
Value-Aware Loss Function for Model-based Reinforcement Learning

Amir-massoud Farahmand André M.S. Barreto Daniel N. Nikovski
Mitsubishi Electric Research
Laboratories (MERL), USA

National Laboratory for Scientific
Computing (LNCC), Brazil

Mitsubishi Electric Research
Laboratories (MERL), USA

Abstract

We consider the problem of estimating the transition probability kernel to be used by a model-based
reinforcement learning (RL) algorithm. We argue that estimating a generative model that minimizes a
probabilistic loss, such as the log-loss, is an overkill because it does not take into account the underlying
structure of decision problem and the RL algorithm that intends to solve it. We introduce a loss function
that takes the structure of the value function into account. We provide a finite-sample upper bound for
the loss function showing the dependence of the error on model approximation error, number of samples,
and the complexity of the model space. We also empirically compare the method with the maximum
likelihood estimator on a simple problem.

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copyright
2017 by the author(s).

Value-Aware Loss Function for Model-based Reinforcement Learning

1 INTRODUCTION

The standard approach to model-based reinforcement learning (RL) [Sutton and Barto, 1998; Szepesvári, 2010] is
to use data Dn = {(Xi, Ai, Ri, X

′
i)}ni=1 to estimate the transition probability kernel P∗ by P̂ and the expected

reward function r by r̂. The learned model is then used to generate new samples, see e.g., [Sutton et al., 2008;
Farahmand et al., 2009; Hester and Stone, 2013; Deisenroth et al., 2013, 2015]. A standard RL/Planning algorithm
can use these samples to find a close to optimal policy, possibly by first finding an approximation to the optimal
(action-)value function. Estimating P∗ by P̂ is the problem of conditional probability (density/distribution)
estimation and the estimating r by r̂ is a regression problem. In the rest of this work, we only focus on learning
P∗.1

There are several general approaches to estimate P∗ such as Maximum Likelihood Estimation (MLE), Maximum
Entropy (MaxEnt) estimation, the Maximum A Posteriori (MAP) estimation, and Bayesian posterior inference.
We argue that these conventional approaches to find a generative model might be an overkill, thus may not be
required.

For example, consider the ML estimate, which is the minimizer of the empirical negative-log loss, which in turn

is an empirical approximation to the KL divergence KL(P1||P2) =
∑
x∈X P1(x) log P1(x)

P2(x) .2 Minimizing the KL

divergence is generally seen as a desirable goal for learning a probabilistic model because KL(P1||P2) = 0 if and
only if P1 and P2 are the same almost surely. Given dataset Dn = {Xi}ni=1 with Xi ∼ P ∗, we define the empirical
measure Pn(·) = 1

n

∑n
i=1 δXi(·). The MLE within a probability model space M is

P̂ ← argmin
P∈M

KL(Pn||P) ≡ argmax
P∈M

1

n

∑
Xi∈Dn

logP (Xi). (1)

In the context of model-based RL, learning P̂ that minimizes a negative-log loss or other “probabilistic” losses
leads to an estimate that tries to model all aspects of the environment. This might be beyond the requirement
of solving the RL problem effectively. It might be the case that some aspects of the environment are irrelevant
to find a good or optimal policy. For example, consider a visually-enabled robot that is supposed to learn how
to navigate in a building. If we consider the camera image as a part of the state of the robot, trying to learn a
transition probability kernel means that we have to learn how the camera image changes when the robot takes
certain actions. This is a very high-dimensional state space and trying to learn such a conditional distribution with
high enough accuracy, in the log-loss sense, is quite difficult. Nonetheless, modeling the probability distribution
at that level of accuracy is not required to learn a policy that can navigate the robot in the building just fine.
The only aspect of the model that is really required is a crude model that describes the building’s topology as
well as distances between rooms, and maybe the location of the objects. The robot does not really need to know
the detail of paintings on the walls, the texture of objects, and many other visual detail of the building. On the
other hand, if the goal is to have an interior decorator robot that suggests how to redecorate the building to
make it visually appealing, all those visual information is required.

The difference between the navigator robot and the decorator one is not in the transition model of their
environment, but is in the decision problem that they have to solve. The difference in the decision problem is
reflected in the difference in the reward functions and as a result in the value functions. It is desirable to have a
model learning formalism that takes the decision problem, or at least some aspects of it, into account.

Furthermore, the implicit assumption that model approximation error can be made zero, that is, P∗ belongs to
M used for estimation, may not be correct for many estimators. When we have the model approximation error,
the model learning method must make a compromise in the choice of the estimate: None of the models in M
would be the same as P∗ (e.g., in the almost sure sense), so the estimation method has to choose a model with a
minimum error with respect to (w.r.t.) some loss function. The choice of the loss function becomes important
then. A loss function that is designed for a particular decision problem in hand provides a better approximation,
for the task of solving the very same decision problem, than a probabilistic one that does not take the decision
problem into account.

1An extended abstract version of this paper has been presented at European Workshop on Reinforcement Learn-
ing [Farahmand et al., 2016].

2We use P , P̂ , etc. to denote an unconditional probability distribution over X , and we use P, P̂, etc. to denote a
conditional transition probability kernel.

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

Algorithm 1 Generic Model-based Reinforcement Learning Algorithm

// MDP (X ,A,R∗,P∗, γ)
// K: Number of interaction episodes
// M: Space of transition probability kernels
// G: Space of reward functions
Initialize a policy π0

for k = 0 to K − 1 do
Generate training set D(k)

n = {(Xi, Ai, Ri, X
′
i)}ni=1 by interacting with the true environment (potentially using πk),

i.e., (Xi, Ai) ∼ νk with X ′i ∼ P∗(·|Xi, Ai) and Ri ∼ R∗(·|Xi, Ai).

P̂ ← argminP∈M LossP(P;∪k
i=0D

(i)
n) {e.g., by the gradient descent specified in Theorem 1 for VAML or (14) for

MLE}
r̂ ← argminr∈G LossR(r;∪k

i=0D
(i)
n)

πk+1 ← Planner(P̂, R̂) {e.g., Fitted Q-Iteration}
end for
return πK

These arguments suggest that generic distribution estimation approaches such as MLE, which minimizes the
KL-divergence w.r.t. the empirical distribution, might not be the best candidate for learning a model to be
used within a model-based RL framework. Can we design a better “decision-aware” loss function that takes the
decision problem into account?

This paper is a step towards incorporating some aspects of the underlying decision problem into model learning.
We go beyond the “vanilla” model learning, and define a new loss function that incorporate the structure of
the value function to learn the transition model (Section 2). We call the approach based on this loss function
Value-Aware Model Learning (VAML). We also provide a finite-sample upper bound guarantee for VAML in
Section 3 showing the effect of the model approximation error, number of training samples, and the complexity
of the model space. This guarantees the soundness of the algorithm. We empirically study the model learned
by VAML/MLE within a complete model-based RL framework in a simple finite MDP problem. Moreover, we
analyze the model approximation properties of VAML vs. MLE through a series of simple, but illuminating,
examples (Section 4). We also provide additional empirical results studying various aspects of VAML vs. MLE.
The general conclusion of these results is that VAML is superior to MLE whenever we have a model approximation
error, i.e., the true transition model does not belong to the class of models in which our estimator is selected.

2 VALUE-AWARE MODEL LEARNING

Algorithm 1 describes a generic model-based RL agent. It interacts with the environment, which is specified by
an unknown Markov Decision Process (MDP) (X ,A,R∗,P∗, γ), to collect data Dn. Here X is the state space, A
is the action space, R∗ is the reward distribution, and P∗ is the transition probability kernel, and 0 ≤ γ < 1 is
the discount factor [Szepesvári, 2010]. The data is used to learn an estimate P̂ of the true transition probability
P∗ of the environment and an estimate r̂ of the expected reward. The model learning step is usually done using
an MLE, e.g., counting the number of transitions from state-action pair (x, a) to another state x′ in a finite
state-action MDP is such an estimate. The learned model is then used by a planning algorithm Planner to find a
policy, with the goal of finding a close to optimal policy. The new policy might be used to generate more data
and improve the model.

There are many variations to each step of this generic algorithm such as how to collect new data points (cf. [Hester
and Stone, 2013]) or what Planner should we use from all possible value-based, policy search, etc. algorithms.
Moreover, the interaction with the environment might be in a one-shot batch setting (K = 1) or in a continual
online setting, and the spectrum in between.

The main thesis of this work is that estimating the model should be influenced by the way Planner is going to use
it. So we focus on estimating the transition probability and we study how we should define a loss function LossP .
We ignore all other important issues regarding designing a model-based RL algorithm for the moment in the rest
of this work, except in the section on empirical studies (Section 5) where we choose a particular algorithm as
Planner.

Let Planner be an algorithm that receives a model P̂ and returns a policy π ← Planner(P̂). We assume that the
reward function is already known to Planner, so we do not explicitly pass it as an argument. For a user-defined

Value-Aware Loss Function for Model-based Reinforcement Learning

initial probability distribution ρ ∈ M̄(X), with M̄(X) being the space of probability distributions on X , we
evaluate the performance of π by

J(π) =

∫
dρ(x)V π(x). (2)

The goal of a successful model learner can then be defined as follows: Given a dataset Dn = {(Xi, Ai, X
′
i)}ni=1

with Zi = (Xi, Ai) ∼ ν(X ×A) ∈ M̄(X ×A), potentially different from ρ, and X ′i ∼ P∗(·|Xi, Ai), find P̂ such

that J(π) for π ← Planner(P̂) is as large as possible. This is a very generic goal. To make it more concrete, we
have to make a few choices. First suppose that Planner uses the Bellman optimality operator defined based on
P̂ to find a Q̂∗, that is T̂ ∗ : Q 7→ r + γP̂maxaQ, and then outputs π = π̂(·; Q̂∗), the greedy policy w.r.t. Q̂∗

defined as π̂(x;Q) = argmaxa∈AQ(x, a). The use of the Bellman [optimality] operator is central to value-based
approaches such as the class of (Approximate) Value Iteration or (Approximate) Policy Iteration algorithms.

This is still too general, so we focus on the more specified goal of finding a P̂ such that the difference between
T ∗Q and T̂ ∗Q is not large. We may express this goal by defining the following cost (loss):

c(P̂,P∗;V)(x, a) =
∣∣∣[P∗(·|x, a)− P̂(·|x, a)

]
V (·)

∣∣∣ =
∣∣∣〈P∗(·|x, a)− P̂(·|x, a) , V

〉∣∣∣
=

∣∣∣∣∫ [P∗(dx′|x, a)− P̂(dx′|x, a)
]
V (x′)

∣∣∣∣ , (3)

in which we substituted maxaQ(·, a) with V to simplify the presentation. In the rest of the paper, we may
sometimes use Pz(·) with z = (x, a) ∈ Z = X × A to refer to the probability distribution P(·|x, a), so
PzV =

∫
P(dy|x, a)V (dy).

It might be argued that since∣∣∣〈P∗(·|x, a)− P̂(·|x, a) , V
〉∣∣∣ ≤ ∥∥∥P∗(·|x, a)− P̂(·|x, a)

∥∥∥
1
‖V ‖∞ , (4)

it is enough to learn P̂ such that the `1-norm of its difference with the true P∗ is small. This can be achieved by
minimizing the KL divergence because Pinsker’s inequality shows that for two probability distributions P1 and
P2, we have3

‖P1 − P2‖1 ≤
√

2KL(P1||P2). (5)

These two upper bounds together justify the use of MLE since MLE is the minimizer of the empirical approximation
of the KL divergence, as shown in Section 1. This is the argument, sometimes implicit, behind most model-based
RL algorithms that use a log-loss or a similar “probabilistic” loss to estimate the model.

Finding a minimizer for the KL divergence, Hellinger distance, `1 loss, or other losses that depend only on the
probabilities, however, ignores the underlying decision problem, which is specified through the reward/value
function. As an extreme example, suppose that r(x) = c for all x ∈ X , so V π is constant for all policies, and the
optimal policy would not have any preference over any of the actions. So even if X is a very large space (e.g., a
subset of Rd with a large d), and however complex P∗ is (e.g., the dynamics is not very regular), learning a P̂
sufficient to find the optimal policy is indeed very easy: Any transition probability distribution suffices to find
the optimal policy. In contrast, ‖P̂ − P∗‖1 goes to zero at a convergence rate that depends on dimension d and
regularities of P∗, and can be very slow, e.g., O(n−1/2d). An estimator for P∗ that ignores this extra information
requires more samples in order to provide a guarantee that the error in the model-based planning is small.4

Moreover, and maybe more importantly, if the true transition kernel P∗ does not belong to the model space M
from which we estimate the model P̂ , we can only hope to find the “closest” model within M to P∗. The notion
of closeness, however, depends on the distance measure. A distance measure that explicitly takes into account the
decision problem and what really matters for Planner can be superior to the one that does not.

Returning to (3), there are three hurdles that should be addressed. The first is that c(P̂,P∗;V)(x, a) is defined
as a pointwise measure of error, but we would like to learn a model that is valid for the whole state-action

3Or with a different constant depending on the base of the logarithm used. Here it is with the natural logarithm.
4The relationship between the probabilistic loss and the LHS of (4) is a bit more subtle than what we portrayed here,

but this should be enough for our current discussion. Refer to Section 4 for a discussion on this issue.

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

space X × A. The second is that V itself is not known, so one cannot optimize this cost as is. The third is
that P∗, which is the main object of interest, is not known. Instead we have Dn = {(Xi, Ai, X

′
i)}ni=1 and as a

result the empirical conditional distribution Pn(·|x, a) = 1
n

∑n
i=1 δX′i|Xi,Ai(·|x, a). Here the conditional Dirac’s

delta function is defined as follows: For a measurable set S, δX′i|Xi,Ai(S|x, a) = 1 whenever (x, a) = (Xi, Ai) and
X ′i ∈ S, and 0 otherwise.

We can easily address the first concern by defining the cost functional as the expected squared pointwise cost
w.r.t. a probability distribution ν ∈ M̄(X ×A), i.e.,

c22,ν(P̂,P∗;V) =

∫
dν(x, a)

∣∣∣∣∫ [P∗(dx′|x, a)− P̂(dx′|x, a)
]
V (x′)

∣∣∣∣2 . (6)

The choice of the L2(ν)-norm of the pointwise cost is motivated by the relation between the performance loss
J(π∗) − J(π) = ‖V ∗ − V π‖1,ρ and the L2(ν) of quantities such as the Bellman error Q − TπQ in API or the
approximation error T ∗Qk − Qk+1 in AVI [Farahmand et al., 2010]. Somehow looser relationship also exists
between the performance loss and the L1(ν) error [Munos, 2007], but working with the squared error is easier in
our future derivations. One could use the supremum norm too, but it would be too conservative. The choice
of ν determines where in the state-action space we have to emphasize the accuracy of the model, in the sense
of how well it can approximate the effect of the Bellman operator evaluated at that point. From the error
propagation results such as Munos [2007]; Farahmand et al. [2010] we know that the exact relation between ν and
the performance loss, which is defined w.r.t. ρ, is often complicated, so choosing a ν such that the performance
loss is minimized is far from trivial. The distribution ν is often selected to be the distribution of data (X,A) ∼ ν,
and this is what we assume in the rest of this work, but it can be different too, e.g., by using importance sampling.
We do not study the question of how to choose ν in this work, and we assume that it is given.When the choice of
ν is clear from the context, we may simply write c(P̂,P∗;V).

To address the second concern, not knowing V , we may take a robust approach w.r.t. the choice of value function.
We define the cost function to reflect that our goal is to find a P̂ that is suitable for all V in a given value function
space F . Therefore, we define

c22,ν(P̂,P∗) =

∫
dν(x, a) sup

V ∈F

∣∣∣∣∫ [P∗(dx′|x, a)− P̂(dx′|x, a)
]
V (x′)

∣∣∣∣2 . (7)

To understand this loss better, let us focus on a single state-action pair (x, a) and study the pointwise cost.5 Note
that even though

sup
V ∈F

∣∣∣[P∗(·|x, a)− P̂(·|x, a)]V (·)
∣∣∣ ≤ ∥∥∥P̂(·|x, a)− P∗(·|x, a)

∥∥∥
1

sup
V ∈F
‖V ‖∞ , (8)

the LHS is often much smaller than the upper bound. They would only become equal when F is the space of
bounded measurable functions, which is much larger than the usual function spaces that we often deal with,
e.g., defined based on a finite set of basis or even a reproducing kernel Hilbert space (RKHS). As the goal is
to minimize the LHS of (8), and because its RHS can be a loose upper bound for most choices of F , directly
optimizing the LHS can lead to better models compared to minimizing the `1 loss or the KL distance (minimized
by MLE), which itself is yet another level of upper bounding according to (5).

The loss function (7) reflects the influence of the value function on the model-learning objective. If we happen to
know that V has certain regularities, e.g., it belongs to the Sobolev space Wk(Rd) or a reproducing kernel Hilbert
space, this loss function lets us focus on learning a model that can discriminate between such value functions,
and not more.

To address the last concern, one approach is to follow the usual recipe in machine learning and statistics, the
Empirical Risk Minimization (ERM), by replacing the true state transition kernel P∗ with the observed empirical
distribution Pn and ν ∈ M̄(X × A) with the empirical measure νn(·) = 1

n

∑n
i=1 δ(Xi,Ai)(·). Theorem 2 shows

5One might argue that it would be better to have the supremum over V outside the integral over state-actions. We study
this a bit further in Appendix A, but we do not pursue this path much more as it does not seem to be as computationally
appealing as the current formulation.

Value-Aware Loss Function for Model-based Reinforcement Learning

that under certain standard conditions, this is indeed a sound procedure. The result would be the following cost
functional:

c22,n(P̂) = c22,νn(P̂,Pn) =
1

n

∑
(Xi,Ai)∈Dn

sup
V ∈F

∣∣∣∣∫ [Pn(dx′|Xi, Ai)− P̂(dx′|Xi, Ai)
]
V (x′)

∣∣∣∣2

=
1

n

∑
(Xi,Ai)∈Dn

sup
V ∈F

∣∣∣∣V (X ′i)−
∫
P̂(dx′|Xi, Ai)V (x′)

∣∣∣∣2 . (9)

The output of VAML is

P̂ ← argmin
P∈M

c22,n(P̂). (10)

To completely specify the algorithm, we have to choose F and M. We do this in the rest of this section.

2.1 Derivation of supf∈F

〈
P − P̂ , f

〉
In this section, we derive supf∈F

〈
P − P̂ , f

〉
for P, P̂ ∈ M̄(X) and f : X → R. This is similar to what we

have in (7) with the difference that instead of working with conditional probabilities, we work with probability
distributions defined on X . To distinguish these two cases we use P , P̂ , and f instead of P∗, P̂, and V .

Let φ : X → Rp be a feature map, and define the function space FB =
{
fθ(x) = φ>(x)θ : θ ∈ Rp, ‖θ‖2 ≤ B

}
. In

what follows, we may use 〈 · , · 〉Θ to denote the inner product in the space of parameters, i.e., Rp, and similarly
for 〈 · , · 〉X . We have

sup
fθ∈FB

〈
P − P̂ , f

〉
X

= sup
fθ∈FB

∫
(P − P̂)(dx)φ>(x)θ

= sup
θ∈Rp,‖θ‖2≤B

〈∫
(P − P̂)(dx)φ>(x) , θ

〉
Θ

= B

∥∥∥∥∫ (P − P̂)(dx)φ>(x)

∥∥∥∥
2

.

The last equality is because of the relationship between the `2-norm and its corresponding inner product, which
can be seen by noticing that the Cauchy-Schwarz inequality becomes an equality whenever two vectors are linearly
dependent.

This equality shows that minimizing the LHS w.r.t. P̂ is equivalent to minimizing the `2-norm of the projection
of P − P̂ onto the vector-valued function φ. The error in distribution P − P̂ does not contribute to the LHS
whenever it is orthogonal to the features. This is appealing as it shows that the aspects of the probability
distribution that cannot possibly contribute to the expectation of any f ∈ FB should not contribute to the loss
that is used for learning the probability distribution P .

To find the minimum, we can follow the gradient descent of the squared norm. Before doing that, we substitute

P with the empirical distribution Pn defined based on Dn = {Xi}ni=1. Also suppose that M =
{
P̂w : w ∈ Rp′

}
in which P̂w is an exponential family defined by features ψ : X → Rp′ and parameter w ∈ Rp′ , i.e.,

P̂w(dx) =
exp

(
ψ>(x)w

)∫
exp (ψ>(x′)w) dx′

. (11)

For this model, one can verify that

∇wP̂w(x) = P̂w(x)

[
ψ>(x)−

∫
P̂w(dx′)ψ>(x′)

]
. (12)

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

Therefore, for the squared pointwise error we have

∇w

∥∥∥∥∥
∫
P̂w(dx)φ>(x)− 1

n

n∑
i=1

φ(Xi)

∥∥∥∥∥
2

2

=

2

[∫
P̂w(dx)φ>(x)− 1

n

n∑
i=1

φ(Xi)

]> ∫
φ(x)∇wP̂w(x)dx =

2
[
EP̂w [φ(X)]− En [φ(Xi)]

]> [
EP̂w

[
φ(X)ψ>(X)

]
− EP̂w [φ(X)]EP̂w

[
ψ>(X)

]]
=

2
[
EP̂w [φ(X)]− En [φ(Xi)]

]>
CovP̂w (φ(X), ψ(X)) ,

in which we used En [·] to denote the expectation w.r.t. the empirical distribution defined based on Dn, and
CovP̂w (φ(X), ψ(X)) as the cross-covariance between φ(X) and ψ(X) w.r.t. the distribution P̂w.

2.2 The Gradient of c22,n(P̂)

Following derivations similar to the simpler case of Section 2.1, we can obtain the gradient of (9). Extending (11) to
conditional distributions, we choose P̂ = P̂w as an exponential family described by features φ′ : X ×A×X → Rp′

and the weight vector w ∈ Rp′ , i.e.,

P̂w(dx′|x, a) =
exp

(
φ′>(x′|x, a)w

)∫
exp (φ′>(x′′|x, a)w) dx′′

dx′. (13)

We consider the case that the value function belongs to the function space F = FB ={
Vθ(x) = φ>(x)θ : θ ∈ Rp, ‖θ‖2 ≤ B

}
with φ : X → Rp being the feature map.

The choice of linear value function approximator is common in the RL literature [Sutton and Barto, 1998;
Szepesvári, 2010]. The features φ might either be manually-designed (e.g., [Silver et al., 2007; Liang et al., 2016])
or automatically generated data-dependently, e.g., [Petrik, 2007; Mahadevan and Maggioni, 2007; Parr et al.,
2007; Mahadevan and Liu, 2010; Geramifard et al., 2011; Farahmand and Precup, 2012; Böhmer et al., 2013;
Milani Fard et al., 2013]. Also note that even some deep neural network-based RL algorithms, such as DQN [Mnih
et al., 2015], use a linear output layer to represent the value function. Therefore, whenever their hidden layers are
fixed, which means that φ would be fixed, they have the same structure as F here.

Note that in general features φ′(x′|x, a) of the probability model P̂ are different from the features φ(x) used
to represent the value function. Of course, we may choose them to be related, for example by defining
φ′(x|x, a) = h(x, a)φ(x′) for some function h(x, a).

With similar derivations, we obtain the following theorem.

Theorem 1. Consider the parameterization (13) of the estimated probability transition kernel P̂w, and the value
function space F = FB. The gradient of c22,n(P̂w) w.r.t. the parameter w is

∇wc22,n(P̂w) =

2B2

n

n∑
i=1

[∫
P̂w(dx′|Xi, Ai)φ

>(x′)− φ(X ′i)

]> [∫
P̂w(dx′|Xi, Ai)φ(x′)φ′>(x′|Xi, Ai)−∫

P̂w(dx′|Xi, Ai)φ(x′)

∫
P̂w(dx′|Xi, Ai)φ

′>(x′|Xi, Ai)

]
=

2B2

n

n∑
i=1

[
EX′∼P̂w(·|Xi,Ai) [φ(X ′)]− φ(X ′i)

]>
CovX′∼P̂w(·|Xi,Ai) (φ(X ′), φ′(X ′|Xi, Ai)) .

The loss function has two main terms. The first term computes the difference between the empirical average
of the value function features φ(X ′i) and its expectation EX′∼P̂w(·|Xi,Ai) [φ(X ′)] according to the model with
parameter w. So this term encourages finding a model that “matches” according to the features φ of the value

Value-Aware Loss Function for Model-based Reinforcement Learning

function space F . The other term is the cross-covariance between the features φ of the value function and the
features φ′ of the model. This term might be seen as a weighting term for the first one.

It is instructive to compare this gradient with the gradient of the negative log-loss (1) with the same exponential
model, which is

1

n

n∑
i=1

[
EX′∼P̂w(·|Xi,Ai)

[
φ′>(X ′|Xi, Ai)

]
− φ′>(X ′i|Xi, Ai)

]
. (14)

One can interpret this by saying that MLE is trying to find P̂w such that the expected value of model features φ′

evaluated at the next-state matches the empirical values. The matching is based on model features φ′ and not
the value features φ. One might see that for finite MDPs with exact representation of both value function and
the model (i.e., lookup tables for both φ and φ′), the asymptotic solutions of VAML and MLE are the same, but
since their gradients on the way are not, they approach that point differently.

Working with exponential family can be computationally expensive, no matter whether we use MLE or VAML. To
begin with, even sampling from (13) requires the computation of the normalizing factor (i.e., partition function),
which except in special cases such as for Gaussian distributions, does not have a closed-form solution. The second
issue is that to compute the gradients required for MLE or VAML, we require to estimate certain expectations
(and covariance matrices). This can be challenging too. On the positive side, however, these computations,
have been the subject of many years of research; and there are already many methods, exact or approximate,
to evaluate this general family of probability distributions, e.g., various Monte Carlo estimates or variational
methods [MacKay, 2003; Goodfellow et al., 2016]. Moreover, we may not really need to have a very accurate
estimate of the gradients in VAML or MLE in order to minimize the cost function. It might be enough to only
have a few samples from the learned distribution to estimate the “direction” of the gradient correctly. This is one
of the ideas behind Contrastive Divergence [Carreira-Perpinan and Hinton, 2005], which we can use for VAML
too. In our empirical studies (Section 5), only a small number of Monte Carlo samples is sufficient to produce
good results, e.g., m = 5.

3 STATISTICAL ANALYSIS OF VAML

We provide a finite sample error upper bound showing that VAML is indeed a sound algorithm in the sense
that the minimizer P̂ of the empirical loss c22,n, if attained, has a small error (7), given enough data points n
and under standard capacity condition on the function spaces M. The result of this section is not limited to
exponential models of M.

Consider a family of probability distributions M0 and a pseudo-norm J : M0 → [0,∞). Let the set M used
by VAML be a subset M = MB = {P ∈ M0 : J(P) ≤ B } for some B > 0. We can think of J of a measure of
complexity of functions in M0, so M would be a ball with a fixed radius B w.r.t. J . If M0 is defined based on
an RKHS, we can think of J as the inner product norm of the RKHS. We have the following assumptions on the
metric entropy (logarithm of the covering number) of M.

Assumption A1 (Capacity of Function Space) For B > 0, let M = MB = {P ∈ M0 : J(P) ≤ B }. There
exist constants C > 0 and 0 < α < 1 such that for any u,B > 0 and all sequence z1, . . . , zn ∈ Z, the following
metric entropy condition is satisfied:

logN (u,MB , L2(Pz1:n)) ≤ C
(
B

u

)2α

.

Metric entropy of MB is a measure of the size of MB , and roughly speaking, it is the logarithm of the minimum
number of balls with radius u that are required to completely coverMB . In general, it is more difficult to estimate
a function when the metric entropy grows fast when u decreases. Here L2(Pz1:n) is the L2-norm defined w.r.t.
the empirical measure (cf. e.g., Section 9.3 of [Györfi et al., 2002]; see also Appendix B). For many examples of
the metric entropy results, refer to [van de Geer, 2000; Györfi et al., 2002; Giné and Nickl, 2015]. After stating
this assumption, we are ready to state the theorem.

Theorem 2. Given a dataset Dn = {(Xi, Ai, X
′
i)}ni=1 with independent and identically distributed sam-

ples (Xi, Ai) ∼ ν, with X ′i ∼ P∗(·|Xi, Ai), let P̂ be the minimizer of the VAML algorithm, i.e., P̂ ←

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

argminP∈M c22,n(P̂), with the previously specified choice of value function space F . Let Assumption A1 hold.
Furthermore, assume that supx∈X ‖φ(x)‖∞ ≤ 1 and supx∈X ‖φ(x)‖2 ≤ 1. Fix δ > 0. There exists a constant
c > 0 such that

E
[

sup
V ∈F

∣∣∣(P̂Z − P∗Z)V
∣∣∣2] ≤ inf

P∈M
E
[

sup
V ∈F
|(PZ − P∗Z)V |2

]
+ c(1 +Bα)p

√
log(p/δ)

n
+

16 log(4/δ)

3n
,

with probability at least 1− δ.

This upper bound shows the usual model (or function) approximation error (first term) and the estimation error
(second and third terms). The dominant term in the estimation error behaves O(n−1/2), which is the usual
behaviour of the supremum of the empirical process for models that are not very large. The size of the function
space M, specified by B in Assumption A1, appears in the bound. We also see the effect of size of φ vector,
specifying the value function space F , appears linearly. We believe that this dependence on p is suboptimal, and
can be improved further.

Maybe more interesting is the effect of the model approximation error. The bound shows that the
error of the estimated P̂ is comparable to the error of the best choice in the model class M, i.e.,

infP∈M E
[
supV ∈F |(PZ − P∗Z)V |2

]
. This is reassuring since VAML was motivated by the fact that the im-

portant property of an estimated model P̂ should be that
∣∣∣〈 P̂(·|z)− P∗(·|z) , V

〉∣∣∣ is small only for V ∈ F that

might be encountered by the algorithm, and not necessarily for all possible value functions, which cannot even be
represented by the value-based algorithm.

One could obtain faster estimation error (i.e., O(n−1)) by studying the modulus of the continuity of the empirical
process instead of the supremum of the empirical process, as we do here. We decided not to provide such a result
because of two reasons. The first is that faster rates require increasing the constant in front of the approximation
error (it would not be 1 anymore). In the regime that we have an approximation error (P∗ /∈M), which is the
regime that can make VAML superior to MLE, this would lead to asymptotically worse results. The other reason
is to simplify the proofs and making them more accessible.6

A few other short remarks are in order. The first is that this is a statistical guarantee, and is valid under the
condition that minP∈M c22,n(P̂) is indeed attained. We have not shown that this minimum can be achieved by
following the gradient of Theorem 1, especially since the VAML’s objective is not necessarily convex. Another
remark is that we do not analyze the effect of the model estimation error on the quality of the policy obtained by
Planner(P̂). Ávila Pires and Szepesvári [2016] provide such a policy error bound.

Proof of Theorem 2. To simplify the equations, we define a few notations. The pointwise loss function for P is

l(z;P) = ‖(Pz − P∗z)φ‖22 .

The expected loss is

L(P) = E [l(Z;P)] ,

in which Z ∼ ν. Given the dataset Dn = {(Xi, Ai, X
′
i)}ni=1 with Zi = (Xi, Ai) ∼ ν and X ′i ∼ P∗Zi , we define the

“ideal” empirical loss as

Ln(P) = En [l(Z;P)] =
1

n

n∑
i=1

l(Zi;P).

Note that this is not the empirical loss that is minimized by the algorithm as the algorithm does not have access
to P∗Zi .

For any z and a corresponding X ′ ∼ P∗z , we denote

l̂(z,X ′;P) = ‖Pzφ− φ(X ′)‖22 .
6Because of certain steps of the proof, we could not use already available results such as Theorem 3.3 of Bartlett et al.

[2005].

Value-Aware Loss Function for Model-based Reinforcement Learning

If X ′ is clear from the context, we may use l̂(z;P) to refer to l̂(z,X ′;P). With this notation, we define the
empirical loss, given Dn, as

L̂n(P) = En
[
l̂(Zi, X

′
i;P)

]
=

1

n

n∑
i=1

l̂(Zi, X
′
i;P).

We also define
L̂(P) = E

[
l̂(Z;X ′;P)

]
.

Note that by the definition of the VAML algorithm, we have7

P̂ ← argmin
P∈M

L̂n(P). (15)

For any P, we have

l̂(z;P) = ‖Pzφ− φ(X ′)‖22 = ‖Pzφ− P∗zφ+ P∗zφ− φ(X ′)‖22
= ‖(Pz − P∗z)φ‖22 + ‖P∗zφ− φ(X ′)‖22 + 2 〈 (Pz − P∗z)φ , P∗zφ− φ(X ′) 〉 .

By reordering and taking summation over Dn, we get

Ln(P) = En
[∥∥(PZi − P∗Zi)φ

∥∥2

2

]
=En

[
‖PZiφ− φ(X ′i)‖

2
2

]
︸ ︷︷ ︸

=L̂n(P)

−En
[∥∥P∗Ziφ− φ(X ′i)

∥∥2

2

]
︸ ︷︷ ︸

,eσ

+

2
1

n

n∑
i=1

〈
(P∗Zi − PZi)φ , P

∗
Ziφ− φ(X ′i)

〉
︸ ︷︷ ︸

,eI(P)

.

Consider any P̃ ∈ M. We may upper bound the true loss of P̂, that is L(P̂), through the following sequence of
inequalities:

L(P̂) = Ln(P̂) + L(P̂)− Ln(P̂)

= L̂n(P̂)− eσ + 2eI(P̂) +
[
L(P̂)− Ln(P̂)

]
(i)

≤ L̂n(P̃)− eσ + 2eI(P̂) +
[
L(P̂)− Ln(P̂)

]
=
[
L̂n(P̃)− eσ + 2eI(P̃)

]
+ 2eI(P̂)− 2eI(P̃) +

[
L(P̂)− Ln(P̂)

]
≤ Ln(P̃) + 4 sup

P∈M
|eI(P)|+ sup

P∈M
|L(P)− Ln(P)|

= L(P̃) +
[
Ln(P̃)− L(P̃)

]
+ 4 sup

P∈M
|eI(P)|+ sup

P∈M
|L(P)− Ln(P)|

≤ L(P̃) + 2 sup
P∈M

|L(P)− Ln(P)|+ 4 sup
P∈M

|eI(P)|. (16)

Here the step (i) is because of the optimizer property of P̂.

We need to have upper bounds for supP∈M |L(P)− Ln(P)| and supP∈M |eI(P)|. Propositions 3 and 4, to be
proved soon, provide these.

Fix δ > 0. Proposition 3 states that for a constant c1 > 0, with probability at least 1− δ/2, it holds that

sup
P∈M

|eI(P)| ≤ c1(1 +Bα)p

√
log(2p/δ)

n
.

7We assume that the minimizer exists and is attained by a P̂ within M.

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

Proposition 4 states that for a constant c2 > 0, with probability at least 1− δ/2, it holds that

sup
P∈M

|L(P)− Ln(P)| ≤ c2B
α

√
n

+ 2

√
2 log(4/δ)

n
+

16 log(4/δ)

3n
.

We substitute these two inequalities in (16) to obtain that for any P̃ ∈ M, we have

L(P̂) ≤ L(P̃) + c3(1 +Bα)p

√
log(p/δ)

n
+

16 log(4/δ)

3n
,

with probability at least 1− δ. Taking P̃ to be the minimizer of L(P) within M finishes the proof.

Proposition 3. Under the same conditions as in Theorem 2, there exists a constant c > 0 such that for any
fixed δ > 0, we have

sup
P∈M

∣∣∣∣∣ 1n
n∑
i=1

〈
(P∗Zi − PZi)φ , P

∗
Ziφ− φ(X ′i)

〉∣∣∣∣∣ ≤ c(1 +Bα)p

√
log(p/δ)

n
,

with probability at least 1− δ.

Proof. For i = 1, . . . , n, define the vector-valued random variables Wi = P∗Ziφ − φ(X ′i) ∈ Rp. Notice that

because X ′i ∼ P∗Zi(·), we have E [Wi] = 0. We refer to each component of Wi by W
(j)
i for j = 1, . . . , p, i.e.,

Wi = [W
(1)
i · · ·W

(p)
i].

Define the function spaces

H = {h(z;P) = (P∗ − P)φ ∈ Rp : P ∈M} ,

H(j) =
{
h(j)(z;P) = (P∗ − P)φj ∈ R : P ∈M

}
. (j = 1, . . . , p)

The vector-valued h(z;P) is identified as [h(1)(z;P) · · ·h(p)(z;P)].

We upper bound the probability that the supremum of the inner product be larger than t > 0: Let the positive
sequence (ηj)

p
j=1 be such that

∑p
j=1 ηj ≤ 1. We provide a concrete choice for this sequence shortly. We have

P

{
sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

〈h(Zi) , Wi 〉

∣∣∣∣∣ > t

}
= P

sup
h∈H

∣∣∣∣∣∣ 1n
n∑
i=1

p∑
j=1

h(j)(Zi)W
(j)
i

∣∣∣∣∣∣ > t

≤

p∑
j=1

P

{
sup

h(j)∈H(j)

∣∣∣∣∣ 1n
n∑
i=1

h(j)(Zi)W
(j)
i

∣∣∣∣∣ > ηjt

}
. (17)

We use Theorem 19.1 of Györfi et al. [2002], quoted in Appendix C as Lemma 9, to upper bound each of the
terms in the RHS (cf. Lemma 3.2 of van de Geer [2000]). We now verify the conditions of that lemma.

Because |W (j)
i | = |P∗zφ− φ(X ′)| ≤ 2, we may choose L = 2. Also because |h(j)(z)| = |(P∗z −Pz)φj | ≤ 2, we may

choose R = 2. The lemma also requires that
√
n(ηjt) ≥ 36(RL),

so if we choose ηj = 1
p , we get that it is sufficient to have

t ≥ 144p√
n
. (18)

For the metric entropy condition, we have

√
n(ηjt) ≥ 48

√
2L

∫ R

0

√
logN (u,H(j), L2(P (z1:n))du, (19)

Value-Aware Loss Function for Model-based Reinforcement Learning

in which L2(P (z1:n)) is the L2-norm based on the empirical measure defined for any choice of sequence z1:n ,
(z1, . . . , zn) ⊂ Z.

To compute this integral, we need to relate the covering number of H(j), i.e., N (u,H(j), L2(P (z1:n)), to the
covering number of M. Proposition 5 shows that for all j = 1, . . . , p,

N
(
u,H(j), L2(Pz1:n)

)
≤ N (u,M, L2(Pz1:n)) .

Under our assumption on the covering number of M, we obtain that∫ R

0

√
logN (u,H(j), L2(P (z1:n))du ≤

√
CBα

1− α
R1−α,

so by the choice of R = 2 and ηj = 1/p, we see that it is sufficient to satisfy

t ≥ c1(α)Bαp√
n

, (20)

for some choice of c1(α) > 0, which is independent of B, n, or p, to satisfy the metric entropy condition (19).

Upon the satisfaction of (18) and (20), we may apply Lemma 9 to each term in the RHS of (17) to get that

P

{
sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

〈h(Zi) , Wi 〉

∣∣∣∣∣ > t

}
≤

p∑
j=1

5 exp

(
−

n(1
p t)

2

2304(2× 2)2

)
.

Setting the LHS to a fix δ > 0 and solving for t, we obtain that

t ≤ 192p

√
log(5p/δ)

n
, (21)

with probability at least 1− δ. Conditions (18), (20), and (21) imply the desired result.

Proposition 4. Under the same conditions as in Theorem 2, there exists a constant c > 0 such that for any
fixed δ > 0, we have

sup
P∈M

∣∣∣∣∣E [‖(PZ − P∗Z)φ‖22
]
− 1

n

n∑
i=1

∥∥(PZi − P∗Zi)φ
∥∥2

2

∣∣∣∣∣ ≤ cBα√
n

+ 2

√
2 log(2/δ)

n
+

16 log(2/δ)

3n
,

with probability at least 1− δ.

Proof. Define the function space

G =
{
g(z;P) = ‖(Pz − P∗z)φ‖22 : P ∈M

}
.

Based on the assumption that supx∈X ‖φ(x)‖2 ≤ 1, we have that for any g ∈ G

sup
z
|g(z)| = sup

z

∥∥∥∥∫ (Pz − P∗z)(dy)φ(y)

∥∥∥∥
2

≤ sup
z

[∥∥∥∥∫ Pz(dy)φ(y)

∥∥∥∥
2

+

∥∥∥∥∫ P∗z (dy)φ(y)

∥∥∥∥
2

]
≤ sup

z

[∫
Pz(dy) ‖φ(y)‖2 +

∫
P∗z (dy) ‖φ(y)‖2

]
= sup
x∈X
‖φ(x)‖2

[∫
Pz(dy) +

∫
P∗z (dy)

]
≤ 2.

So functions in G are bounded by B = 2. Because of this, their variance is also bounded: Var [g(Z;P)] ≤
E
[
g2(Z;P)

]
≤ B2 = 4. We now apply Lemma 8 with the choice of α = 1. For a fixed δ > 0, we get that

sup
P∈M

∣∣∣∣E [‖(PZ − P∗Z)φ‖22
]
− 1

n

∥∥(PZi − P∗Zi)φ
∥∥2

2

∣∣∣∣ ≤ 4E [Rn(G)] + 2

√
2 log(2/δ)

n
+

16 ln(2/δ)

3n
(22)

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

holds with probability at least 1− δ.

To upper bound the Rademacher complexity of the function space G, we use Dudley’s integral to relate the
Rademacher complexity of G to the covering number of G; we then use Proposition 5 to relate the covering
number of G to that of M; and finally, we use our assumption on the covering number of M.

E [Rn(G)] ≤ 4
√

2√
n
E

[∫ diam(G)

0

√
log 2N (u,G, L2(PZ1:n

))du

]

≤ 4
√

2√
n
E

[∫ diam(M)

0

√
log 2N (u/2,M, L2(PZ1:n))du

]

≤ cBα√
n
,

for some constant c > 0.8 This upper bound on the Rademacher complexity and (22) lead to the desired result.

Proposition 5. Let

H(j) = {h(z;P) = (P∗ − P)φj : P ∈M} , (j = 1, . . . , p)

G =
{
g(z;P) = ‖(Pz − P∗z)φ‖22 : P ∈M

}
.

Assume that for any sequence z1:n = (z1, . . . , zn) ⊂ Z, the empirical covering number N (u,M, L2(Pz1:n)) <∞
for all u > 0.

Part 1) Assume that ‖φj‖∞ ≤ 1 for all j = 1, . . . , p. We then have

N
(
u,H(j), L2(Pz1:n)

)
≤ N (u,M, L2(Pz1:n)) . (j = 1, . . . , p)

Part 2) Assume that supx∈X ‖φ‖2 ≤ 1. We then have

N (u,G, L2(Pz1:n)) ≤ N
(u

2
,M, L2(Pz1:n)

)
.

Proof. First we prove the covering number result for the function space H(j) for any j = 1, . . . , p. Let h1, h2 ∈ H(j)

with their corresponding P(1),P(2) ∈M. We have

1

n

n∑
i=1

|h1(zi)− h2(zi)|2 =
1

n

n∑
i=1

∣∣∣[P(1)(·|zi)− P(2)(·|zi)
]
φj

∣∣∣2
=

1

n

n∑
i=1

∣∣∣∣∫ [P(1)(dy|zi)− P(2)(dy|zi)
]
φj(y)

∣∣∣∣2
≤ 1

n

n∑
i=1

∫ [
P(1)(dy|zi)− P(2)(dy|zi)

]2
φ2
j (y)

≤ sup
x
φ2
j (x)

1

n

n∑
i=1

∫ ∣∣∣P(1)(dy|zi)− P(2)(dy|zi)
∣∣∣2 .

Under the assumption that ‖φj‖∞ ≤ 1, this entails that a u-cover of M w.r.t. L2(P (z1:n)) is also a u-cover of

H(j) w.r.t. the empirical norm on H(j).

To prove the second part, we consider g1, g2 ∈ G with their corresponding P(1),P(2) ∈M. We have

8Here our specific version of Dudley’s integral is from Theorem 2.3.7 of Giné and Nickl [2015] and we use it similar to
the argument in the proof of Theorem 3.5.1 and the comments after that. Or one may use Theorem A.7 by Bartlett et al.
[2005] (originally from Dudley) and note that the upper bound of the integral does not need to go up to infinity when the
function space is bounded in the norm.

Value-Aware Loss Function for Model-based Reinforcement Learning

1

n

n∑
i=1

|g1(zi)− g2(zi)|2 =
1

n

n∑
i=1

∣∣∣∣∥∥∥(P(1)
zi − P

∗
zi)φ

∥∥∥2

2
−
∥∥∥(P(2)

zi − P
∗
zi)φ

∥∥∥2

2

∣∣∣∣2
=

1

n

n∑
i=1

∣∣∣〈 (P(1)
zi + P(2)

zi − 2P∗zi)φ , (P(1)
zi − P

(2)
zi)φ

〉∣∣∣2
≤ 1

n

n∑
i=1

∥∥∥(P(1)
zi + P(2)

zi − 2P∗zi)φ
∥∥∥2

2

∥∥∥(P(1)
zi − P

(2)
zi)φ

∥∥∥2

2
.

To upper bound the first multiplicative terms on the RHS, notice that due to the convexity of the norm and
Jensen’s inequality, for any P we have

‖Pzφ‖22 ≤ Pz ‖φ‖
2
2 =

∫
P(dy|z) ‖φ(y)‖22 ≤ sup

x∈X
‖φ(x)‖22 .

For the second multiplicative terms on the RHS, we again use Jensen’s inequality to obtain∥∥∥(P(1)
z − P(2)

z)φ
∥∥∥2

2
=

p∑
j=1

∣∣∣∣∫ [P(1)(dy|z)− P(2)(dy|z)
]
φj(y)

∣∣∣∣2
≤ sup
x∈X
‖φ(y)‖22

∫ ∣∣∣P(1)(dy|z)− P(2)(dy|z)
∣∣∣2 .

Therefore, we have

1

n

n∑
i=1

|g1(zi)− g2(zi)|2 ≤ 4 sup
x
‖φ(x)‖4 1

n

n∑
i=1

∫ ∣∣∣P(1)
z (dy|z)− P(2)(dy|z)

∣∣∣2 .
Similar to the previous case, under the assumption that supx∈X ‖φ(x)‖2 ≤ 1, this entails that a u-cover of M
w.r.t. L2(P (z1:n)) is also a 2u-cover of G w.r.t. the same empirical norm.

4 ON THE POLICY APPROXIMATION ERROR OF VAML AND MLE

In this section, we develop some intuitions on the policy approximation error of VAML and MLE. We do this
through analyzing some simple, but illustrative, examples for which we can analytically find the solutions of these
methods. To study policy approximation error we focus on the population version of the loss functions. Also for
most of this section, we only study the unconditional distribution estimation problem.

Let us assume that the true model is P ∗ ∈ M̄ and we want to find a P ∈M ⊂ M̄ such that the loss function
that matters for computing the expected value function is small. As argued in Section 2, we only know that
V ∈ F , but the exact V is not known, so we use the following loss function to compare the behaviour of different
estimators:

cVAML(P, P ∗) = sup
V ∈F

∫
[P (dx′)− P ∗(dx′)]V (x′),

which is the unconditional version of (7). The estimators are

PVAML ← argmin
P∈M

sup
V ∈F

∫
[P (dx′)− P ∗(dx′)]V (x′),

and
PMLE ← argmin

P∈M
KL(P ∗||P).

Evidently, the minimizer of a loss function is not worse, if not better, than a minimizer of another loss function
when the evaluation is based on the original loss. In our case, by the very definition of the minimizer, assuming
that it is attained, we have

cVAML(PVAML, P
∗) ≤ cVAML(PMLE, P

∗).

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

The interesting question is whether MLE might perform as well as VAML, i.e., we have an equality.

Suppose that all V ∈ F are Vmax-bounded. From (4) and (5), we have

cVAML(PMLE, P
∗) ≤ Vmax ‖PVAML − P ∗‖1 ≤ Vmax

√
2KL(P ∗||PMLE). (23)

If the model spaceM is rich enough such that P ∗ ∈M, by choosing PMLE = P ∗, we have KL(P ∗||PMLE) = 0. So
if the true model is within the model space (we are in the realizable model learning setting), there is no difference
between using VAML or MLE from the model approximation error viewpoint (the estimation errors might behave
differently though. But that is not the subject of this section).

Of course, the realizability assumption of P ∗ ∈ M might be unrealistic, especially for parametric models.
When P ∗ /∈ M, we have KL(P ∗||PMLE) > 0. We may still use (23) to provide a nonzero upper bound on
cVAML(PMLE, P

∗).

Interestingly, even though we might have a model approximation error measured according to the KL-divergence,
the VAML loss cVAML(PMLE, P

∗) might still be zero. To see this, consider the simplistic case that the value function
space has only bounded constant functions, i.e., F = {Vc(x) = c : −Vmax ≤ c ≤ Vmax }. In this case, for any
probability distribution P , including PMLE and P ∗, we have that for Vc ∈ F , the expectation

∫
P (dx′)V (x′) = c.

So the supremum of their difference is zero too, that is, cVAML(PMLE, P
∗) = 0.

This simple example shows that even though a probabilistic loss (KL-divergence in this case) does not explicitly
take into account the regularities of the value function (or more generally, the decision problem), an estimate
based on it (MLE in this case) might still perform as well as an estimate from an approach that explicitly takes
the value into account.

In the rest of this section, we provide some more complex cases, for which we can find solutions, or at least reveal
some structure of them, analytically. In Section 5, we perform some empirical studies for even more complex
problems. We see that there are some situations, similar to the example we just mentioned, where MLE performs
as well as VAML, but there are cases where it does not.

4.1 Aggregation-based Models for M and F

In this section, we consider aggregation-based estimators for both value function and probability distribution.
Consider two sets of countable partitions {Ii}i (to represent P) and {Jj}j (to represent V) of the state space X ,
i.e., ∪iIi = X , Ii ∩ Ii′ = ∅ for i 6= i′ and similarly for {Jj}. We define the space of all probability models as

M =

{
x 7→

∑
i

piI{x ∈ Ii} :
∑
i

pi = 1, pi ≥ 0 ∀i

}
,

and the space of value functions as

F =

x 7→
∑
j

vjI{x ∈ Jj} : |vj | ≤ v̄j

 , (24)

for some sequence of (v̄j). For example if we set v̄j = B > 0 for all j, it defines an B-bounded function space
F . We would like to compare cVAML(PVAML, P

∗) and cVAML(PMLE, P
∗) to see when MLE performs as well as

VAML and when it is worse.

We consider two separate cases. The first is when the partition of the probability model {Ii} is finer than the
partition of the value function {Jj}. This means that for any Jj , we can find a subset of {Ii′} ⊂ {Ii} such that
∪i′Ii′ = Jj . We see that based on this definition of finer, each Ii is a subset of only one of Jj , i.e., it does not
intersect with more than one Jj . The second case is the opposite. We consider when the partition of the value
function {Jj}j is finer than the partition of the probability model {Ii}i, with a similar definition.

4.1.1 P has a finer partition than V

We use the double-indexed {Ii,j}i to refer to the elements of {Ii} that are a subset of Jj for a particular value
of j. So ∪iIi,j = Jj . Because of the way we defined “finer”, we have that Ii,j ∩ Jj′ = ∅ for j 6= j′. With this

notation, the model space is written as M =
{
x 7→

∑
i,j pi,jI{x ∈ Ii,j} :

∑
i,j pi,j = 1, pi,j ≥ 0 ∀i, j

}
.

Value-Aware Loss Function for Model-based Reinforcement Learning

For a V ∈ F and P ∈M, as defined above, we have∫
[P (dx′)− P ∗(dx′)]V (x′) =

∑
j

∫
Jj

[P (dx′)− P ∗(dx′)]V (x′)

=
∑
j

∫
Jj

[P (dx′)− P ∗(dx′)] vj

=
∑
j

vj
∑
i

∫
Ii,j

[P (dx′)− P ∗(dx′)]

=
∑
j

vj
∑
i

[P (Ii,j)− P ∗(Ii,j)] .

Without loss of generality, suppose that v̄j = 1 for all j in (24). We have

sup
V ∈F

∫
[P (dx′)− P ∗(dx′)]V (x′) = max

(vj) s.t. |vj |≤1

∑
j

vj
∑
i

[P (Ii,j)− P ∗(Ii,j)]

=
∑
j

∣∣∣∣∣∑
i

[P (Ii,j)− P ∗(Ii,j)]

∣∣∣∣∣ . (25)

For any P ∈ M, by definition, P (Ii,j) = pi,j . So by choosing pi,j = P ∗(Ii,j), we see that a minimizer of the
loss exists within M and that minimizer makes the objective equal to zero. This is the VAML’s solution, so
cVAML(PVAML, P

∗) = 0.

Interestingly, the MLE’s solution PMLE ← argminP∈M KL(P ∗||P) also makes the VAML’s objective zero. To see
this, we solve the equivalent optimization problem

max
pi,j≥0

s.t.
∑
i,j pi,j=1

∑
i,j

P ∗(Ii,j) log pi,j ,

which leads to the solution pi,j = P ∗(Ii,j). This solution belongs to M, and makes (25) zero, i.e.,
cVAML(PMLE, P

∗) = 0.

Note that if we changed our choice of v̄j in the definition of F to any other bounded sequence, we would still
obtain a result similar to (25) (with different weighting). In any case, the solutions of both VAML and MLE
make the objective function zero, so we have cVAML(PVAML, P

∗) = cVAML(PMLE, P
∗) = 0.

This shows that if the aggregation for P is finer than that of V (with our very definition of how the aggregation
should be), the choice of F does not affect the model approximation error of neither VAML nor MLE. This case
extends the example in the beginning of Section 4 from a value function space with bounded constant functions
to a more general case of aggregation estimator of V . This extends the range of function spaces F for which
MLE performs as well as VAML. Next we study some other situation when MLE is no more performing as well.

4.1.2 V has a finer partition than P

In this case, for any Ii in the partition for P , we have a set of disjoint {Ji,j}j such that ∪jJi,j = Ii. Here the
value function space can be written as

F =

x 7→
∑
i,j

vi,jI{x ∈ Ji,j} : |vi,j | ≤ v̄i,j

 .

Similar to the previous case, we decompose
∫

[P (dx′)− P ∗(dx′)]V (x′) to partition-dependent components. The

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

difference is only in the order of integration. For a P ∈M, we have

sup
V ∈F

∫
[P (dx′)− P ∗(dx′)]V (x′) = sup

V ∈F

∑
i,j

∫
Ji,j

[P (dx′)− P ∗(dx′)]V (x′)

= max
(vi,j)

∑
i,j

∫
Ji,j

[P (dx′)− P ∗(dx′)] vi,j

= max
(vi,j)

∑
i,j

vi,j [P (Ji,j)− P ∗(Ji,j)]

=
∑
i,j

v̄i,j |P (Ji,j)− P ∗(Ji,j)| ,

with the understanding that the max over (vi,j) satisfies the constraints in the definition of F .

We need to compute P (Ii,j) for a P ∈ M. Let λ denote the Lebesgue measure over X (or uniform measure
over a compact X). Note that by the definition of M, for any (measurable) subset S of Ii, we have P (S) =∫
S
piI{x ∈ Ii}dx = piλ(S). In particular, pi = P (Ii)

λ(Ii)
. Therefore,

P (Ji,j) = piλ(Ji,j) = P (Ii)
λ(Ji,j)

λ(Ii)
= p(Ii)λ(Ji,j |Ii).

As a result, for this choice of F and for any P ∈M, we get that

cVAML(P, P ∗) =
∑
i,j

v̄i,j |P (Ii)λ(Ji,j |Ii)− P ∗(Ji,j)| . (26)

For the MLE, we have PMLE(Ii) = P ∗(Ii), so after some manipulations, we obtain

cVAML(PMLE, P
∗) =

∑
i

P ∗(Ii)
∑
j

v̄i,j |λ(Ji,j |Ii)− P ∗(Ji,j |Ii)| . (27)

As opposed to the previous case, the MLE solution is not making this objective equal to zero unless the conditional
distribution P ∗(Ji,j |Ii) is uniform.

When the distribution of P ∗(Ji,j) is varying between each {Ji,j}j within Ii, a single P (Ii) cannot make the terms
in the summation of (26) equal to zero. Both MLE and VAML provide a constant P (Ii) (and as a result, P (Ji,j)
for all Ji,j within Ii), but the MLE solution ignores the weighting v̄i,j while VAML does not. VAML can exploit
the structure in the value function (here in the form of upper bounds on the value function in each partition).
The exact amount that VAML can exploit depends on P ∗ and (v̄i,j), and is problem dependent. We numerically
study this in Section 5.1.

5 EMPIRICAL STUDIES

5.1 Model Approximation Error for V Having a Finer Partition than P

We numerically study the model approximation error for the case of “V having a finer partition than P”, as
discussed in Section 4.1.2, with different regularities of P ∗ and F . With the same notation as that section, we
define the problem as follows. We choose N = 2, 3, . . . equal partitions {Ii} of X to represent the probability model
M. For each Ii, we equally partition it to M = 2, 3, . . . partitions {Ji,j}j to represent F (so F is represented by
NM partitions).

The first case is when there is “low” amount of regularity in P ∗ or F . We choose v̄i,j ∝ j for all i and j. For each
run, the values of P ∗(Ji,j) are selected proportional to i.i.d. samples from a random variable with a log-normal
distribution with log-mean of 1.0 and log-standard deviation of 0.5 (we normalize the random variables so that
P ∗ be a probability distribution). Since all v̄i,j are the same for the same value of i and all of P ∗(Ji,j) have the
same distribution, we expect that there is not much structure to be exploited by VAML. We compare the ratio

cVAML(PVAML, P
∗)

cVAML(PMLE, P ∗)
, (28)

Value-Aware Loss Function for Model-based Reinforcement Learning

0.
75

0.
75

0.8

0.
8

0.
8

0.
85

0.
85

0.
85

0.
9

0.
9

0.
9

0.
95

0.
95

0.
95

M (partitions of V within I)
2 13 23 33 43 53 63738393

N
 (p

ar
tit

io
ns

 o
f P

)

2

13

23

33
43
53
63
73
83
93

0.7

0.75

0.8

0.85

0.9

0.95

(a) Low regularity
0.2

0.
2

0.3

0.
3

0.
4

0.
4

0.
5

0.5

0.5

0.
6

0.6
0.6

0.
7

0.7

0.
7

0.
8

0.8

0.
8

0.9
0.9

0.
9

M (partitions of V within I)
2 13 23 33 43 53 63738393

N
 (p

ar
tit

io
ns

 o
f P

)

2

13

23

33
43
53
63
73
83
93

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Medium regularity

0.
2

0.2

0.3

0.
3

0.4
0.4

0.
4

0.
5

0.5

0.
5

0.
6

0.
6

0.
6

0.
6

0.6

0.
6

0.
6

0.6

0.
6 0.6

0.6

0.
6

0.6 0.6

0.6

0.
6

0.6
0.6

0.70.7
0.7

0.8

M (partitions of V within I)
2 13 23 33 43 53 63738393

N
 (p

ar
tit

io
ns

 o
f P

)

2

13

23

33
43
53
63
73
83
93

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c) High regularity

Figure 1: Numerical results for V has a finer partition than P for different amount of regularities in P ∗ and F .
This is the contour graph of the average over 30 independent runs of the ratio (28).

which is always smaller than or equal to 1. To optimize (26), we used CVX, a package for specifying and solving
convex programs [Grant and Boyd, 2014].

Figure 1(a) depicts the result for the range of value N = 2, . . . , 100 and M = 2, . . . , 100. As expected, the ratio is
always smaller than 1, and it ranges between around 0.75 to 0.95. The better performance of VAML compared to
MLE is due to VAML’s ability to exploit random fluctuation of P ∗(Ji,j).

Next, we consider a more structured problem by changing the definition of F . Instead of having an upper bound
v̄i,j ∝ j, which allows the contribution of all Ji,j within Ii to various degrees, we assume that in each set Ii, there
are two types of sets Ji,j with significantly different amount of contribution to the value function:

v̄i,j =

{
1 j = 1, . . . , bM2 c
0 j = bM2 c+ 1, . . . ,M

This essentially indicates that estimating the probabilities P ∗(Ji,j) within the second half of each Ii is irrelevant
in the value function estimation. MLE cannot benefit from this information, while VAML can. The result of the
ratio of their losses is depicted in Figure 1(b).

We observe much smaller ratios, which shows that VAML has a much smaller model approximation error compared
to MLE. The ratio is smaller particularly for smaller values of M and larger values of N . The decrease in the ratio

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

for larger N is likely because of the extra degrees of freedom that VAML has in minimizing the loss function (26).
We also see that when we have many partitions to represent V within each partition to represent P (i.e., M
increases), the ratio increases too and VAML loses its edge compared to MLE.

Finally, we add some structure to P ∗(Ji,j) too. We generate a set of i.i.d. random variables pi,j as before, drawn
from the same log-normal distribution. But we sort each sequence (pi,j)j=1,...,M in either ascending or descending
order. The choice of ascending or descending is determined by an independent unbiased coin flip. We then set
P ∗(Ji,j) proportional to pi,j—with proper normalization. As a result, there is considerable structure within
each Ii, but there is not much structure among different Iis. The choice of v̄i,j is as in the previous case, so a
good model estimation method is better to focus more on the first half of Ji,j within each Ii. But depending on
whether the sorting has been done ascending or descending, some partitions Ii are contributing more to the total
loss than others. As before MLE is oblivious to this structure, while VAML is not. Figure 1(c) shows the result.
We see that even compared to the previous case, VAML performed better.

These examples show that we can expect VAML to have smaller policy approximation error compared to MLE’s
whenever there is much structure in P ∗ and F .

5.2 Effect of Model Learning Method in Value Function Estimation

In this section, we empirically study the performance of VAML and MLE-based estimators when they are used
within a complete model-based RL algorithm.

In the previous section, we studied cVAML(PVAML,P∗) and cVAML(PMLE,P∗). The motivation is that having a
small cVAML(P̂ ;P∗) leads to a small error in applying the Bellman optimality operator. The relation between the
Bellman operator and the quality of outcome policy, however, is quite complex. In this section, we empirically
study the performance of a VAML and MLE-based estimators when they are used within a model-based RL
algorithm.

We consider a finite MDP. We choose several partition-based (i.e., aggregation) model space M to which the true
model P∗ does not belong. Also we consider a partition-based value function space F |A|. When the resolution of
the partitioning is lower than the number of states, the optimal value function Q∗ might be outside F |A|. We use
the approximate value iteration as Planner. That is, given a model P̂ , which is chosen to be either the true model
P∗ of the MDP or the estimated models PVAML or PMLE, we repeatedly apply

Q̂k+1 ← ΠF |A|(T̂
∗
P̂Q̂k)

to obtain an approximation Q̂∗P∗/PVAML/PMLE
to Q∗, the true optimal action-value function. Here ΠF |A| is the

orthogonal projection onto F |A|, hence the “approximate” part of AVI. We obtain Q∗ (and hence V ∗) using exact
VI with P∗. Note that Q̂∗ = Q̂∗P∗ is only an approximation to Q∗ because Q̂∗ is obtained by AVI, so it is forced

to be within F |A|, but Q∗ in general may not belong to F |A|. The approximations V̂ ∗P∗/PVAML/PMLE
are defined

similarly.

After obtaining the various approximations of the optimal value function, we compute their corresponding greedy
policies πMLE/VAML ← Planner(PMLE/PVAML). In particular, we are interested in V πMLE and V πVAML , the true
value function of the policies obtained by the estimated models.

We use two criteria to evaluate the quality of the estimated models. The first is that how close V̂ ∗PVAML/PMLE
is

to V̂ ∗P∗ . We use the L2-norm of these distances, i.e., ‖V̂ ∗P∗ − V̂ ∗PVAML/PMLE
‖2. By comparing to V̂ ∗P∗ , instead of

V ∗, we separate the error caused by the choice of model space and the model estimation procedure (MLE or
VAML), which is our main object of study, from the error caused by the choice of value function space F |A|.
The second criterion is the performance loss of the obtained policies compared to the optimal policy, that is,∑

x∈X [V ∗(x)− V πMLE/VAML(x)] = ‖V ∗ − V πMLE/VAML‖1, where πPVAML
= π̂(·; Q̂∗PVAML

) and πPMLE
= π̂(·; Q̂∗PMLE

),

the greedy policies w.r.t. Q̂∗PVAML
and Q̂∗PMLE

. Because of the value function and model approximation errors, the

performance loss might be non-zero. But it is possible that even though Q̂PVAML/PMLE
6= Q∗, the greedy policy is

still an optimal policy, as we shortly see. This is due to the action-gap phenomenon [Farahmand, 2011].

Let us define the parameters of the problem more concretely. We choose a finite state random-walk MDP with
|X | = 25, A = {left, right}, and γ = 0.9. The choice of a = “right” moves the agent to one of the four right-side
states with equal probability (with a total probability of 0.7), does not move it (with probability of 0.2), and

Value-Aware Loss Function for Model-based Reinforcement Learning

2 4 6 8 10 12 14 16 18 20 22 24

Number of partitions for P

0.0

0.5

1.0

1.5

2.0

2.5

jjV̂
P
¤
¡
V̂
Pj
j 2

Number of partitions for Q̂P: 4

MLE (True model)

VAML (True model)

MLE (Empirical)

VAML (Empirical)

2 4 6 8 10 12 14 16 18 20 22 24

Number of partitions for P
0

10

20

30

40

50

60

70

80

jjV
¤
¡
V
¼
P
jj 1

Number of partitions for Q̂P: 4

MLE (True model)

VAML (True model)

True model

MLE (Empirical)

VAML (Empirical)

Figure 2: The effect of the number of partitions N of P̂ on MLE and VAML when F |A| has M = 4 partitions.
The left figure shows the value function approximation error. The right figure shows the performance loss of
using the obtained greedy policies. The dashed curves correspond to the empirical model. The error bars depict
one standard error with the number of independent runs equal 20.

moves it to the left-side state (with probability of 0.1). The opposite holds for a = “left”. The boundaries are not
connected, and the behaviour changes accordingly. The value function space F is defined based on partitioning

of the state space X to M subsets. So we have F =
{
x 7→

∑M
j=1 vjI{x ∈ Jj} : v ∈ RM

}
. The action-value

function space F |A| is simply |A| = 2 copies of F . We change M in our experiments.

The model space, used by both VAML and MLE, is an exponential family defined based on N partitions, cf. (13).
The features φ′ are defined so that each of them is an indicator function of whether given a state-action pair
(x, a), the next-state x′ would be in one of the N partitions or not. More precisely,

M =

{
P̂w(x′|x, a) =

exp
(
φ′>(x′|x, a)w

)∑
x′′ exp (φ′>(x′′|x, a)w)

:

φ′i,k,l(x
′|x, a) = I{x′ ∈ Ii, x = k, a = l}, i = 1, . . . , N, k = 1, . . . , |X |, l = 1, . . . , |A|, w ∈ RN |X ||A|

}
.

Note that the partitioning is only on the next-state x′, and not the current state x. We change N in our
experiments. A small detail is that because the state space is finite and partitions {Ii} and {Jj} have integer-
valued lengths, the lengths of all of them are not exactly |X |/M (or |X |/N). A state x belongs to Jj with
j = b xM c, and similarly for Iis.

We use gradient descent to optimize the loss functions for both VAML and MLE. In particular, we use ADAM
by Kingma and Ba [2015] with the choice of β1 = 0.9, β2 = 0.999, α = 0.25, and ε = 10−8 in their notations. We
followed ADAM for 1000 iterations.

Figure 2 and Figure 3 present the results of the experiments for M = 4 and M = 11, respectively. The bold
curves in each figure show the results when P∗ is given as the input to VAML or MLE (so c22,ν(P̂,P∗) of (7) is

minimized instead of c22,νn(P̂,Pn) of (9); and similarly for MLE), while the dashed curves are for when samples
(i.e., empirical measure Pn) are used for minimization. For the empirical measure, for each choice of a, we draw
100 states Xi uniformly from X , and then draw 25 samples from the next state according to P(·|Xi, a). So in
total, we have 2 × 100 × 25 = 5000 samples. Studying the behaviour of the algorithms under both the true
distribution and the empirical distribution allows us to separate the errors due to model approximation error and
the estimation error.

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

2 4 6 8 10 12 14 16 18 20 22 24

Number of partitions for P

0

2

4

6

8

10

12

jjV̂
P
¤
¡
V̂
Pj
j 2

Number of partitions for Q̂P: 11

MLE (True model)

VAML (True model)

MLE (Empirical)

VAML (Empirical)

2 4 6 8 10 12 14 16 18 20 22 24

Number of partitions for P
0

10

20

30

40

50

60

70

jjV
¤
¡
V
¼
P
jj 1

Number of partitions for Q̂P: 11

MLE (True model)

VAML (True model)

True model

MLE (Empirical)

VAML (Empirical)

Figure 3: The effect of the number of partitions N of P̂ on MLE and VAML when F |A| has M = 11 partitions.
The left figure shows the value function approximation error. The right figure shows the performance loss of
using the obtained greedy policies. The dashed curves correspond to the empirical model. The error bars depict
one standard error with the number of independent runs equal 20.

The left-side figures show the value function estimation error ‖V̂ ∗P∗ − V̂ ∗PVAML/PMLE
‖2. We observe that as the

number of partitions N for the model space increases, the error decreases too. The errors for the VAML model
for most Ns are smaller than MLE’s, sometimes significantly.

A curious observation is that when N is an integer multiply of M , the number of partitions in the representation of
F , the error of MLE becomes very small—sometimes even slightly smaller than VAML’s (when N = 4, 8, 12, . . .
in Figure 2, and N = 11, 22 in Figure 3) . This is aligned with our analysis in Section 4.1.1, when P has a finer
partition than V does. We observe a similar smallness of errors in the neighbourhood of those integer multiplies
because the structure of the partition would be similar to the aforementioned case. When empirical data is used,
the difference between VAML and MLE become less significant since the estimation error dominates the model
approximation error. We also note that ‖V̂ ∗P∗ − V ∗‖2 is 9.19 for M = 4 and 1.40 for M = 11.

The right-side figures show the performance loss ‖V ∗ − V πMLE/VAML‖1 for both cases. If the performance loss
of a policy is zero, it means that it is optimal. As a baseline, the green line shows the performance loss of the
greedy policy w.r.t. Q̂∗P∗ . For M = 4, the performance loss is 3.09 and for M = 11, it is 0.277. It is quite possible
that even though there is a significant value function error, due the action-gap phenomenon, the greedy policy
is behaving close to optimal or the best value function in the class. That is why we observe that in case of
M = 11, the performance of πPVAML

and πPMLE
is as good as good as π̂(·; Q̂∗P∗) after N = 4 for VAML and N = 5

for MLE. For M = 4, we observe a similar behaviour, but at slightly earlier N . It is curious to note that the
performance loss of MLE is sometimes slightly better than that of π̂(·; Q̂∗P∗), particularly at those values of N

when ‖V̂ ∗P∗ − V̂ ∗PMLE
‖2 is larger. This basically means that wronger models happened to make better policies.

We do not believe this is a general pattern beyond this particular problem, but further investigation might be
interesting.

5.3 Model Learning in a Continuous State Space

We empirically compare the quality of a model learned by VAML (9) with the model learned by MLE in a
continuous state space problem and study the effect of having model approximation error. We also study the
effect of the number of samples used for estimation of the expectations in the gradient evaluation of VAML (cf.
Theorem 1).

We consider X = [0, 1]d with d = 10, and we ignore the actions. We consider two possible cases for the true model

Value-Aware Loss Function for Model-based Reinforcement Learning

P∗: It is either a Gaussian distribution or an exponential distribution. In both cases the mean of distributions is
specified by a function of the current state. The model class M, however, only consists of Gaussian distributions.
So whenever the true model is exponential, we have model approximation error.

To be concrete, let φ′(x) = diag(cos(x1), . . . , cos(xd)) ∈ Rd×d and w∗ ∈ Rd. For the Gaussian model case,
P∗(·|x) generates the next states according to X ′ ∼ N (φ′(x)w∗, σ2Id×d). For the exponential case, β =
φ′(x)w∗ ∈ Rd would be the scale parameter, so the probability density function for the jth dimension is

P∗(dx′j |x) = 1
βj

exp
(
−x
′
j

βj

)
. We choose the model class M to be the same as the Gaussian case, that is

M =
{
P̂ : x 7→ N (φ′(x)w, σ2Id×d) : w ∈ Rd

}
. The features φ(x) = [x1, x

2
1, x2, x

2
2, . . . , xd, x

2
d] ∈ R2d of F are

selected to be “incompatible” with φ′.

Each experiment consists of randomly choosing a model, specified by w∗, generating data from it, and then
comparing the behaviour of MLE and VAML. The vector w∗ is drawn uniformly randomly in the range of [0, 2]d.
We generate n data points in the form of Dn = {(Xi, X

′
i)}ni=1. The distribution of Xi is uniform on X and the

samples are selected independently, and X ′i ∼ P∗(·|Xi;w
∗). The value of σ is 0.5 in our experiments, and we use

50 independent runs.

The task of model learning would be to find a ŵ such that N (φ′(x)ŵ, σ2Id×d) is as close as possible to the true
model. The MLE minimizes the empirical KL distance, i.e., the conditional version of (1) and VAML uses (9).
We use gradient descent to optimize the loss functions for both cases, in particular using ADAM by Kingma and
Ba [2015] to update the weights.9

To compute the gradients of an exponential family, either for MLE or VAML, we require to compute certain
expectations as is evident in the statement of Theorem 1 and (14). Nonetheless, for the Gaussian model, the
involved expectations can be computed in closed-form for MLE. But for VAML, we still require the numerical
computation of the expectations. Fortunately sampling from a Gaussian distribution is easy, so we simply obtain
m independent samples from the current estimated model to compute the expectations (and covariance matrix,
using independent samples). In this experiment, we only use a small number of samples (m = 5) for each
expectation evaluation. The result is a noisy, but unbiased, estimate of the gradient.

Figure 4 depicts the results for both cases when the true model belongs to M (Gaussian case) and when it
does not (exponential case). The figure shows the evolution of two types of error functions as a function of
the number of samples n used in the training. The first error function is ‖ŵ − w∗‖2, and the second one is

c2,ν(P̂,P∗) = ‖(P̂ − P∗)φ‖2,ν .

When there is no model approximation error, both errors of MLE and VAML gradually go to zero. They also
perform comparably the same. The reason that MLE performs well is that when P∗ ∈ M, the solution ŵ by
MLE converges to w∗. In that case, P̂ → P∗ (e.g., in KL sense), so as discussed around (4) and in Section 4, the
associated V -weighted cost goes to zero too.

When there is mismatch between the true model (exponential) and the models in our class M, we have model
approximation error. In this case, we observe that even though MLE has a smaller `2-error in the weight space,
its c2,ν(P̂,P∗) is significantly larger, and saturates at a much larger model approximation error. Here it pays off
to try to directly minimize the cost function that really matters, and not the one that minimizes a probabilistic
notion of distance, such as the KL divergence.

We also study the effect of number of samples used in the estimation of expectations in the gradient computations
(cf. Theorem 1). Here we set the number of training samples to n = 250, but change the number of Monte Carlo
samples m used to estimate the expectations in computation of gradient.

Figure 5 shows the result for when there is no model approximation error, and Figure 6 shows it when there
is. We observe that increasing m leads to better solutions, but even small m is sufficient to provide reasonably
good solutions. The effect of smaller values of m is more prominent in the case that we do not have model
approximation error (Figure 5). In that case, the error due to the Monte Carlo estimate becomes comparable to
the already small absolute error.

9We choose β1 = 0.8, β2 = 0.99, α = 0.03, and ε = 10−8 according to the notation of Kingma and Ba [2015]. We
slightly modified the procedure by gradually decreasing α through iterations with a geometric rate of 0.995 per iteration.
The experiments are done with 500 iterations.

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

100 250 500 1000 2000

Number of samples (n)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
rr

o
r

(||
w
∗
−
ŵ
|| 2

)

MLE with mismatch

VAML with mismatch

MLE without mismatch

VAML without mismatch

100 250 500 1000 2000

Number of samples (n)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
rr

o
r

(||
(P

∗
−
P̂)
φ
|| 2

)

Figure 4: Effect of the number of samples n on MLE and VAML. The left figure shows the `2-error of the
estimated parameters and the right figure shows the error in the value approximation within the value function
space F as a function of the number of samples n used for training. The red curves show the behaviour of VAML
while the black ones show the behaviour of MLE. The dashed curves corresponds to the case when there is no
model approximation error while the bold curves are for the case of model approximation error. The error bars
depict one standard error with the number of independent runs equal 50.

6 DISCUSSION AND FUTURE WORK

We presented a loss function to learn the probability transition model to be used by a model-based reinforcement
learning algorithm. In contrast with the conventional approaches, we take some aspects of the decision problem,
particularly the knowledge about the value function approximator, into account.

There are several methods for learning the transition probability kernel or quantities related to it. For example,
the method of Ormoneit and Sen [2002] approximates P by a particular finite approximation that is obtained
by smoothing kernel. The method then uses the estimated finite MDP to find the approximate value function.
Similarly, the method of Barreto et al. [2011] finds a smaller finite approximation of the transition probability
kernel than the work of Ormoneit and Sen [2002] using the stochastic factorization trick. These methods effectively
learn a transition model that does not benefit from the structure of the value function beyond the required
condition that the value function should be Lipschitz continuous (cf. Lemma 2 of Ormoneit and Sen [2002]). This
is in contrast with the method of this work that explicitly takes the value function space F into account.

In a different line of work, some methods estimate auxiliary operators that are different from P, but can
be used to compute the effect of Bellman operator on a value function. One such example is the method
by Grünewälder et al. [2012], which directly estimates the conditional mean embedding operator, that is, the
mapping V 7→

∫
P(dx′|x, a)V (x′) for all V in an RKHS. Lever et al. [2016] suggest a method to improve the

computational cost of Grünewälder et al. [2012]. Yao et al. [2014] introduce the concept of pseudo-MDP, which
relaxes the constraint that P should be a probability kernel. Their work, however, is different from the method
suggested in this section as here the estimated P̂ is by construction a probability kernel, as opposed to the
outcome of their estimator, which is not. Comparing VAML, which learns a generative model, and these other
approaches is an interesting research problem.

We empirically studied the behaviour of VAML and MLE when they are used within a model-based RL algorithm.
The results showed that minimizing the loss suggested by VAML translates into having a better value function
approximation error, as well as smaller performance loss when the learned model is used for planning. We also
studied model approximation properties of VAML vs. MLE through some examples.

Value-Aware Loss Function for Model-based Reinforcement Learning

3 5 10 50 250 500 1000

Number of samples in the MC estimate

0.16

0.17

0.18

0.19

0.20

0.21

0.22

E
rr

o
r

(||
w
∗
−
ŵ
|| 2

)

Without model mismatch

3 5 10 50 250 500 1000

Number of samples in the MC estimate

0.072

0.074

0.076

0.078

0.080

0.082

0.084

0.086

0.088

0.090

E
rr

o
r

(||
(P

∗
−
P̂)
φ
|| 2

)
Figure 5: Effect of the number of samples m used for the Monte Carlo estimation of expectations in VAML.
The left figure shows the `2-error of the estimated parameters and the right figure shows the error in the value
approximation within the value function space F as a function of the number of Monte Carlo samples m used for
estimating each expectation in the gradient. Both figures are for when there is no model approximation error.
The error bars depict one standard error with the number of independent runs equal 50.

We would like to mention that exponential family is not the only class of probability distributions for modeling of
the environment. Another possibility, which deserves further study, is the adoption of the generative adversarial
network to VAML’s loss function [Goodfellow et al., 2014]. Finally, incorporating the structure of policy space
into model learning is another interesting research topic along the research program of this work.

A ALTERNATIVE FORMULATION: OUTSIDE SUPREMUM

We briefly mentioned in Section 2 that we might define the cost function as

c22,ν(P̂,P∗) = sup
V ∈F

cν(P̂,P∗;V) = sup
V ∈F

∫
dν(x, a)

∣∣∣∣∫ [P∗(dx′|x, a)− P̂(dx′|x, a)
]
V (x′)

∣∣∣∣2 ,
which has the supremum over V outside the integral over state-actions, instead of within the integral of (7).
Having the supremum outside the integral amounts to selecting only a single value function from F , whereas
having the supremum inside means that for each choice of state-action (x, a), we allow the value function evaluated
over the next-state distribution to be different. The “inside” supremum formulation is more conservative than the
“outside” formulation, but it is still tighter than upper bounds such as (4), which completely ignore the structure
of the value function space F . In this section, we derive how this alternative formulation can be written as an
optimization problem.

Consider the function space F = F1 =
{
Vθ(x) = φ>(x)θ : θ ∈ Rp, ‖θ‖2 ≤ 1

}
with φ : X → Rp, as before. Define

∆φ(x, a; P̂) =

∫ (
P∗(dx′|x, a)− P̂(dx′|x, a)

)
φ(x′).

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

3 5 10 50 250 500 1000

Number of samples in the MC estimate

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.18

E
rr

o
r

(||
w
∗
−
ŵ
|| 2

)

With model mismatch

3 5 10 50 250 500 1000

Number of samples in the MC estimate

0.38

0.39

0.40

0.41

0.42

0.43

0.44

E
rr

o
r

(||
(P

∗
−
P̂)
φ
|| 2

)
Figure 6: Effect of the number of samples m used for the Monte Carlo estimation of expectations in VAML.
The left figure shows the `2-error of the estimated parameters and the right figure shows the error in the value
approximation within the value function space F as a function of the number of Monte Carlo samples m used for
estimating each expectation in the gradient. Both figures are for when there is model approximation error. The
error bars depict one standard error with the number of independent runs equal 50.

We then have

sup
V ∈F

∫
dν(x, a)

∣∣∣∣∫ [P∗(dx′|x, a)− P̂(dx′|x, a)
]
V (x′)

∣∣∣∣2 =

sup
‖θ‖2≤1

∫
dν(x, a)

∣∣∣∆>φ (x, a; P̂)θ
∣∣∣2 =

sup
‖θ‖2≤1

θ>
[∫

dν(x, a)∆>φ (x, a; P̂)∆φ(x, a; P̂)

]
︸ ︷︷ ︸

,Λ(P̂)

θ

Since Λ(P̂) is symmetric and positive semidefinite, it can be decomposed as Λ(P̂) = L>(P̂)L(P̂). So we have

sup
‖θ‖2≤1

〈
Λ(P̂)θ , θ

〉
= sup
‖θ‖2≤1

〈
L(P̂)θ , L(P̂)θ

〉
=
∥∥∥L(P̂)

∥∥∥2

2
= σ2

max

(
L(P̂)

)
= λmax

(
Λ(P̂)

)
.

Therefore, the optimization problem for the population version of this formulation of VAML becomes

P̂ ← argmin
P∈M

λmax (Λ(P)) .

Deriving an algorithm to solve this optimization problem as well as further investigation of this formulation is
postponed to a future work.

B COVERING NUMBERS FOR EXPONENTIAL FAMILY

Theorem 2 does not make any assumption on whether the model space is defined by an exponential family or not.
Therefore, the capacity condition of Assumption A1 is stated in the form of an upper bound on the metric entropy

Value-Aware Loss Function for Model-based Reinforcement Learning

(or covering number) of the model space M, without any reference to how the probability model is defined. Here
we provide some covering number results for exponential family.

For simplicity of analysis, we assume that X is countable. Let us consider a space of functions G in the form of
g(x′|x, a) : X ×A×X → R. Define a corresponding exponential family

P̂g(x′|x, a) =
exp (g(x′|x, a))∑
x′′ exp (g(x′′|x, a))

,

and the model space
MG = {P̂g : g ∈ G}.

For the particular choice of g(x′|x, a) = gw(x′|x, a) = φ′>(x′|x, a)w with φ′(x′|x, a) ∈ Rp′ , parameterized by

w ∈ Rp′ , we retrieve the model considered in Section 2.2. Define MW,B =
{
P̂w : ‖w‖2 ≤ B

}
for some

non-negative finite B.

We denote ‖g(·|z)‖22 =
∑
x′∈X g

2(x′|z). For a sequence z1:n , z1, . . . , zn ⊂ X × A, we define the empirical

norm L2(Pz1:n) of g ∈ G by ‖g‖22,n = 1
n

∑n
i=1 ‖g(·|zi)‖22 = 1

n

∑n
i=1

∑
x′∈X g

2(x′|zi). The ε-covering number of G
w.r.t. this empirical norm is denoted by N (ε,G, L2(Pz1:n)). The covering number N (ε,MG , L2(Pz1:n)) is defined
similarly. The following proposition is the main result of this section.

Proposition 6. Consider the function space G and its corresponding model space MG. For any sequence
z1, . . . zn ⊂ X ×A, we have

N (ε,MG , L2(Pz1:n)) ≤ N (2ε,G, L2(Pz1:n)).

Furthermore, assume that supz ‖φ(·|z)‖2 ≤ C. We have

N (ε,MW,B , L2(Pz1:n)) ≤
(

2BC + ε

ε

)p′
.

To prove this result, we use a lemma from Huang et al. [2015] (the extended version that has the proofs). The
statement in that paper looks slightly different, as it is about π and Q, but that result is essentially an upper
bound on the changes in probabilities in the exponential family as a function of the changes in the exponent,
which matches our need here.

In the next lemma, the `2-norm is defined on X : For a function u : X → R (or a vector on X), ‖u‖22 =
∑
x∈X u

2(x).

Lemma 7 (Lemma 4 of Huang et al. [2015]—Extended Version). For a function u : X → R, define

Pu(x) =
exp (u(x))∑
x′ exp (u(x′))

.

It holds that

‖Pu1
− Pu2

‖2 ≤
1

2
‖u1 − u2‖2 .

We are now ready to prove Proposition 6.

Proof of Proposition 6. Consider g1, g2 ∈ G and their corresponding P̂g1 , P̂g2 ∈MG . For any z = (x, a), Lemma 7
with the choice of u1 = g1(·|z) (and similarly for u2) shows that∥∥∥P̂g1(·|z)− P̂g2(·|z)

∥∥∥
2
≤ 1

2
‖g1(·|z)− g2(·|z)‖2 .

Let us consider a sequence z1, . . . , zn ∈ X ×A. We have

1

n

n∑
i=1

∥∥∥P̂g1(·|zi)− P̂g2(·|zi)
∥∥∥2

2
≤ 1

4n

n∑
i=1

‖g1(·|zi)− g2(·|zi)‖22 .

Therefore, a u-cover of G w.r.t. L2(Pz1:n) defines a u
2 -cover of MG , as desired.

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

For the second part, notice that when gw(x′|z) = φ′>(x′|z)w,

‖gw1
(·|z)− gw2

(·|z)‖22 =
∑
x′

∣∣φ′>(x′|z)(w1 − w2)
∣∣2

≤
∑
x′

‖φ′(x′|z)‖22 ‖w1 − w2‖22

= ‖w1 − w2‖22
∑
x′

‖φ′(x′|z)‖22 .

With the same covering argument as before, we get that

N (u,MW,B , L2(Pz1:n)) ≤ N
(

2u

C
, {w : ‖w‖2 ≤ B } , `2(Rp)

)
.

Finally we evoke Lemma 10, the covering number of a bounded ball in Rp′ , to obtain the result.

C AUXILIARY RESULTS

C.1 Rademacher Complexity

We define Rademacher complexity and quote a result from Bartlett and Mendelson [2002]. For more information
about Rademacher complexity, we refer the reader to Bartlett et al. [2005]; Bartlett and Mendelson [2002].

Let σ1, . . . , σn be independent random variables with P {σi = 1} = P {σi = −1} = 1/2. For a function space
F : X → R, define RnF = supf∈F

1
n

∑n
i=1 σif(Xi) with Xi ∼ ν. The Rademacher complexity (or average) of F

is E [RnG], in which the expectation is w.r.t. both σ and Xi. Rademacher complexity appears in the analysis of
the supremum of an empirical process right after we apply symmetrization . This makes it a notion of complexity
closely related to the behaviour of the empirical process. One may interpret it as a complexity measure that
quantifies the extent that a function from F can fit a noise sequence of length n [Bartlett and Mendelson, 2002].

The following result is a simplified (and slightly reworded) version of Theorem 2.1 of Bartlett et al. [2005].

Lemma 8. Let F : X → R be a measurable function space with B-bounded functions. Let X1, . . . , Xn ∈ X be
independent random variables. Assume that for some r > 0, Var [f(Xi)] ≤ r for every f ∈ F . Then for every
δ > 0, with probability at least 1− δ,

sup
f∈F

∣∣∣∣∣E [f(X)]− 1

n

n∑
i=1

f(Xi)

∣∣∣∣∣ ≤
inf
α>0

{
2(1 + α)E [Rn(F)] +

√
2r ln(2/δ)

n
+ 2B

(
1

3
+

1

α

)
log(2/δ)

n

}
.

C.2 Supremum of the Weighted Sums

We quote Theorem 19.1 of Györfi et al. [2002] for ease of reference. This result, in a more general form, appears
as Lemma 3.2 of van de Geer [2000].

Lemma 9. Let L > 0 and W1, . . . ,Wn be independent random variables with expectation zero and values in
[−L,L]. Let z1, . . . , zn ∈ Rd, let R > 0, and let F be a class of functions f : Rd → R with the property

1

n

n∑
i=1

|f(zi)|2 ≤ R2,

for all f ∈ F . Then

√
nδ ≥ 48

√
2L

∫ R
2

δ
8L

√
logN (u,F , L2(Pz1:n)du

Value-Aware Loss Function for Model-based Reinforcement Learning

and

√
nδ ≥ 36RL

imply

P

{
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(zi)Wi

∣∣∣∣∣ > δ

}
≤ 5 exp

(
− nδ2

2304L2R2

)
.

C.3 Covering Number for an Euclidean Ball

The following lemma, quoted from van de Geer [2000], upper bounds the covering number of a ball with radius B
in Rp.
Lemma 10 (Covering number of a ball in an Euclidean space – Lemma 2.5 of van de Geer 2000). A ball in Rp
with radius B w.r.t. Euclidean metric (i.e., {w ∈ Rp : ‖w‖2 ≤ B }) can be covered by

(
4B+ε
ε

)p
balls with radius

ε.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful feedback.

References

Bernardo Ávila Pires and Csaba Szepesvári. Policy error bounds for model-based reinforcement learning with
factored linear models. In Conference on Learning Theory (COLT), 2016. 9

André M.S. Barreto, Doina Precup, and Joelle Pineau. Reinforcement learning using kernel-based stochastic
factorization. In J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems (NIPS - 24), pages 720–728. 2011. 23

Peter L. Bartlett and Shahar Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research (JMLR), 3:463–482, 2002. 27

Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local Rademacher complexities. The Annals of
Statistics, 33(4):1497–1537, 2005. 9, 13, 27

Wendelin Böhmer, Steffen Grünewälder, Yun Shen, Marek Musial, and Klaus Obermayer. Construction of
approximation spaces for reinforcement learning. Journal of Machine Learning Research (JMLR), 14:2067–2118,
2013. 7

Miguel A Carreira-Perpinan and Geoffrey Hinton. On contrastive divergence learning. In International Workshop
on Artificial Intelligence and Statistics (AISTATS), volume 10, pages 33–40, 2005. 8

Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy search for robotics. Foundations
and Trends in Robotics, 2(1-2):1–142, 2013. 2

Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussan. Gaussian processes for data-efficient learning in
robotics and control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):408–423, 2015. 2

Amir-massoud Farahmand. Action-gap phenomenon in reinforcement learning. In J. Shawe-Taylor, R.S. Zemel,
P.L. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems
(NIPS - 24), pages 172–180. Curran Associates, Inc., 2011. 19

Amir-massoud Farahmand and Doina Precup. Value pursuit iteration. In F. Pereira, C.J.C. Burges, L. Bottou, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Systems (NIPS - 25), pages 1349–1357.
Curran Associates, Inc., 2012. 7

Amir-massoud Farahmand, Azad Shademan, Martin Jägersand, and Csaba Szepesvári. Model-based and model-
free reinforcement learning for visual servoing. In Proceedings of IEEE International Conference on Robotics
and Automation (ICRA), pages 2917–2924, May 2009. 2

Amir-massoud Farahmand, Rémi Munos, and Csaba Szepesvári. Error propagation for approximate policy
and value iteration. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems (NIPS - 23), pages 568–576. 2010. 5

Amir-massoud Farahmand, André M.S. Barreto, Daniel N. Nikovski

Amir-massoud Farahmand, André M.S. Barreto, and Daniel N. Nikovski. Value-aware loss function for model
learning in reinforcement learning. In 13th European Workshop on Reinforcement Learning (EWRL), December
2016. 2

Alborz Geramifard, Finale Doshi, Joshua Redding, Nicholas Roy, and Jonathan How. Online discovery of feature
dependencies. In Lise Getoor and Tobias Scheffer, editors, Proceedings of the 28th International Conference on
Machine Learning (ICML), pages 881–888, New York, NY, USA, June 2011. ACM. 7

Evarist Giné and Richard Nickl. Mathematical Foundations of Infinite-Dimensional Statistical Models. Cambridge
University Press, 2015. 8, 13

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems (NIPS
- 27), pages 2672–2680. 2014. 24

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. 8

Michael C. Grant and Stephen P. Boyd. CVX: Matlab software for disciplined convex programming, version 2.1.
http://cvxr.com/cvx, 2014. 18

Steffen Grünewälder, Guy Lever, Luca Baldassarre, Arthur Gretton, and Massimiliano Pontil. Modelling transition
dynamics in MDPs with RKHS embeddings. In International Conference on Machine Learning (ICML), pages
535–542. ACM, 2012. 23

László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A Distribution-Free Theory of Nonparametric
Regression. Springer Verlag, New York, 2002. 8, 11, 27

Todd Hester and Peter Stone. TEXPLORE: Real-time sample-efficient reinforcement learning for robots. Machine
Learning, 90(3), 2013. 2, 3

De-An Huang, Amir-massoud Farahmand, Kris M Kitani, and J. Andrew Bagnell. Approximate MaxEnt inverse
optimal control and its application for mental simulation of human interactions. In AAAI Conference on
Artificial Intelligence, January 2015. 26

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), 2015. 20, 22

Guy Lever, John Shawe-Taylor, Ronnie Stafford, and Csaba Szepesvári. Compressed conditional mean embeddings
for model-based reinforcement learning. In AAAI Conference on Artificial Intelligence, 2016. 23

Yitao Liang, Marlos C. Machado, Erik Talvitie, and Michael Bowling. State of the art control of atari games
using shallow reinforcement learning. In Proceedings of the International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), pages 485–493, 2016. 7

David J. C. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press,
2003. 8

Sridhar Mahadevan and Bo Liu. Basis construction from power series expansions of value functions. In J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R.S. Zemel, and A. Culotta, editors, Advances in Neural Information
Processing Systems (NIPS - 23), pages 1540–1548. 2010. 7

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A Laplacian framework for learning representation
and control in Markov decision processes. Journal of Machine Learning Research (JMLR), 8:2169–2231, 2007. 7

Mahdi Milani Fard, Yuri Grinberg, Amir-massoud Farahmand, Joelle Pineau, and Doina Precup. Bellman error
based feature generation using random projections on sparse spaces. In Advances in Neural Information
Processing Systems (NIPS - 26), pages 3030–3038, 2013. 7

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir
Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 02 2015. 7

Rémi Munos. Performance bounds in Lp norm for approximate value iteration. SIAM Journal on Control and
Optimization, pages 541–561, 2007. 5

Dirk Ormoneit and Saunak Sen. Kernel-based reinforcement learning. Machine Learning, 49:161–178, 2002. 23

http://cvxr.com/cvx

Value-Aware Loss Function for Model-based Reinforcement Learning

Ronald Parr, Christopher Painter-Wakefield, Lihong Li, and Michael Littman. Analyzing feature generation
for value-function approximation. In Proceedings of the 24th International Conference on Machine Learning
(ICML), pages 737 – 744, New York, NY, USA, 2007. ACM. 7

Marek Petrik. An analysis of Laplacian methods for value function approximation in MDPs. In International
Joint Conference on Artificial Intelligence (IJCAI), pages 2574–2579, 2007. 7

David Silver, Richard S. Sutton, and Martin Müller. Reinforcement learning of local shape in the game of go. In
Manuela M. Veloso, editor, International Joint Conference on Artificial Intelligence (IJCAI), pages 1053–1058,
2007. 7

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, 1998. 2, 7

Richard S. Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael Bowling. Dyna-style planning with linear
function approximation and prioritized sweeping. In Proceedings of the 24th Conference on Uncertainty in
Artificial Intelligence, 2008. 2

Csaba Szepesvári. Algorithms for Reinforcement Learning. Morgan Claypool Publishers, 2010. 2, 3, 7

Sara A. van de Geer. Empirical Processes in M-Estimation. Cambridge University Press, 2000. 8, 11, 27, 28

Hengshuai Yao, Csaba Szepesvári, Bernardo Ávila Pires, and Xinhua Zhang. Pseudo-MDPs and factored linear
action models. In IEEE Symposium on Adaptive Dynamic Programming And Reinforcement Learning (ADPRL),
2014. 23

