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Appendix A: Solving the Proposed
Model

To solve the proposed problem (1) efficiently, we can
rewrite the problem as follows. For each comparison
Pij , consider a corresponding vector x̃ij ∈ Rn+d de-
fined by:

x̃ij = [(µjxj − µixi); ej − ei],

where ej (ei) is an n dimensional unit vector with only
the j-th (i-th) position is one. Then the problem can
be written compactly as:

min
θ∈Rn+d

∑

(i,j)∈SI

ℓ(θT x̃ij , Pij) + λ∥θ∥2, (6)

where θ = [w; r] is the parameter set we want to op-
timize. The problem now is in a standard empirical
risk minimization (ERM) form, which can be solved
efficiently using publicly available solvers (e.g. LIB-
LINEAR package [10] used in our experiments).

Appendix B: Proofs

Proof of Proposition 1

Proof (of Proposition 1). The argument and the proof
of the proposition is quite standard in recovery liter-
atures, e.g. [25]. We repeat the high-level idea of the
proposition for completeness. Let Ω be the set of m
comparisons, each of which is sampled independently
from {1 . . . n}× {1 . . . n}. Let Ωt be the set of entries
with cardinality t, uniformly sampled from the collec-
tion of sets of t unique comparisons. Let F(Ω) and
F(Ωm) be the event that the problem (2) fails to out-
put an ϵ-accurate ranking given the comparison set Ω
and Ωm respectively. Then we have:

Pr(F(Ω)) =
m
∑

t=1

Pr(F(Ω) | |Ω| = t)) Pr(|Ω| = t)

=
m
∑

t=1

Pr(F(Ωt)) Pr(|Ω| = t)

≥ Pr(F(Ωm))
m
∑

t=1

Pr(|Ω| = t)

= Pr(F(Ωm)),

where the third inequality is because the failure proba-
bility will not increase as number of samples increases
in Ωt, i.e.

for all t1 ≤ t2, Pr(F(Ωt1)) ≥ Pr(F(Ωt2)).

Proof of Lemma 2

First, we need the following preliminary lemma to
bound the Rademacher complexity of class of linear
functions.

Lemma 3 (Complexity Bound on Linear Function
Class [18]). Let FW be a class of linear functions
{x→ wTx | ∥w∥ ≤ Ŵ}, and each x is bounded by X̂ .
Then the Rademacher complexity of FW is bounded by:

R(FW ) ≤ X̂ Ŵ
√

1

m
.

With this lemma, now we can present the proof of
Lemma 2.

Proof (of Lemma 2). By the definition of the
Rademacher complexity of function class FΘ, we
can rewrite R(FΘ) as follows:

R(FΘ) = Eσ

[

sup
θ∈Θ

1

m

m
∑

t=1

σtθ
T x̄itjt

]

= Eσ

[

sup
∥w∥≤W

1

m

m
∑

t=1

σtw
T (xjt − xit)

]

+ Eσ

[

sup
∥r∥≤R

1

m

m
∑

t=1

σtr
T (ejt − eit)

]

, (7)

which contains the complexity of two linear function
classes. Since for any (it, jt), ∥xjt − xit∥ ≤ 2X and
∥ejt − eit∥ ≤

√
2, by applying Lemma 3 to each

term in (7), we can upper bound the complexity of
ESI

[

R(FΘ)
]

by:

ESI

[

R(FΘ)
]

≤ (
√
2XW +R)

√

2

m
. (8)

We now further construct an appropriate setting of W
and R as follows. Let d = UµUT

µ s be the projection
of s on the subspace given by the orthogonal matrix
Uµ. Consider ŵ = argmind=Xw ∥w∥2. The minimum
norm solution ŵ is given by the SVD of X, i.e.,

ŵ = X†d = V Σ†UTd = VµΣ
†
µU

T
µ d, (9)

where Σ†
µ = diag(1/σ1, 1/σ2 · · · 1/σd̄). Combining

with the definition of Uµ, we have

∥ŵ∥ ≤
1

µσ1
∥d∥,

in which σ1 can be further bounded as follows:

σ2
1 = ∥X∥22 ≥

∥X∥2F
d
≥

nγ2X 2

d
.

Therefore, we can upper bound ∥ŵ∥ by:

∥ŵ∥ ≤
√
d

µγX
√
n
∥d∥.
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The lemma is therefore proved by plugging W = ∥ŵ∥
and R = ∥s− d∥ into (8).

Proof of Theorem 1

The following preliminary lemma is required in the
proof to link ℓ-risk to excess risk of 0-1 loss:

Lemma 4 (Consistency of Excess Risk [1]). Let ℓ be
a convex surrogate loss function. Then there exists a
strictly increasing function Ψ, Ψ(0) = 0, such that for
all measurable f :

R(f)−R∗ ≤ Ψ(Rℓ(f)−R∗
ℓ ),

where R∗ = inff R(f) and R∗
ℓ = inff Rℓ(f).

Now we can prove the Theorem as follows.

Proof (of Theorem 1). Consider the problem (3) with
Pij = Yij where W and R are set to be (4). Let
f∗(x̄) = θ∗T x̄ where θ∗ ∈ Θ is the optimal solution of
(3). From the construction in the proof of Lemma 2,
θ̂ = [ŵ, r] is (one of) an optimal solution θ∗ since θ̂
satisfies ℓ(f(x̄ij), Pij) = ℓ(sj − si, Pij) = ℓ(Yij , Yij) =

0 for any (i, j). This suggests that R̂ℓ(f∗) = 0 and
apparently R∗ = R∗

ℓ = 0. Therefore, in this context,
Lemma 4 becomes:

R(f∗) ≤ Ψ(Rℓ(f
∗)).

On the other hand, since ℓ(f∗(x̄ij), Pij) ≤ B, the ex-
pected ℓ-risk of f∗ can be bounded by Lemma 1 as:

Rℓ(f
∗) ≤ 2Lℓ

( √
2d

µγ
√
n
∥d∥+ ∥r∥

)

√

2

m
+ B

√

log 1
δ

2m
.

(10)
Finally, let LΨ = Ψ(B) be the (bounded) Lipschitz
constant for Ψ. Then, by putting above two equations
together, we can derive the Theorem as:

Dkτ (π
∗, s)

=R(f∗)

≤Ψ(Rℓ(f
∗))

≤LΨ

(

2Lℓ

(

√
2d

µγ
√
n
∥d∥+ ∥r∥

)

√

2

m
+ B

√

log 1
δ

2m

)

=O

(

(

√
d+ ∥r∥

)

√

1

m

)

+O

(

√

log 1/δ

m

)

,

by the fact that ∥d∥ ≤ ∥s∥ = O(
√
n).

Proof of Theorem 2

Proof (of Theorem 2). Again, consider the problem
(3) where W and R are set as (4), except that now

Pij = sgn(Yij) is observed instead. The instance

θ̂ = [ŵ; r] (defined in the proof of Lemma 2) is still
in the feasible solution set Θ, and thus its correspond-
ing function fθ̂ is also feasible in FΘ. However, un-

like the case Pij = Yij in Theorem 1, θ̂ is not nec-
essarily the optimal solution of problem (3) for the
case Pij = sgn(Yij). Indeed, although θ̂ satisfies
Xŵ + r = s, it may exist another θ∗ ∈ Θ such that
R̂ℓ(f∗) ≤ R̂ℓ(fθ̂). Nevertheless, θ̂ still provides an in-
stance to show R∗ = 0. Thus, by applying Lemma 4
in this case, we have:

R(f∗) ≤ Ψ(Rℓ(f
∗)−R∗

ℓ ). (11)

Using Lemma 1, the quantity Rℓ(f∗)−R∗
ℓ can be fur-

ther bounded by:

Rℓ(f
∗)−R∗

ℓ

≤R̂ℓ(f
∗)−R∗

ℓ

+ 2Lℓ

( √
2d

µγ
√
n
∥d∥+ ∥r∥

)

√

2

m
+ B

√

log 1
δ

2m
.

Note that here R̂ℓ(f∗) − R∗
ℓ can amount a positive

quantity, as f∗ may still make the term ℓ(f∗(x̄ij), Pij)
non-zero in empirical ℓ-risk. However, such a quantity
is expected to be extreme small since R̂ℓ(f∗) ≤ R̂ℓ(fθ̂),

where R̂ℓ(fθ̂) is the ℓ-risk of the true ranking.

Finally, let LΨ be the Lipschitz constant for Ψ
bounded by Ψ(B). Then the Theorem follows by
putting the above two equations together as:

Dkτ (π
∗, s)

=R(f∗)

≤Ψ(Rℓ(f
∗)−R∗

ℓ )

≤LΨ

(

R̂ℓ(f
∗)−R∗

ℓ

+ 2Lℓ

(

√
2d

µγ
√
n
∥d∥+ ∥r∥

)

√

2

m
+ B

√

log 1
δ

2m

)

=O
(

R̂ℓ(f
∗)−R∗

ℓ

)

+O

(

(

√
d+ ∥r∥

)

√

1

m

)

+O

(

√

log 1/δ

m

)

.

Proof of Theorem 3

Proof (of Theorem 3). We prove the Theorem by
showing that the residual norm ∥r∥ = O(

√
log n) with

high probability, and thus, the claim will be proved by
applying Theorem 1 and 2. To begin with, we con-
sider the first scenario, where each corrupted feature
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can be expressed as x⋆
i +∆xi. The feature matrix X

can thus be described as X⋆+∆X, where in ∆X there
are C ′ log n rows to be non-zero. Let ∆X = U∆Σ∆V T

∆
be the reduced SVD of ∆X. Then the norm of the
residual can be bounded by:

∥r∥ ≤ ∥U∆U
T
∆s∥

= ∥∆XV∆Σ
−2
∆ V T

∆∆XT s∥
≤ ∥∆X∥2∥Σ−2

∆ ∥2∥∆XT s∥ (12)

where the last term ∥∆XT s∥ ≤
√
dC ′ξT log n. Now,

to bound the first two terms, we need to bound the
largest and smallest singular value of ∆X. Consider
∆X ′ ∈ RC′ logn×d to be the truncated ∆X where only
non-zero rows in ∆X are left. The spectrum of ∆X ′

is the same as ∆X. Moreover, its two norm can be
bounded by:

∥∆X ′∥2 ≤ ∥ξE∥2 ≤ ξ
√

C ′d log n,

where E ∈ RC′ logn×d is the matrix with all entries are
one. Also, using the result of [26], we can guarantee
that with high probability σd(∆X ′) ≥ Ω(

√
log n−

√
d),

which suggests w.h.p.:

∥Σ−2
∆ ∥2 =

1

σd(∆X)2
=

1

σd(∆X ′)2
≤ O(

1

log n
).

Thus by substituting all above back to (12), we can
conclude that ∥r∥ = O(

√
log n).

To prove the second case where C ′ log n items have
shuffled features, note that we can still express the
feature matrix X = X⋆ +∆X, where now the row of
∆X follows:

∆xi =

{

xj − xi, if item i is corrupted,

0, otherwise.

We can further bound the infinity norm of ∆xi by
∥∆xi∥∞ ≤ ∥xj − xi∥∞ ≤ ∥xj − xi∥ ≤ 2X . Now the
claim is proved by applying ξ = 2X to the proof of
scenario 1.

Proof of Theorem 4

We will focus on proving the following theorem in-
stead.

Theorem 5 (Kendall’s Tau Guarantee for Noisy Com-
parisons from Flip-Sign Model). Let δ be any constant
such that 0 < δ < 1. Suppose the following assump-
tions hold:

a. We observe m noisy pairwise comparisons under
the flip sign model (parameterized by some noise
level 0 ≤ ρc < 0.5).

b. Feature matrix X is γ-close with bounded X .

Consider the following instance of RABF model (prob-
lem (3)):

min
θ∈Rd+n

∑

(i,j)∈SI

(θT x̄ij − Pij)
2, Pij ∼ Dρc

(13)

s.t. ∥w∥ ≤ (1− 2ρc)W, ∥r∥ ≤ (1− 2ρc)R,

where W and R are set to be (4), and the distribution
Dρc

is defined by:

Pr(Pij = +1 | sgn(Yij) = −1)
=Pr(Pij = −1 | sgn(Yij) = +1)

=ρc,

which describes the flip sign model. Then with prob-
ability at least 1 − δ, the optimal π∗ of the problem
satisfies:

Dkτ (π
∗, s)

≤O
(

min
f∈FΘ

Rℓ(f)−R∗
ℓ

)

+O

(

1

1− 2ρc

(

√
d+ ∥r∥

)

√

1

m

)

+O

(

√

log 1/δ

m

)

.

Theorem 4 follows directly from Theorem 5 provided
that minf∈FΘ

Rℓ(f) − R∗
ℓ = O(ϵ). 4 Thus, proving

Theorem 5 will suffice.

However, Theorem 5 is harder to conclude compared
to Theorem 1 and 2. In particular, note that when
comparisons are generated from flip-sign model, the
solution of the RABF model (13) is no longer the min-
imizer of the problem minf∈FΘ

R̂ℓ(f). It is because

the definition of R̂ℓ(f) is on the clean distribution (i.e.
Pij = sgn(Yij)), while in problem (13) each Pij is sam-
pled from noise distribution Dρc

. Thus, the optimizer
of problem (13) is only the minimizer over empirical
risk of noisy comparisons. We again use θ∗/f∗/π∗ to
denote the optimal parameter/function/corresponding
score vector of problem (13). The challenge is hence
to bound the risk of f∗ with respect to the clean dis-
tribution, i.e. R(f∗).

The high level idea of our proof is as follows. We
first show that the problem (13) is equivalent to an
ERM problem with some “unbiased estimator” for the
loss over clean distribution [21] (stating in Lemma 5
introduced shortly), and the two optimal solutions will
be only different with a (1−2ρc) factor. We then apply
the result in [21] to guarantee the risk of the optimum
of the equivalent problem with respect to the clean
distribution, which concludes the proof.

4Similar to the discussion in the proof of Theorem 2,
such a condition will be satisfied in nature for a sufficiently
expressive FΘ.
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Before presenting the proof, we introduce a lemma
which shows that the problem (13) is equivalent to
another ERM problem with an unbiased estimator of
squared loss with noisy labels (see Section 3 in [21] for
more details):

Lemma 5 (Equivalence of Problem (13) with Unbi-
ased Estimator). The problem (13) is equivalent to the
following optimization problem:

min
θ̃=[w̃;r̃]∈Rd+n

∑

(i,j)∈SI

ℓ̃(θ̃T x̄ij , Pij),

s.t. ∥w̃∥ ≤W, ∥r̃∥ ≤ R, (14)

where ℓ̃(t, y) is an unbiased estimator of squared loss
from noisy comparisons defined by:

ℓ̃(t, y) =
(1− ρc)(t− y)2 − ρc(t+ y)2

1− 2ρc
.

Furthermore, the optimal solution of the problem (14),
denoted as θ̃∗, satisfies:

θ∗ = (1− 2ρc)θ̃
∗ (15)

where θ∗ is the optimal solution of the problem (13).

The proof of Lemma 5 will be shown in next subsection
for completeness. Now, with this lemma, we are ready
to present the proof of Theorem 5 as follows.

Proof (of Theorem 5). Let θ̃∗/f̃∗/π̃∗ denote the op-
timal parameter/function/corresponding ranking of
problem (14). Then from Theorem 3 of [21], we can
guarantee that with probability at least 1− δ, the risk
of f̃∗ w.r.t. clean distribution is bounded by:

Rℓ(f̃
∗) ≤ min

f∈FΘ

Rℓ(f)+
8Lℓ

1− 2ρc
ESI

[

R(FΘ)
]

+2

√

log 1
δ

2m
.

(16)
However, since θ∗ = (1 − 2ρc)θ̃∗ from Lemma 5, we
know that the ranking scores of all items in π∗ are
only scaled by a 1 − 2ρc factor with respect to π̃∗

and furthermore, the ranking order will still remain
same as π̃∗. This implies that R(f∗) = Dkτ (π∗, s) =
Dkτ (π̃∗, s) = R(f̃∗). Finally, by applying Lemma 2,
Lemma 4 to (16), the claim of Theorem 5 can be ob-

tained as:

Dkτ (π
∗, s)

=R(f̃∗)

≤Ψ(Rℓ(f̃
∗)−R∗

ℓ )

≤LΨ

(

min
f∈FΘ

Rℓ(f)−R∗
ℓ

+
8Lℓ

1− 2ρc

(

√
2d

µγ
√
n
∥d∥+ ∥r∥

)

√

2

m
+ 2

√

log 1
δ

2m

)

=O
(

min
f∈FΘ

Rℓ(f)−R∗
ℓ

)

+O

(

1

1− 2ρc

(

√
d+ ∥r∥

)

√

1

m

)

+O

(

√

log 1/δ

m

)

.

Proof of Lemma 5

Proof (of Lemma 5). First off, we rewrite the unbi-
ased estimator of squared loss ℓ̃(t, y) as:

ℓ̃(t, y) = t2 −
2t

1− 2ρc
y + y2

=

(

t−
y

1− 2ρc

)2

+

(

y2 −
1

1− 2ρc
y2
)

.

Therefore, problem (14) can be rewritten as:

min
θ̃∈Rd+n

∑

(i,j)∈SI

ℓ̃(θ̃T x̄ij , Pij)

≡ min
θ̃∈Rd+n

∑

(i,j)∈SI

(

θ̃T x̄ij −
Pij

1− 2ρc

)2

≡min
w̃,r̃

∑

(i,j)∈SI

(

w̃T (xj − xi) + (r̃j − r̃i)−
Pij

1− 2ρc

)2

,

s.t. ∥w̃∥ ≤W, ∥r̃∥ ≤ R. (17)

Now define two new variables as:

w = (1− 2ρc)w̃

r = (1− 2ρc)r̃ (18)

and substitute (18) to the problem (17). We can fur-
ther derive an equivalent optimization problem w.r.t.
w and r as:

min
w,r

∑

(i,j)∈SI

(

wT (xj − xi) + (rj − ri)− Pij

)2

≡min
θ

∑

(i,j)∈SI

(θT x̄ij − Pij)
2,

s.t. ∥w∥ ≤ (1− 2ρc)W, ∥r∥ ≤ (1− 2ρc)R,
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which is the problem (13) as claimed. In addition,
from (18), the optimal solutions between two problems
satisfy:

θ∗ = [w∗, r∗] = (1− 2ρc)[w̃
∗, r̃∗] = (1− 2ρc)θ̃

∗

and the proof is thus completed.

Proof of Theorem 6

Proof (of Theorem 6). First, note that the frequently
used accumulated regret bound for online learning can-
not be directly applied here, since we want to bound
the excess risk achieved by the final model θ(T ). There-
fore, in this proof we use guarantee from SGD conver-
gence for our online-to-batch conversion. Consider Al-
gorithm 1 as a SGD algorithm that solves the problem
minf∈FΘ

Rℓ(f). Then, with a strongly convex, twice
differentiable ℓ, a standard SGD convergence analysis
(e.g. [17]) tells us that:

Rℓ(f
(T ))−Rℓ(f

∗) ≤
ĈLℓ

2T

with some constant Ĉ. Now consider the batch prob-
lem (6), with m observations to be online comparisons
Algorithm 1 observed (so that m = T ). The problem
shares the same f∗ with Algorithm 1, and furthermore,
its equivalent hard constraint problem in form (3) will
satisfy equation (10). This means that we can guar-
antee with high probability,

Rℓ(f
(T )) ≤2Lℓ

( √
2d

µγ
√
n
∥d∥+ ∥r∥

)

√

2

T

+ B

√

log 1
δ

2T
+

ĈLℓ

2T
,

and the Theorem can be derived by following the same
procedure below equation (10) in the proof of Theo-
rem 1.

Appendix C: Details of Online Rank
Aggregation with Features

As introduced in Section 5.1, we could extend our
RABF model to online rank aggregation by solving
RABF formulation using SGD. Specifically, for each
pairwise comparison Pij observed at time t, we per-
form a SGD update on model parameters (w, r) with

Algorithm 1 Online RABF (oRABF)

Input: feature matrix X, parameters (λw,λr), step
size η.
w(0) ← 0, r(0) ← 0.
for t = 1, 2, · · ·T do

Update w(t+1), r(t+1) using rule (19) based on the
given the observed Pij at time t.

end for
return π(T ) = Xw(T ) + r(T )

the following update rule:

w(t+1) ← w(t)

− η

(

∂ℓ(w(t)T (xj − xi) + rj − ri, Pij)

∂w
+ λww

(t)

)

r(t+1) ← r(t)

− η

(

∂ℓ(w(t)T (xj − xi) + rj − ri, Pij)

∂r
+ λrr

(t)

)

(19)

The procedure of the online-RABF algorithm is shown
in Algorithm 1. The following Theorem provides a
guarantee on the output of the score vector π(T ) from
online-RABF algorithm:

Theorem 6. Suppose assumptions b, c in Theorem 1
hold, ℓ is strongly convex and twice differentiable, and
n is sufficiently large. Then by running Algorithm 1
with appropriate setting of (λw,λr), with high proba-
bility, its output score vector π(T ) satisfies:

Dkτ (π
(T ), s) ≤ O(

√

∥r∥2
T

).

A similar result can also be proved for Pij = sgn(Yij).
As a consequence, Algorithm 1 only needs O(∥r∥2/ϵ2)
online updates to guarantee an ϵ-accurate ranking,
which again implies that given good features such that
∥r∥2 = o(n), sublinear number of samples is sufficient.
The result shows that the sublinear sample complexity
is also achievable by online RABF as in batch setting.
The proof of Theorem 6 can be found in Appendix B.

Appendix D: Empirical Justification of
Sublinear Sample Complexity

In this experiment, we show that sample complexity of
RABF can be sublinear given sufficiently good features
for both noiseless and noisy comparison cases. We con-
sider synthetic datasets generated by the procedure
described in Section 6. We generate several true score
vectors s ∈ Rn with n from 500 to 10000. For each n,
we further generate a perturbed feature matrixX with
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(b) ρc = 0, Pij = sgn(Yij)
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(c) ρc = 0, Pij = Yij
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(d) ρc = 0.1, Pij = sgn(Yij)
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(e) ρc = 0.1, Pij = Yij

0 5000 10000
number of items (n)

0

0.1

0.2

0.3

0.4

0.5

K
e

n
d

a
ll

s
 T

a
u

 d
is

ta
n

c
e

RABF-LOG
MLE

(f) ρc = 0.2, Pij = sgn(Yij)
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(g) ρc = 0.2, Pij = Yij

Figure 2: A synthetic experiment where O(log n) item features are corrupted. Figure 2a shows that the feature
quality is good as ∥r∥2 grows under the order of logn. Figure 2b∼2g show that for our RABF model, O(log n)
comparisons suffice to output an ϵ-accurate ranking with bounded Dkτ , while for methods without features Dkτ

becomes unbounded as n increases. In addition, the argument holds regardless of whether comparisons are
clean (ρc = 0) or noisy (ρc = 0.1, 0.2). The results empirically support the fact that RABF is able to leverage
informative features to achieve faster learning (i.e. sublinear sample complexity) as shown in theory.
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ρf = 50 log n/n, so there are O(log n) items having
corrupted features in X by construction. We first sam-
ple m = 50 log n clean pairwise comparisons (ρc = 0)
and apply the proposed methods (RABF-LOG and
RABF-SQ) and methods without features (MLE and
LS) to recover the ranking. The results are shown in
Figure 2. In Figure 2a, we observe that ∥r∥2 grows
O(log n) in this scenario. Hence, from Corollary 1,
m = O(log n) should suffice for our model RABF to
guarantee an ϵ-accurate ranking with bounded Dkτ .
This is indeed true as suggested in Figure 2c and 2b,
where Kendall’s Tau of the rankings from RABF-SQ
and RABF-LOG do not grow with n provided O(log n)
comparisons. As a comparison, both LS and MLE fail
to output good rankings (i.e. bounded Dkτ ) with only
O(log n) comparisons as n goes large. Furthermore, we
redo the same experiment except that now the sam-
pled comparisons changed to be noisy (ρc = 0.1 and
0.2). The results are shown in Figure 2e to 2f. From
these figures, we can observe that O(log n) samples are
still sufficient for RABF to guarantee a ranking with
bounded Dkτ for noisy comparisons case. These ex-
periments empirically confirm the fact that by making
use of informative features, RABF is able to produce
an ϵ-accurate ranking with only sublinear number of
(either clean or noisy) comparisons.

Appendix E: Experiments of Rank
Aggregation Methods for Pij = Yij

Here we show the experimental results of rank aggrega-
tion methods for Pij = Yij , where the detailed experi-
ment setup is described in Section 6.1. Figure 3a and
3b are results on synthetic datasets where we perturb
features and comparisons and compare the robustness
of each model. Figure 4a and 4b are results on Forbes
and NBA datasets as real-world applications. Similar
to the results for Pij = sgn(Yij), here we see RABF-SQ
also outperforms other existing methods, showing the
effectiveness of our model for rank aggregation task for
the case Pij = Yij .
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(a) Feature perturbation
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(b) Comparisons perturbation

Figure 3: Performance of rank aggregation methods for Pij = Yij on synthetic datasets. Similar to Figure 1a
and 1b, RABF-SQ performs the best under different feature and comparison noise levels.
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(a) Forbes

10 20 30
k: first 1/k games for training

0

0.05

0.1

0.15

0.2

0.25

0.3

R
e

la
ti

v
e

 e
rr

o
r

RABF-SQ
LS
SVP
MR

(b) NBA

Figure 4: Performance of rank aggregation methods for Pij = Yij on real-world datasets. Similar to Figure 1c
and 1d, here we see that RABF-SQ model has smaller sample complexity in real-world applications compared
to other methods.


