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Abstract R. However, we cannot access entire conditional distribu-

Many machine learning tasks, such as learning
with invariance and policy evaluation in rein-
forcement learning, can be characterized as prob-
lems of learning from conditional distributions.
In such problems, each sample z itself is asso-
ciated with a conditional distribution p(z|x) rep-
resented by samples {z;}2£,, and the goal is to
learn a function f that links these conditional dis-
tributions to target values y. These problems be-
come very challenging when we only have lim-
ited samples or in the extreme case only one
sample from each conditional distribution. Com-
monly used approaches either assume that z is
independent of x, or require an overwhelmingly
large set of samples from each conditional distri-
bution.

To address these challenges, we propose a novel
approach which employs a new min-max refor-
mulation of the learning from conditional distri-
bution problem. With such new reformulation,
we only need to deal with the joint distribution
p(z,2). We also design an efficient learning al-
gorithm, Embedding-SGD, and establish theoret-
ical sample complexity for such problems. Fi-
nally, our numerical experiments, on both syn-
thetic and real-world datasets, show that the pro-
posed approach can significantly improve over
existing algorithms.

1 Introduction

We address the problem of learning from conditional distri-
butions where the goal is to learn a function that links con-
ditional distributions to target variables. Specifically, we
are provided input samples {z;}, € X and their corre-
sponding responses {y; }¥.; € Y. Foreach z € X, there
is an associated conditional distribution p(z|z) : Z x X —
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tions {p(z|z;)} Y, directly; rather, we only observe a lim-
ited number of samples or, in the extreme case, only one
sample from each conditional distribution p(z|z). The task
is to learn a function f which links the conditional distri-
bution p(z|x) to target y € Y by minimizing the expected

loss: )
min L(/) = Eey [0 (0 Bae [f(z2))] O

where £ : Y x ) — R is a convex loss function. The func-
tion space F can be very general, but we focus on the case
when F is a reproducing kernel Hilbert space (RKHS) in
the main text, namely, F = {f : Zx X — R| f(z,z) =
(f,(z,x))} where ¢(z,x) is a suitably chosen (nonlin-
ear) feature map. Please refer to Appendix [E] for the ex-
tension to arbitrary function approximators, e.g., random
features and neural networks.

The problem of learning from conditional distributions ap-
pears in many different tasks. For example:

e Learning with invariance. Incorporating priors on
invariance into the learning procedure is crucial for
computer vision (Niyogi et al.l [1998), speech recogni-
tion (Anselmi et al.,|2013)) and many other applications.
The goal of invariance learning is to estimate a function
which minimizes the expected risk while at the same
time preserving consistency over a group of operations
g = {g;}32- Mroueh et al|(2015) shows that this can
be accomplished by solving the following optimization
problem

2)

where # is the RKHS corresponding to kernel k with the
feature map ¢ (-), v > 0 is the regularization parameter.
Obviously, the above optimization (2) is a special case
of @) In this case, z stands for possible variation of
data x through conditional probability given by some
normalized Haar measure u(g(x)). Due to computation
and memory constraints, one can only afford to generate
a few virtual samples from each data point x.

e Policy evaluation in reinforcement learning. Policy
evaluation is a fundamental task in reinforcement learn-
ing. Given a policy 7(als), which is a distribution over
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action space condition on current state s, the goal is to
estimate the value function V7 (-) over the state space.
V7™ (s) is the fixed point of the Bellman equation

V™ (s) = Egjq,s[R(s,a) + V7 (s)],
where R(s,a) : S x A — R is a reward function and
~v € (0,1) is the discount factor. Therefore, the value
function can be estimated from data by minimizing the

mean-square Bellman error (Baird, [1995; Sutton et al.,
2008):
min B [(R(5,0) = Eyja,s [V7(s) =7V ()]
3)
Restricting the policy to lie in some RKHS, this op-
timization is clearly a special case of (I)) by viewing
((s,a), R(s,a),s’) as (z,y, z) in (I). Here, given state
s and the the action a ~ w(als), the successor state s’
comes from the transition probability p(s’|a, s). Due to
the online nature of MDPs, we usually observe only one
successor state s’ for each action a given s, i.e., only
one sample from the conditional distribution given s, a.

Challenges. Despite many learning problems in the form
of (T)), solving such problems remains very challenging for
two reasons: (i), we often have limited samples or, in the
extreme case, only one sample from each conditional dis-
tribution p(z|z), making it difficult to accurately estimate
the conditional expectation. (ii), the conditional expecta-
tion is nested inside the loss function, making the prob-
lem quite different from the traditional stochastic optimiza-
tion setting. This type of problem is called compositional
stochastic programming, and very few results have been es-
tablished in this domain.

Related work. A simple option to address (I) is using
sample average approximation (SAA), and thus, instead
solving

1 1 &
%IJL}N; 14 yiaM;f(Ziﬁxi) )

where {(zi,3:)}Ly ~ p(z,y), and {z;;}}1, ~ p(2|z:)
for each x;. To ensure an excess risk of ¢, both N and M
need be at least as large as O(1/€?), making the overall
samples required to be O(1/e*); see (Nemirovski et al.,
2009; (Wang et al., 2014) and references therein. Hence,
when M is small, SAA would provide poor results.

A second option is to resort to stochastic gradient methods
(SGD). One can construct a biased stochastic estimate of
the gradient using VL = V{(y, (f,%(x)))¢(x), where
¢ (z) is an estimate of E.|z[1(z, )] for any x. To ensure
convergence, the bias of the stochastic gradient must be
small, i.e., a large amount of samples from each conditional
distribution is needed.

Another commonly used approach is first representing the
conditional distributions as the so-called kernel conditional
embedding, and then performing a supervised learning step

on the embedded conditional distributions (Song et al.|
2013; \Grunewalder et al.,[2012a)). This two-step procedure
suffers from poor statistical sample complexity and compu-
tational cost. The kernel conditional embedding estimation
costs O(N?), where N is number of pair of samples (z, 2).
To achieve e error in the conditional kernel embedding es-
timation, N needs to be O(1/¢* Y]]

Recently, Wang et al.| (2014) solved a related but funda-
mentally distinct problem of the form,

min L(f) = Ey [0(y, E:[f(2)])] S

where z is independent of y, and f(z) is a smooth func-
tion parameterized by some finite-dimensional parameter.
The authors provide an algorithm that combines stochastic
gradient descent with moving average estimation for the in-
ner expectation, and achieves an overall O(1/¢3?) sample
complexity for smooth convex loss functions. The algo-
rithm cannot directly handle random variable z with infi-
nite support. Hence, such an algorithm does not apply to
the more general and difficult situation that we consider in
this paper.

Our approach and contribution. To address the above
challenges, we propose a novel approach called dual em-
beddings. The key idea is to reformulate (T) into a min-max
or saddle point problem by utilizing the Fenchel duality of
the loss function. We observe that with a smooth loss func-
tion and continuous conditional distributions, the dual vari-
ables form a continuous function of x and y. Therefore,
we can parameterize it as a function in some RKHS in-
duced by any universal kernel, where the information about
the marginal distribution p(z) and conditional distribution
p(z]z) can be aggregated via a kernel embedding of the
joint distribution p(x, z). Furthermore, we propose an effi-
cient algorithm based on stochastic approximation to solve
the resulted saddle point problem over RKHSs, and estab-
lish finite-sample analysis of the generic learning from con-
ditional distributions problems.

Compared to previous applicable approaches, an advantage
of the proposed method is that it requires only one sam-
ple from each conditional distribution. Under mild condi-
tions, the overall sample complexity reduces to O(1/€?)
in contrast to the O(1/€*) complexity required by SAA
or kernel conditional embedding. As a by-product, even
in the degenerate case (d), this implies an O(1/¢?) sample
complexity when the inner function is linear, which already
surpasses the result obtained in (Wang et al.,|2014) and is
known to be unimprovable. Furthermore, our algorithm is
generic for the family of problems of learning from condi-
tional distributions, and can be adapted to problems with
different loss functions and hypothesis function spaces.

'With appropriate assumptions on the joint distribution
p(z, z), a better rate can be obtained (Grunewalder et al.| 2012a).
However, for fair comparison, we did not introduce such extra
assumptions.
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Our proposed method also offers some new insights into
several related applications. In the reinforcement learn-
ing settings, our method provides the first algorithm that
truly minimizes the mean-square Bellman error (MSBE)
with both theoretical guarantees and sample efficiency. We
show that the existing gradient-TD2 algorithm by [Sutton
et al.| (2009); Liu et al.|(2015) is a special case of our algo-
rithm, and the residual gradient algorithm (Baird, [1999) is
derived by optimizing an upper bound of the MSBE. In the
invariance learning setting, our method also provides a uni-
fied view of several existing methods for encoding invari-
ance. Finally, numerical experiments on both synthetic and
real-world datasets show that our method can significantly
improve over the previous state-of-the-art performances.

2 Preliminaries

We first introduce our notation for kernels and kernel em-
beddings. Let X C R be some input space and k :
X x X — R be a positive definite kernel function. For
notation simplicity, we denote the feature map of kernel &

TS ) = k() () = K,

and use k(z,-) and ¢(z), or k(z, -) and 1)(z) interchange-
ably. Then % induces a RKHS H, which has the property
h(z) = (h,¢(x))y, Yh € H, where (-, ) is the inner
product and || k|3, := (h, h)3 is the norm in 7. We denote
all continuous functions on X as C(X) and || - || as the
maximum norm. We call k a universal kernel if H is dense
in C(QY') for any compact set ' C X, i.e., forany € > 0
andu € C(§'), there exists h € H, such that || u—hl|c < €.
Convex conjugate and Fenchel duality. Let ¢/ : R? —
R, its convex conjugate function is defined as

T

C*(u) = sup (u'v—1L(v)).
veERd
When ¢ is proper, convex and lower semicontinuous for any
u, its conjugate function is also proper, convex and lower
semicontinuous. More improtantly, the (¢, £*) are dual to
each other, i.e., (£*)* = ¢, which is known as Fenchel dual-
ity (Hiriart-Urruty and Lemaréchal, 2012} |Ritkin and Lip-
pert, [2007). Therefore, we can represent the ¢ by its convex
conjugate as
O(v) = sup (viu—£*(u)).
u€ER4

It can be shown that the supremum is achieved if v €
OC* (u), or equivalently u € 9(v).
Function approximation using RKHS. Let #° :=
{h € H : |||}, < &} be a bounded ball in the RKHS,
and we define the approximation error of the RKHS H° as
approximating continuous functions in C(X) by a function
h € M9 as (Bachl 2014} Barronl [1993)

E(6) := supyec(r) nfpens [[u— Ao 5
One can immediately see that £(0) decreases as J increases
and vanishes to zero as 0 goes to infinity. If C(X) is re-
stricted to the set of uniformly bounded continuous func-
tions, then £(§) is also bounded. The approximation prop-
erty, i.e., dependence on § remains an open question for

general RKHS, but has been carefully established for spe-
cial kernels. For example, with the kernel k(x,z’) =
1/(1 + exp({x, 2’))) induced by the sigmoidal activation
function, we have £(8) = O(5~2/(?+1) log(4)) for a Lips-
chitz continuous function space C(X’) (Bachl 2014)
Hilbert space embedding of distributions. Hilbert
space embeddings of distributions (Smola et al., 2007)) are
mappings of distributions into potentially infinite dimen-
sional feature spaces,

ty = By [o(2)] = /Xaﬁ(zv)p(x)d:r cP—=H  (6)

where the distribution is mapped to its expected feature
map, i.e., to a point in the feature space. Kernel embedding
of distributions has rich representational power. Some fea-
ture maps can make the mapping injective (Sriperumbudur
et al., 2008), meaning that if two distributions, p(X) and
q(X), are different, they are mapped to two distinct points
in the feature space. For instance, when X C R?, the fea-
ture spaces of many commonly used kernels, such as the
Gaussian RBF kernel, will generate injective embedding.
We can also embed the joint distribution p(z, y) over a pair
of variables using two kernels k(z,z) = (¢(x), ¢(2'))y

and k(z,2') = (1)(2),1(2")) g as
Cox = Ei W(Z) ® ¢(£)]

= P(2) @ ¢(z)p(z,x)dzdx : P — HRG,
ZxX

where the joint distribution is mapped to a point in a ten-
sor product feature space. Based on the embedding of
joint distributions, kernel embedding of conditional distri-
butions can be defined as U, := C.,Cg,' as an operator
H +— G (Song et al., 2013). With Z/lz|1., we can obtain the
expectations easily, i.e.,

E.1a [9(2)] = (9, Uzja, 9(2))7)g- @)
Given i.i.d. samples {(z;, ;) }Y_, from p(z|x), the estima-
tion of U, involves inverse of kernel matrix, therefore,
requires computational cost O(N3).

3 The Dual Embedding Framework

In this section, we propose a novel and sample-efficient
framework to solve problem (). Our framework leverages
Fenchel duality and feature space embedding techniques to
bypass the difficulties of nested expectation and the need
for large sets of samples from conditional distributions. We
start by introducing the interchangeability principle, which
plays a fundamental role in our method.

Lemma 1 (interchangeability principle) Let £ be a ran-
dom variable on = and assume for any £ € =, function
9(+,€) : R — (—o00,+00) is a proper and upper semicon-
tinuous concave function. Then

Eemax g(u,§)] = W Eelg(u(€),)]-

where G(Z) = {u(:) : E — R} is the entire space of

The rate is also known to be unimprovable by [DeVore et al.
(1989).



Learning from Conditional Distributions via Dual Embeddings

TR0
E.
, RO Y , , ,
—_—0) It
u(y) o e,
2%®
' LA - oy : / i ! : 4
» 1J 0 » |
P M N Py 2 A, VaX
> o p———— > NG 4 >0 >‘DV
S s Tl S N\ a \V
-1 ‘a -y -1 '0’ A -1 -1
V.1 N
o L%
" " " 2
S oy o s e e i S5 or S s s e i 1 2 S oy o s e e 1o 3o o o e v o 1 s v 2
X X X X

(a) O-th Iteration (b) 50-th Iteration

(c) 400-th Iteration (d) 2000-th Iteration

Figure 1: Toy example with f* sampled from a Gaussian processes. The y at position x is obtained by smoothing f* with
a Gaussian distribution condition on location x, i.e., y = E,|, [f*(2)] where z ~ p(z|z) = N (z,0.3). Given samples
{x,y}, the task is to recover f*(-). The blue dash curve is the ground-truth f*(-). The cyan curve is the observed noisy y.

The red curve is the recovered signal f(-) and the green curve denotes the dual function u (-,
for each corresponding position x. Indeed, the dual function u(-,

y) with the observed y plugged
y) emphasizes the difference between y and E. |, [f ()]

on every x. The interaction between primal f(-) and dual u(-, y) results in the recovery of the denoised signal.

functions defined on support =

The result implies that one can replace the expected value
of point-wise optima by the optimum value over a func-
tion space. For the proof of lemma[l] please refer to Ap-
pendix [A] More general results of interchangeability be-
tween maximization and integration can be found in (Rock-
afellar and Wets|, (1998, Chapter 14) and (Shapiro and
Dentcheva, [2014, Chapter 7).

3.1 Saddle Point Reformulation

Let the loss function ¢,(-) := £(y,-) in (I) be a proper,
convex and lower semicontinuous for any y. We denote
£;(+) as the convex conjugate; hence £, (v) = max, {uv —
é*( )}, which is also a proper, convex and lower semicon-
tinuous function. Using the Fenchel duality, we can refor-
mulate problem (IJ) as

iy | mox [, G o u - 0] |, ®
Note that by the concavity and upper-semicontinuity of
—£, (), for any given pair (x,y), the corresponding max-
imizer of the inner function always exists. Based on the
interchangeability principle stated in Lemmal[T] we can fur-
ther rewrite (§) as

min max_ P(f,u) =

9
fEF u(-)eG(E) ®

Ezry[f('z’ z) - u(z,y)] - Ezy[@(u(% y))l;
where & = X x Y and G(E) = {u(:) : £ — R} is the
entire function space on =. We emphasize that the max-
operator in (§) and (9) have different meanings: the one
in (B]) is taken over a single variable, while the other one
in (9) is over all possible function u(-) € G(E).

Now that we have eliminated the nested expectation in the
problem of interest, and converted it into a stochastic sad-
dle point problem with an additional dual function space to
optimize over. By definition, ®( f, u) is always concave in
u for any fixed f. Since f(z,x) = (f,¥(z,z)), P(f,u) is
also convex in f for any fixed u. Our reformulation (9) is
indeed a convex-concave saddle point problem.

An example. Let us illustrate this through a concrete ex-
ample. Let f*(-) € F be the true function, and output
y = K., [f*(2)] given z. We can recover the true function
f*(+) by solving the optimization problem

S (- E 7))

In this example, £, (v) = 3(y—v)? and £} (u) = uy+ 3u’.
Invoking the saddle point reformulation, this leads to
min max Eg,. [(f(2)

1 2
FEF ueG(8) —y)u(z,y)] - EEIU [u(z,y)?]

where the dual function u(z,y) fits the discrepancy be-
tween y and K., [f(2)], and thus, promotes the perfor-
mance of primal function by emphasizing the different po-
sitions. See Figure [I] for the illustration of the interaction
between the primal and dual functions.

min[E
feFr oY

3.2 Dual Continuation

Although the reformulation in (9) reveals more structure
of the problem, it is not yet tractable in general. This is
because the dual function u(-) can be an arbitrary function
which we do not know how to represent. In the following,
we will introduce a tractable representation for (9).

First, we define the function u*(:) : = X x Y — R as
the optimal dual function if for any pair (z,y) € E,

u* ($, y) € argmax, cg {u : EzLL[.f(Z? I)] - f;(u)} :
Note the optimal dual function is well-defined since
the optimal set is nonempty. Furthermore, u*(z,y) is
related to the conditional distribution via u*(z,y) €
Oly(E4[f(z,2)]). This can be simply derived from
convexity of loss function and Fenchel’s inequality;
see (Hiriart-Urruty and Lemaréchall [2012)) for a more for-
mal argument. Depending on the property of the loss func-
tion ¢, (v), we can further derive that (see proofs in Ap-
pendix [A):

Proposition 1 Suppose both f(z,x) and p(z|x) are con-

tinuous in x for any z,

(1) (Discrete case) If the loss function £, (v) is continu-
ously differentiable in v for any y € Y, then u*(x,y)
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is unique and continuous in  for any y € Y;

(2) (Continuous case) If the loss function £, (v) is contin-
uously differentiable in (v,y), then u*(x,y) is unique
and continuous in (x,y) on X x Y.

This assumption is satisfied widely in real-world applica-
tions. For instance, when it comes to the policy evaluation
problem in |3| the corresponding optimal dual function is
continuous as long as the reward function is continuous,
which is true for many reinforcement learning tasks.

The fact that the optimal dual function is a continuous
function has interesting consequences. As we mentioned
earlier, the space of dual functions can be arbitrary and
difficult to represent. Now we can simply restrict the
parametrization to the space of continuous functions, which
is tractable and still contains the global optimum of the op-
timization problem in (9). This also provides us the basis
for using an RKHS to approximate these dual functions,
and simply optimizing over the RKHS.

3.3 Feature Space Embedding

In the rest of the paper, we assume conditions described in
Proposition [I] always hold. For the sake of simplicity, we
focus on the case when ) is a continuous seﬂ Hence, from
Proposition[I} the optimal dual function is indeed continu-
ousin (z,y) € 2 = X x . As an immediate consequence,
we lose nothing by restricting the dual function space G(=)
to be continuous function space on =. Recall that with uni-
versal kernels, we can approximate any continuous func-
tion with arbitrarily small error. Thus we approximate the
dual space G(Z) by the bounded RKHS #° induced by a
universal kemnel k((z, ), (a/,y/)) = (6(,y), 62,y ).
Therefore, u(z,y) = (u, (x,y)),,. To distinguish inner
product between the primal function space F and the dual
RKHS #°, we denote the inner product in F as (-, -) .

We can rewrite the objective of the saddle point problem
in (9) as
(I)(fa U) :Ewyz [<.f7 1/)(25’ I)>.7:<ua d)('rv y)>?—[
= £, ((u, d(z,y))90)] (10)
=17 Caytt = Eay [0y ((u, &, 9))20)],

where f(z,z) = (f,9(z, x)) by the definition of F, and
Cony = E.py[th(2,2) ® ¢(x,y)] is the joint embedding of
p(z,x,y) over F x H. The new saddle point approxima-
tion based on dual kernel embedding allows us to ef-
ficiently represent the dual function and bypass the funda-
mental difficulty with insufficient samples from the condi-
tional distributions. There is no need to access either the
conditional distribution p(z|x), the conditional expectation
.|z [-], or the conditional embedding operator I, any-
more, which reduces both the statistical and computational
complexity.

3The same derivation is also applicable to discrete ) with
{uy(2)}yey.

Algorithm 1 Embedding-SGD for Optimization

Il’lpllt: p(m7y)a p(2|.’L‘), ¢(Z,.’E), (/I)(ma y>7 {'Yz > 0}5:1
1: Initialize fy and ug randomly.

2: fori=1,...,tdo
3:  Sample (z;,y;) ~ p(x,y) and z; ~ p(z|x).
4 firr = Hr(fi — v (2, zi)ui(ws, yi)).-
50 Uit = Wys(ui + yilfilzi @) —
V% (ui(wi, y:))] (i, 9i)
6: end for St ot S s
Output: f; = Zlij;f’“t = S

Specifically, given a set of samples (x,y,z), where
(z,y) ~ p(z,y) and z ~ p(z|z), we can now construct
an unbiased stochastic estimate for the gradient, namely,

vf(?z,y,Z(fv u) = w(zax)u(xay)a
vuq)z,yw(fv u) = [f(z7)— Vﬁ;(u(&y))ﬁ(m,y),

with E [V@z’yyz(f, u)] = VO&(f,u), respectively. For
simplicity of notation, we use V to denote the gradient as
well as the subgradient. With the unbiased stochastic gra-
dient, we are now able to solve the approximation problem
(IO by resorting to the powerful mirror descent stochastic
approximation framework (Nemirovski et al.,[2009).

3.4 Sample-Efficient Algorithm

The algorithm is summarized in Algorithm [T} At each it-
eration, the algorithm performs a projected gradient step
both for the primal variable f and dual variable u based
on the unbiased stochastic gradient. The proposed algo-
rithm avoids the need for overwhelmingly large sample
sizes from the conditional distributions when estimating the
gradient. At each iteration, only one sample from the con-
ditional distribution is required in our algorithm!

Throughout our discussion, we make the following stan-
dard assumptions:
Assumption 1 There exists constant scalars C'r, Mz, and
cq, such that for any f € F,u € H?,
E..[|f(22)|3] < Mr, E..[[t(z2)|3] < Cr,
E, [ V€ ()ll3] < cr.

Assumption 2 There exists constant v > 0 such that
k(w,w") < Kk forany w,w’ € X.

Assumption [I] and 2] basically suggest that the variance of
our stochastic gradient estimate is always bounded. Note
that we do not assume any strongly convexity/concavity or
Lipschitz smoothness of the saddle point problem. Hence,
we set the output as the average of intermediate solutions
weighted by the learning rates {7;}, as often used in the
literature, to ensure the convergence of the algorithm.

Define the accuracy of any candidate solution ( f, %) to the
saddle point problem as

€gap(f, 1) = max (f,u) — min &(f,@). (A1)

We have the following convergence result,
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Theorem 1 Under Assumptions [I| and the solution
(ft, ur) after t steps of the algorithm with step-sizes being
= %(7 > 0) satisfies:

Elegun (fos 1) < [(2D% + 46)/7 +1C(6. 1) -

k(BMx+

(12)

where D% = sup . » L fo—flI3 and C(6, k) =
Cg) + %(5 + KZ)QC]:.

The above theorem implies that our algorithm achieves an
overall O(1/+/t) convergence rate, which is known to be
unimprovable already for traditional stochastic optimiza-
tion with general convex loss function (Nemirovski et al.
2009). Note that in principle and in practice, we can also
exploit the mini-batch trick to reduce the variance of the
stochastic gradient; and this could improve the convergence
up to a constant.

With the rate of the convergence of Algorithm [T} in the-
orem [I} let f, be the optimal solution to (I)), we further
achieve the conclusion that

Corollary 1 If f € F is uniformly bounded and ;(v) is
uniformly Lipschitz continuous in v for any vy, then, under

Assumptions |I| an after t steps with v = O (%), the
algorithm provides f; satisfies

- 3/2
E[L() — L(f.)] < O (5\/% ; 5(6)) .

There is clearly a delicate trade-off between the optimiza-
tion error and approximation error. Using large ¢ will in-
crease the optimization error but decrease the approxima-
tion error. When ¢ is moderately large (which is expected in
the situation when the optimal dual function has small mag-
nitude), our dual kernel embedding algorithm can achieve
an overall O(1/¢2) sample complexity when solving learn-
ing problems in the form of (I). For the analysis details,
please refer to Appendix [C|

13)

4 Applications

In this section, we discuss in detail how the dual embed-
ding can be applied to solve two important learning prob-
lems, i.e., learning with invariance and policy evaluation in
reinforcement learning, which are special cases of the opti-
mization in (I)) and satisfy the assumptions for the conver-
gence of our algorithm. We tailor the proposed algorithm
for the respective learning scenarios and unify several ex-
isting algorithms for each learning problem into our frame-
work. Due to the space limit, we focus only on algorithms
with kernel embeddings. Extended algorithms with random
feature, doubly SGD (Dai et al., [2014), neural networks as
well as their hybrid can be found in Appendix [E]

4.1 Learning with Invariant Representations
Invariance learning. The goal is to solve the optimization
, which learns a function in RKHS H with kernel k. Ap-
plying the dual kernel embedding, we end up solving the
saddle point problem

min meax E.o [(f,(2))5 - u(z)] (14)

fer u y
~Eay [ (u(@))] + S 1 f1I7

where H is the dual RKHS with the universal kernel intro-
duced in our method.

Remark. The proposed algorithm bears some similarities
to virtual sample techniques (Niyogi et al.l {1998} [Loosli
et al., 2007) in the sense that they both create examples
with prior knowledge to incorporate invariance. In fact, the
virtual sample technique can be viewed as optimizing an
upper bound of the objective (2) by simply moving the con-
ditional expectation outside, i.e., By , [((y, E. |, [f(2)])] <
Ey.y.22 [€(y, f(2))], where the inequality comes from the
convexity of £(y, -).

Remark.  The learning problem (@) can be under-
stood as learning with RKHS H with Haar-Integral
kernel k which is generated by k as k(m ) =
(Epzio) [V (2)]s Eparjany [0 (2)]) W}th implicit feature
map Ep(z‘m)[w( 2)]. If f € H, thfen, flx) =
Ez\w[<f’w(z)>7-t} <f’ zlx[ (Z)D € H. The Haar-
Integral kernel can be viewed as a special case of Hilber-
tian metric on probability measures on which the output
of function should be invariant (Hein and Bousquet, [2005).
Therefore, other kernels defined for distributions, e.g., the
probability product kernel (Jebara et al.,|2004), can also be
used in incorporating invariance.

Remark. Robust learning with contamined samples
can also be viewed as incorporating an invariance prior
w.rt. the perturbation distribution into learning proce-
dure. Therefore, rather than resorting to robust optimiza-
tion techniques (Bhattacharyya et al.l 2005} [Ben-Tal and!
Nemirovskil, 2008), the proposed algorithm for learning
with invariance serves as a viable alternative for robust
learning.

4.2 Reinforcement Learning
Policy evaluation. The goal is to estimate the value func-
tion V™(-) of a given policy 7(a|s) by minimizing the
mean-square Bellman error (MSBE) (3).
With V™ € H with feature map (-), ie., V™(s) =
(V™,4(s))5. this optimization is clearly a special case
of (I as:
min B, [(R(s,a) = Byjos (V7 0(5) = 70())%)]
vreH

(15)
Applying the dual kernel embedding, we end up solving
the saddle point problem

i, g B | (R(s.a)=(V™26(s) = y(s) ) u(s)]
5 En(s)] 6)

Remark. The algorithm can be extended to off-policy set-
ting via the adjusted objective with importance ratio be-
tween current policy and the behavior policy.

Remark. We used different RKHSs for primal and dual
functions. If we use the same finite basis functions to
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parametrize both the value function and the dual function,
ie., V™(s) = 079 (s) and u(s) = nT4(s), where ¥(s) =
[V:(2)]9, € R%, 0,1 € RY, our saddle point problem
reduces to ming ||Es,a,s/ [A"(s’a’s/)w”|]2E[w¢T]—l’ where
Ag(s,a,s") = R(s,a) +yV™(s) — V™(s). This is ex-
actly the same as the objective proposed in (Sutton et al.,
2009) of gradient-TD2. Moreover, the update rules in
gradient-TD2 can also be derived by conducting the pro-
posed Embedding-SGD with such parametrization. For de-
tails of the derivation, please refer to Appendix [D}

From this perspective, gradient-TD2 is simply a special
case of the proposed Embedding-SGD applied to policy
evaluation with particular parametrization. However, in the
view of our framework, there is really no need to restrict
to the same finite parametric model for the value and dual
functions. As further demonstrated in our experiments,
with different nonparametric models, the performances can
be improved significantly. See details in Section[5.2]

The residual gradient (Baird, [1995) is applying stochastic
gradient descent to E, 4 o [Ag(s,a,s')?] with parametric
form V7 (s) = 074 (s). Indeed, this objective is an upper
bound of MSBE (B)) because of the convexity of square loss.

Our algorithm is also fundamentally different from the TD
algorithm even in the finite state case. The TD algorithm
updates the state-value function directly by an estimate of
the temporal difference based on one pair of samples, while
our algorithm updates the state-value function based on ac-
cumulated estimate of the temporal difference, which intu-
itively is more robust.

5 Experiments

We test the proposed algorithm on two applications, i.e.,
learning with invariant representation and policy evalua-
tion. For full details of our experimental setups, please
refer to Appendix [

5.1 Experiments on Invariance Learning

To justify the algorithm for learning with invariance, we
test the algorithm on two tasks. We first apply the algorithm
to robust learning problem where the inputs are contam-
inated, and then, we conduct comparison on a molecular
energetics prediction problem (Montavon et al., 2012). We
compare the proposed algorithm with SGD with the vir-
tual samples technique (Niyogi et al.l [1998} |Loosli et al.)
2007) and SGD with finite sample average for inner expec-
tation (SGD-SAA). We use Gaussian kernels in all tasks.
To demonstrate the sample-efficiency of our algorithm, 10
virtual samples are generated for each datum in the training
phase. The algorithms are terminated after going through
10 rounds of the dataset. We emphasize that SGD with vir-
tual samples is optimizing an upper bound of the objective,
and thus, it is predictable that our algorithm can achieve
better performance. We plot this result with a dotted line.

Noisy measurement. We generate a synthetic dataset by
z ~ U([-0.5,0.5]), x =T+ 0.05¢,
y = (sin(3.537) + cos(7.77%)) exp(—1.67|Z|)
+ 3%%40.0le,

where the contamination e ~ A(0, 1). Only (x,y) are pro-
vided to learning methods, while Z is unknown. The virtual
samples are sampled from z ~ N (z, 0.052) for each obser-
vation. The 10 runs average results are illustrated in Fig-
ure 2fa). The proposed algorithm achieves average MSE
as low as 0.0029 after visit 0.1M data, significantly better
than the alternatives.

QuantumMachine. We test the proposed algorithm for
learning with invariance task on the QuantumMachine 5-
fold dataset for atomization energy prediction. We follow
the same setting in (Montavon et al., [2012)) where the data
points are represented by Coulomb matrices, and the vir-
tual samples are generated by random permutation. The
average results are shown in Figure Jb). The proposed al-
gorithm achieves a significant better solution, while SGD-
SAA and SGD with virtual samples stuck in inferior solu-
tions due to the inaccurate inner expectation estimation and
optimizing indirect objective, respectively.

5.2 Experiments on Policy Evaluation

We compare the proposed algorithm to several prevail-
ing algorithms for policy evaluation, including gradient-
TD2 (GTD2) (Sutton et al., 2009; Liu et al., 2015)), residual
gradient (RG) (Baird||1995)) and kernel MDP (Grunewalder
et al.,|2012b) in terms of mean square Bellman error (Dann
et al., 2014). We should point out that kernel MDP is not
an online algorithm, since it must visit the entire dataset
when estimating the embedding and inner expectation in
each iteration. We conduct experiments for policy evalua-
tion on several benchmark datasets, including navigation,
cart-pole swing up and PUMA-560 manipulation. We use
Gaussian kernels in the nonparametric algorithms, i.e., ker-
nel MDP and Embedding SGD, while we test with random
Fourier features (Rahimi and Recht, 2008) for the paramet-
ric competitors, i.e., GTD2 and RG. In order to demonstrate
the sample efficiency of our method, we only use one sam-
ple from the conditional distribution in the training phase,
therefore, the cross-validation based on Bellman error is
not appropriate. We perform a parameter sweep as (Silver
et al,[2014). See appendix [F for detailed settings. Results
are averaged over 10 independent trials.

Navigation. The navigation in an unbounded room ex-
periment extends the discretized MDP in (Grunewalder
et al.,|2012b) to a continuous state and action MDP. Specif-
ically, the reward is R(s) = exp(—100||s||?). We eval-
uate the deterministic policy 7(s) = —0.2sR(s), follow-
ing the gradient of the reward function. The transition
distribution follows a Gaussian distribution, p(s’|a,s) =
N(s + a,0.11). Results are reported in Figure[3(a).
Cart-pole swing up. The cart-pole system consists of a
cart and a pendulum. It is an under-actuated system with
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Figure 3: Policy evaluation.

only one control action on the cart. The reward is maxi-
mized if the pendulum is swung up to 7 angle with zero
velocity. We evaluate a linear policy 7(s) = As + b where
A € R and b € R'¥!. Results are reported in Fig-
ure 3[b).

PUMA-560 manipulation. PUMA-560 is a robotic arm
that has 6 degrees of freedom with 6 actuators on each joint.
The task is to steer the end-effector to the desired position
and orientation with zero velocity. The reward function is
maximum if the arm is located to the desired position. We
evaluate a linear policy 7(s) = As + b where A € R6*12
and b € RO*!. Results are reported in Figure 3c).

In all experiments, the proposed algorithm performs con-
sistently better than the competitors. The advantages of the
proposed algorithm mainly come from three aspects: i), it
utilizes more flexible dual function space, rather than the
constrained space in GTD?2; ii), it directly optimizes the
MSBE, rather than its surrogate as in GTD2 and RG; iii),
it directly targets on value function estimation and forms
an one-shot algorithm, rather than a two-stage procedure
in kernel MDP including estimating conditional kernel em-
bedding as intermediate step.

6 Conclusion

We propose a novel sample-efficient algorithm,
Embedding-SGD, for addressing learning from con-
ditional distributions problems. Our algorithm benefits

from a novel use of saddle point and kernel embedding
techniques, to mitigate the difficulty with limited samples
from conditional distribution as well as the presence of
nested expectations. To our best knowledge, among all
existing algorithms able to solve such problems, this is
the first algorithm that allows us to take only one sample
at a time from the conditional distribution yet comes with
provable theoretical guarantees.

We apply the proposed algorithm to solve two fundamental
problems in machine learning, i.e., learning with invariance
and policy evaluation in reinforcement learning. The pro-
posed algorithm achieves the state-of-the-art performance
on these two tasks compared with existing algorithms.

In addition to its wide applicability, our algorithm is also
very versatile and can be easily extended with random fea-
tures|[E.T] or the doubly stochastic gradient trick[E.2] More-
over, we can extend the framework to the dual neural net-
work embedding It should be emphasized that since
the primal and dual function spaces are designed for differ-
ent purposes, although we use RKHSs for both in the main
text for simplicity, we can use different function approxi-
mators separately for primal and dual functions.
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