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3 Experimental Results

In this section, we demonstrate our proposed approach
can effectively combine constraints provided by multi-
ple uncertain experts with varying levels of expertise
to improve clustering performance.

3.1 Competing Alternatives

SemiCrowd: We use the SemiCrowd [22] as the first
competing method. SemiCrowd handles inconsisten-
cies between constraints from different experts by fil-
tering out uncertain sample pairs in the average sim-
ilarity matrix, and then applying matrix completion.
In contrast, the crowdclustering method in [8] cannot
be used because it requires every sample to be anno-
tated by at least one expert. However, not all the
samples are annotated by experts in our setting.

Semi-supervised Clustering: Another way to re-
move the inconsistencies in constraints collected from
multiple experts is through majority voting. A pair of
samples are assigned ML constraint if more than half
of the experts provide ML constraints and they are
assigned CL constraint otherwise. The resulting con-
straints can be combined with existing semi-supervised
clustering algorithms to generate a clustering solution.

There are two different ways to improve cluster-
ing through incorporating constraints. In particu-
lar, metric learning approaches learn a distance met-
ric so that the pairwise distances between samples in
ML constraints become small and the pairwise dis-
tances between samples in CL constraints become
large. We choose Information-Theoretic Metric Learn-
ing (ITML) [6] as the representative of metric learn-
ing approaches due to its superior performance com-
pared to alternatives. On the other hand, constrained
clustering reduces the searching space of clustering so-
lution by respecting the constraints during the clus-
ter discovery process. We choose Constrained 1-
Spectral Clustering (COSC) [16] as the representa-
tive of constrained clustering due to its superior per-
formance compared to alternatives. Metric Pairwise
Constrained KMeans (MPCKMeans) [3], a widely used
semi-supervised learning algorithm combining con-
strained clustering and metric learning, is also used
as a competing method.

Consensus Clustering: Most consensus clustering
algorithms are not designed for our setting, where not
all the samples are labeled by experts [11]. However,
since the average similarity matrix between samples is
available, Cluster-based Similarity Partitioning Algo-
rithm (CSPA) [19], a consensus clustering algorithm
that only need the sample similarity matrix to cluster
the samples, can be applied.

KMeans Clustering: We also include KMeans [14]
on the original data matrix without considering expert
input as a baseline.

We put the detailed parameter settings for each ap-
proach in the supplementary material due to space
constraint.

3.2 UCI Benchmark Experiments

We first run our approach and competing approaches
on eleven datasets collected from the UCI machine
learning repository [12]. Their detailed information,
including sample size, the number of features and the
number of clusters, is summarized in Table 1.

Table 1: Summary of UCI datasets.

Dataset Sample Size Dimension # Clusters
BreastCancer 569 30 2

Cleveland 297 13 5
Column 310 6 3

Dermatology 358 34 6
Glass 214 9 6
Heart 270 13 2

Ionosphere 351 34 2
Mushroom 8124 22 2
Newthyroid 215 5 3
Satimage 6435 36 6

Wine 178 13 3

Generating Constraints for Experts Con-
straints from multiple experts are not directly avail-
able in the UCI benchmark datasets. Therefore, we
need generate them from the ground-truth clustering
solution, i.e., the class labels. Here we generate con-
straints provided by M different experts with sensitiv-
ity/specificity parameters α,β according to the follow-
ing steps: 1) Randomly sample q ML constraint pairs
and q CL constraint pairs from the ground-truth clus-
tering solution; 2) For the m-th expert with sensitivity
αm and specificity βm, randomly select bq(1−αm)cML
constraint pairs and flip them to CL constraint pairs;
also randomly select bq(1 − βm)c CL constraint pairs
and flip them to ML constraint pairs.

Note that here we restrict multiple experts to annotate
the common set of sample pairs. There are three rea-
sons to design experiments in this way: 1) To ensure
that there are enough number of sample pairs associ-
ated with conflicting constraints from different experts
to highlight the differences of competing approaches;
2) To ensure that there are sufficient number of experts
annotating a sample pair so that majority voting and
average similarity computation, which are required by
competing approaches, are both feasible and reason-
able; 3) To allow the number of constraints to vary
between a large range.

An alternative design choice is to use different sample
pair sets for different experts and use a much larger
number of experts to satisfy the above requirements.
For ease of explanation, we choose the above expert
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input generation strategy. Our approach still outper-
forms competing approaches under the alternative de-
sign choice.

For each dataset, we generate equal number of ML
and CL constraints and vary the total number of con-
straints from 100 to 2000. The constraints are ran-
domly generated according to the ground-truth clus-
ter label and accuracy parameters of multiple experts.
For each dataset and a number of constraints, we re-
peat the constraint generation process 10 times to cre-
ate 10 independent sets of constraints. Then we re-
peat running the proposed approach and competing
approaches 10 times, each time with a different set
of constraints. We evaluate the clustering solution by
computing normalized mutual information (NMI) [19]
with the ground truth cluster labels. The value of
NMI is between 0 and 1. Higher values indicate better
matches with the ground truth label. For each dataset,
each constraint set, and a competing approach, there
are 10 NMI values. We report the mean and standard
deviation of these 10 NMI values.

Here we set the number of experts M to be 5
and consider two different sets of accuracy param-
eters: Case 1: The accuracies of different ex-
perts are designed to be unequal by setting α =
β = {0.95, 0.85, 0.75, 0.65, 0.55}. Case 2: The
accuracies of different experts are designed to be
equal and of good quality by setting α = β =
{0.9, 0.9, 0.9, 0.9, 0.9}.

The errorbar plots of NMI values against the
number of constraints corresponding to eight UCI
datasets and accuracy parameter α = β =
{0.95, 0.85, 0.75, 0.65, 0.55} are shown in Figure 1. For
accuracy parameter α = β = {0.9, 0.9, 0.9, 0.9, 0.9},
the errorbar plots are shown in Figure 2. Note that
black dash lines represent the results of KMeans clus-
tering. The figures of Dermatology, Glass, Heart are
put in the supplementary material due to space con-
straint. We use the Kruskal-Wallis test [10] on two sets
of NMI values to compare the performance of compet-
ing approaches.

From Figures 1 and 2 and those in the supplemental,
we have a few observations. When experts have un-
equal accuracies, our proposed approach consistently
outperforms SemiCrowd, ITML, COSC, MPCKMeans
on all the eleven datasets. However, in the case
where experts have equal accuracies of good qual-
ity, our proposed approach outperforms SemiCrowd,
ITML, COSC, MPCKMeans on some datasets (Breast-
Cancer, Column, Ionosphere, Mushroom, Newthy-
roid), but does not show clear advantage on the re-
maining datasets, i.e., at least one of the baseline ap-
proaches is equally good or even better. This can
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Figure 1: After setting accuracy parameter α = β =
(0.95, 0.85, 0.75, 0.65, 0.55) to make different experts have
unequal accuracies, each plot shows NMI against the num-
ber of constraints for competing approaches on one UCI
dataset.

be explained by the fact that our proposed approach
learns the accuracy of each expert. Higher accuracy
of the m-th expert (αm, βm) leads to higher weight
ωm = log αmβm

(1−αm)(1−βm) for the m-th expert.

To confirm accuracy/weight learned by our proposed
approach actually works in this way, we plot ωm
(m = 1, · · · , 5), computed from the recovered αm, βm
when the number of constraints is 500 and plot eight of
them in Figure 3. As we can see, for datasets Breast-
Cancer, Dermatology, Mushroom, Wine, the recovered
expert weights are very close to their theoretical val-
ues. For other datasets, the recovered expert weights
are smaller than their theoretical values. This can be
explained by the fact that different clusters in those
datasets cannot be perfectly separated by the linear
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(b) Cleveland
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(d) Ionosphere
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(e) Mushroom
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(f) Newthyroid
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Figure 2: After setting accuracy parameter α = β =
(0.9, 0.9, 0.9, 0.9, 0.9) to make different experts have equal
accuracies of good quality, each plot shows NMI against
the number of constraints for competing approaches on one
UCI dataset.

discriminative clustering approach used in our model.
However, the experts with higher accuracies are still
assigned higher weights, which can explain the advan-
tage of our proposed approach compared to all the
competing methods in the unequal accuracies scenario.

The performance of CSPA is only comparable to our
proposed approach when the number of constraints is
sufficiently large. For example, on the Wine dataset,
the performance of CPSA is comparable only when
the number of constraints reaches 2000, an arguably
large number of constraints for 178 samples. A simi-
lar behavior can be observed on a few other datasets
(Cleveland, Dermatology, Glass, Newthyroid). How-
ever, for all three datasets with more than 500 sam-
ples (BreastCancer, Mushroom, Satimage), the perfor-

mance of CSPA is still not comparable to our approach
when the number of constraints reaches 2000. Only
with a much larger number of constraints, can the per-
formance of CSPA be comparable to our approach.
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Figure 3: After setting accuracy parameter α = β =
(0.95, 0.85, 0.75, 0.65, 0.55) to make different experts have
unequal accuracies, each plot shows the recovered expert
weights (in red) and true expert weights (in blue) for all
experts on a UCI dataset.

3.3 COPD Subtyping Experiments

Chronic Obstructive Pulmonary Disease (COPD) is a
complex lung disease characterized by airflow limita-
tion resulting from chronic inflammatory responses in
the lungs to noxious particles or gases. It is currently
classified as one disease; however, COPD is known to
be a heterogeneous disease and our objective is to dis-
cover subtypes (clusters). We collected a dataset con-
taining 987 patients with COPD. For each patient, we
extracted 39 features, including demographics, clinical
information, lung function, and measures from com-
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puted tomography (CT) chest imaging.

We have a cohort of investigators (pulmonologists, ra-
diologists, data analysts working with clinicians) and
each investigator (expert) defined subtypes, and there-
fore provided constraints, according to what they con-
sider as important for subtyping this set of patients.
For example, a set of clinicians defined subtypes based
primarily on CT images. Another set of subtypes was
generated from data scientists working with clinicians
to apply machine learning algorithms. Each expert
only used a subset of samples and features to define
subtypes. Therefore, their outputs are in the form of
partial labels, which have an equivalent representation
of pairwise constraints. We use constraints provided
by 27 experts.

Evaluation Since there is no ground truth available
for this dataset, we can no longer compare competing
approaches by computing NMI. While the character-
istics of optimal clusters in COPD are not known, dis-
ease experts may consider properties that the solutions
must have in order to be meaningful. For example, in
COPD and other diseases, mortality is a critical out-
come. Other key measures in COPD include decline in
lung function (FEV1 decline), and differences in risk
scores derived from genetic variants (copdScore) [5].

We randomly split the patients into two sets of equal
sizes, one for training and the other for validation. We
first run competing approaches on the training set,
samples in the validation set are then assigned clus-
ter labels. To check whether patients in different clus-
ters show significant difference on those three key vari-
ables described above, including FEV1 decline, mor-
tality and copdScore, we compute the p-values on those
variables. Both FEV1 decline and copdScore are real-
valued, therefore we compute their p-values using the
Kruskal-Wallis test. In contrast, since mortality is a
binary variable, we compute its p-value using χ2 test.

Results Since there is no out-of-sample extension for
COSC and CSPA, we can only compare our proposed
approach against the other four competing meth-
ods: including SemiCrowd, ITML, MPCKMeans and
KMeans in the COPD subtyping experiment. The p-
values on three key variables corresponding to each ap-
proach are shown in Table 2. We observe that only our
proposed approach obtains significant p-values (less
than 0.05) on all three variables. In particular, our
proposed approach is the only one to achieve a sig-
nificant p-value on FEV1 decline, which means that
our proposed approach can identify 4 COPD subtypes
with significantly different lung function decline.

We also plot the recovered weights of the 27 experts
in Figure 4. We noticed that most of the top-raking

Table 2: P-values on three key variables (FEV1 decline,
mortality, copdScore) of competing approaches

Approach FEV1 decline mortality copdScore
Proposed 1.41e-2 7.59e-6 4.52e-4

SemiCrowd 6.93e-2 2.14e-4 4.00e-2
ITML 0.43 8.15e-2 4.75e-3

MPCKMeans 0.44 3.97e-7 1.99e-3
KMeans 0.50 2.14e-6 2.29e-4

experts are contributed by clinicians, who use their do-
main knowledge to provide constraints, which is con-
sistent with our expectation.
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Figure 4: Recovered weights of 27 experts providing con-
straints for the COPD subtyping

4 Conclusions

In this paper, we have introduced a novel probabilistic
model for clustering from multiple uncertain experts
who may have varying levels of accuracies. Through
learning a discriminative clustering model, samples
that do not have constraints provided by an expert can
be assigned cluster labels using the discriminative clus-
tering model. After recovering the accuracy of each
expert, constraints provided by experts with higher
accuracies are assigned higher weights in determin-
ing the latent cluster assignments. Experimental re-
sults on UCI benchmark datasets and a real world dis-
ease subtyping dataset demonstrate our proposed ap-
proach outperforms competing alternatives, including
semi-crowdsourced clustering, semi-supervised cluster-
ing with constraints obtained through majority voting,
and consensus clustering.
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