
Optimal Recovery of Tensor Slices

A Notation

Here we state the notation that will be used throughout this appendix. For n ∈ Z+, [n] denotes the set {1, . . . , n}.
If X is a matrix, then ‖X‖2, ‖X‖F , and ‖X‖∗ are respectively the operator, frobenius, and nuclear norms of X.
σi(X) is the ith largest singular value of X. For a matrix U ∈ Rm×r with orthonormal columns, we will refer to
U as a matrix and subspace interchangeably, where the subspace is the space in Rm spanned by the columns of
U ; PU = UU> is the projection operator onto the subspace U . We use d(U, Û) =

∥∥PU − PÛ∥∥F as a metric for
subspaces.

B Comparison of slice rank to existing tensor ranks

There are already many definitions of rank for tensors that have been studied. The two most common, on which
the tensor recovery literature has focused, are referred to here as CP rank and Tucker rank. We review the
canonical definitions of these ranks here. See Kolda and Bader (2009) for a more thorough treatment of these
concepts.

CP rank The CP rank of a tensor relates to its orthogonal decompositions. A rank-one tensor is any tensor
M ∈ Rm×m×n that is the tensor product of three vectors, i.e. M = u ⊗ v ⊗ w for some u ∈ Rm, v ∈ Rm, and
w ∈ Rn, or equivalently, M j

i1,i2
= ui1vi2wj . For any tensor M , we denote its CP rank as CP(M), which is the

minimum number r such that M can be expressed as the sum of r rank-one tensors.

Tucker rank The Tucker rank of a tensor M , denoted Tucker(M), is the vector (r1, r2, r3), where rd is the
rank of its mode-d unfolding. This relates to its higher order singular value decomposition: given a tensor of
Tucker rank (r1, r2, r3), there exist vectors u1, . . . , ur1 ∈ Rm, v1, . . . , vr2 ∈ Rm, and w1, . . . , wr3 ∈ Rn, and a
smaller tensor S ∈ Rr1×r2×r3 , such that M =

∑r1
k1

∑r2
k2

∑r3
k3
Sk3k1,k2u

k1 ⊗ vk2 ⊗ wk3 .

The following Proposition establishes the equivalent definitions for the CP rank and Tucker rank that were
referred to in §2.1 in the main text.
Proposition 2. (a) M ∈ Rm×m×n has CP rank at most r if and only if there exist matrices U ∈ Rm×r and
V ∈ Rm×r such that each slice of M , M j can be decomposed as M j = USjV >, where each Sj is a diagonal
matrix.

(b) M ∈ Rm×m×n has Tucker rank component-wise at most (r, r, l) if and only if there exist matrices
U ∈ Rm×r and V ∈ Rm×r such that each slice of M , M j can be decomposed as M j = USjV >, wherein
rank

(
span

(
s1, s2, . . . , sn

))
= l where sj ∈ Rr2 is a vectorization of Sj.

Proof. We first prove part (a). By definition, M has CP rank at most r if and only if there exist vectors
u1, . . . , ur ∈ Rm, v1, . . . , vr ∈ Rm, and w1, . . . , wr ∈ Rn, such that each entry of M can be expressed as

M j
i1,i2

=

r∑
k=1

uki1v
k
i2w

k
j .

Let U and V be the matrices with columns u1, . . . , ur and v1, . . . , vr, respectively. Then we can equivalently
write the above expression for slices as

M j =

r∑
k=1

wkj (ukvk>) = USjV >,

where Sj is the diagonal matrix, whose diagonal elements of w1
j , . . . , w

r
j .

Now we prove part (b). By definition, M has Tucker rank component-wise at most (r, r, l) if and only if there
exist vectors u1, . . . , ur ∈ Rm, v1, . . . , vr ∈ Rm, and w1, . . . , wl ∈ Rn, and a tensor S ∈ Rr×r×l, such that
M =

∑r
k1

∑r
k2

∑l
k3
Sk3k1,k2u

k1 ⊗ vk2 ⊗ wk3 . Equivalently, each entry of M can be expressed as

M j
i1,i2

=

r∑
k1=1

r∑
k2=1

l∑
k3=3

Sk3k1,k2u
k1
i1
vk2i2 w

k3
j .
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Let U and V be the matrices with columns u1, . . . , ur and v1, . . . , vr, respectively. Then we can equivalently
write the above expression for slices as

M j =

l∑
k3=1

wk3j

r∑
k1=1

r∑
k2=1

Sk3k1,k2(uk1vk2>) =

l∑
k3=1

wk3j (USk3V >) = U

(
l∑

k3=1

wk3j S
k3

)
V >.

Let W j =
∑l
k3=1 w

k3
j S

k3 for each j. Then each W j is a linear combination of some matrices S1, . . . , Sl, or
equivalently, W 1, . . . ,Wn, when viewed as vectors in Rr2 , span an l-dimensional subspace.

C Proof of Proposition 1

Our proof follows a standard Bayesian argument for minimax lower bounds; for example, see the proof of Theorem
1.2 in Chatterjee (2014). We will separately show that MSE(M̂) ≥ C(r2/m2) and MSE(M̂) ≥ C(r/mn). We first
give a detailed proof that MSE(M̂) ≥ C(r2/m2). For each ground truth slice Mk, let the elements sitting in the
first r rows and first r columns be drawn independently from a uniform distribution, and the remaining elements
set equal to 0:

(5) Mk
ij ∼

{
Uniform[0, 1] if i ≤ r and j ≤ r
0 if i > r or j > r

.

Note that all slices of M share the same column and row spaces, both with dimension at most r. Finally,
conditional on M , each entry Xk

i,j of X is drawn from the following two point distribution:

(6) Xk
ij ∼ Ber(Mk

ij).

Then for each i ≤ r and j ≤ r, we have

E
[
Var

(
Mk
ij

∣∣X)] = Var
(
Mk
ij

)
−Var

(
E
[
Mk
ij

∣∣X])
= Var

(
Mk
ij

)
−Var

(
E
[
Mk
ij

∣∣Xk
ij

])
= Var

(
Mk
ij

)
−Var

(
1 +Xk

ij

3

)

=
1

12
− 1

36
=

1

18
(7)

The first equality is the law of total variance. For the second equality, observe that Mk
ij is independent of

all entries of X except for its corresponding entry Xk
ij . The third equality comes from the fact that, having

defined Mk
ij to be distributed as Uniform[0, 1] (or equivalently Beta(1, 1)), its distribution conditional on Xk

ij is
Beta(1 +Xk

ij , 2−Xk
ij).

Then for any estimator M̂ , the definition of variance implies that

E

[(
M̂k
ij −Mk

ij

)2∣∣∣∣X] ≥ Var
(
Mk
ij

∣∣X) .
Taking expectations of both sides, and applying (7), we have

E

[(
M̂k
ij −Mk

ij

)2]
≥ 1

18
.

The proof concludes by summing both sides over all entries of M in the first r rows and first r columns (i.e. nr2
entries in total) and dividing by m2n.

A nearly identical argument shows that MSE(M̂) ≥ C(r/mn). For the first slice M1, let the elements in the first
r rows be drawn independently from a uniform distribution, and the remaining elements set equal to 0:

(8) M1
ij ∼

{
Uniform[0, 1] if i ≤ r
0 if i > r

.
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Set the entries of the remaining slices equal to the corresponding entries in the first slice, i.e. Mk
ij = M1

ij for all k.
Once again, conditional on M , each entry Xk

ij is drawn independently from the distribution in (6), so while the
slices of M are copies of each other, the slices of X are not. Then for each i ≤ r, we have

E
[
Var

(
Mk
ij

∣∣X)] = Var
(
Mk
ij

)
−Var

(
E
[
Mk
ij

∣∣X])
= Var

(
Mk
ij

)
−Var

(
E
[
Mk
ij

∣∣X1
ij , . . . X

n
ij

])
= Var

(
Mk
ij

)
−Var

(
1 +X1

ij + · · ·+Xn
ij

n+ 2

)

=
1

12
− n

12(n+ 2)
=

1

6(n+ 2)
(9)

Again, the first equality is the law of total variance, and for the second equality, observe that Mk
ij is independent

of all entries of X except for the (i, j)th entry of each slice. For the third equality, the distribution of Mk
ij

conditional on X1
ij , . . . , X

n
ij is Beta(1 +X1

ij + · · ·+Xn
ij , n+ 1− (X1

ij + · · ·+Xn
ij)).

Therefore, for any estimator M̂ we have

E

[(
M̂k
ij −Mk

ij

)2]
≥ 1

6(n+ 2)
.

The proof concludes by summing both sides over all entries of M in the first r rows (i.e. nmr entries in total)
and dividing by m2n.

D Proof of Theorem 1

We will present a more general version of Theorem 1 that relaxes the balanced noise assumption and reflects the
recovery error caused by ‘unbalanced’ noise.

To proceed, we need to precisely quantify the concept of ‘unbalanced’ noise. Recall that if v is the tensor whose
entries are the variances of the corresponding entries of ε, i.e. vkij = E[(εkij)

2], then ε is balanced if the row-sums of
v(1) are equal and the row-sums of v(2) are equal. An equivalent way to state this assumption is E[ε(1)ε

>
(1)] = ρ1Im

and E[ε(2)ε
>
(2)] = ρ2Im for some constants ρ1 and ρ2, where Im is the m×m identity matrix. To see this, note

that the off-diagonal elements of E[ε(1)ε
>
(1)] and E[ε(2)ε

>
(2)] are always equal to zero when the noise terms are

independent, and the diagonal elements are exactly the row sums of v(1) and v(2), so the balanced noise assumption
states that E[ε(1)ε

>
(1)] and E[ε(2)ε

>
(2)] are multiples of the identity matrix.

For general, possibly unbalanced noise, it turns out that the appropriate quantities to measure the level of
‘unbalance’ in the noise are

min
ρ

1

m

∥∥∥E[ε(1)ε
>
(1)]− ρIm

∥∥∥2
F

and min
ρ

1

m

∥∥∥E[ε(2)ε
>
(2)]− ρIm

∥∥∥2
F
.

These quantities measure how far E[ε(1)ε
>
(1)] and E[ε(2)ε

>
(2)] are from a multiple of the identity matrix. One nice

interpretation is that the quantities correspond to population variances, one each for the row-sums of v(1) and the
row-sums of v(2). We denote the maximum of these two quantities as δ2, and can now state our more general
result. We will in fact prove Theorem 2 below. Theorem 1 is just the special case where δ = 0.
Theorem 2. Assume the entries of M lie in [−1, 1]. Suppose the entries of ε are independent, mean-zero, and
E[ε6ij ] ≤ K6. Then there exists a universal constant c such that for the slice learning algorithm (without trimming),

SMSE(M̂) ≤ c
[
K2r2

m2
+
K2(K4 + 1)r2

γ2Mmn
+

(K2 + 1)r2δ2

γ2Mm
3n2

]
The proof of Theorem 2 involves two steps, corresponding to the two stages of the algorithm: learning subspaces
and projection. In the first step, we show that we are able to closely estimate the column and row spaces, and in
the second step, we show that if our estimates of the ‘true’ column and row spaces are close, then our estimate of
each slice is close.
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D.1 Step 1: Column and Row Space Estimation

To estimate the column space (and similarly the row space), we take the top column singular vectors of
X(1) = M(1) + ε(1), so it is important to understand the extent to which ε(1) changes the singular vectors of

M(1). Lemma 1 bounds the error of this step. The first result in Lemma 1 is an upper bound on E
[
d(U, Û)2

]
,

which is the expected error of our subspace estimate. Because of the decomposition we make later on, we
also need to bound E

[∥∥εk∥∥2
F
d(U, Û)2

]
for any slice of the noise tensor εk. It would be tempting to say that,

since E
[∥∥εk∥∥2

F

]
≤ K2m2, we can multiply the first result by K2m2, but unfortunately εk and d(U, Û) are not

independent. The second result in Lemma 1 states that this bound still holds.

Lemma 1. Let M ∈ Rm×mn be a matrix with column space U ∈ Rm×r. Suppose ε ∈ Rm×mn is a random
matrix with independent elements, where each element εij is mean-zero and E[ε6ij ] ≤ K6. Let X = M + ε, and
let Û ∈ Rm×r be the column singular vectors of X corresponding to its largest r singular values. Then taking
expectation over ε, we have

E
[
d(U, Û)2

]
≤ 24

4K2m ‖M‖2F +K4m3n+ minρ
∥∥E[εε>]− ρIm

∥∥2
F

σ4
r(M)

, and

E
[∥∥ε1∥∥2

F
d(U, Û)2

]
≤ 24K2m2

4K2m ‖M‖2F +K4m3n+ minρ
∥∥E[εε>]− ρIm

∥∥2
F

σ4
r(M)

,

where ε1 is any m×m submatrix of ε.

The proof of Lemma 1 relies on the Davis-Kahan Theorem (Davis and Kahan (1970)), via a recent extension by
Yu et al. (2015), which we reproduce as Lemma 2. Note that Lemma 2 is a statement about symmetric matrices,
which we adapt to our setting where the matrices are not symmetric or even square; Yu et al. (2015) also show a
version of Lemma 2 for rectangular matrices that is a similar modification to Wedin’s Theorem (Wedin (1972)),
but applying that directly would not yield as strong a bound as Lemma 1. However, this stronger bound requires
the noise to be balanced.

Lemma 2 (Davis-Kahan Variant; Yu et al. (2015), Theorem 2). Suppose S and Ŝ are symmetric matrices, and
let U and Û be the eigenvectors corresponding to the r largest eigenvalues of S and Ŝ, respectively. Let λr(S) and
λr+1(S) be the rth and r + 1th largest eigenvalues of S. Then assuming λr(S) 6= λr+1(S) , we have

d(U, Û) ≤
2
√

2
∥∥∥S − Ŝ∥∥∥

F

λr(S)− λr+1(S)
.

Proof. First note that the column singular vectors of M and X are identical to the eigenvectors of MM> and
XX>, respectively, and further, the eigenvectors of XX> − ρIm are the same for any ρ ∈ R. Thus, Lemma 2
can be applied directly with S = MM>, and Ŝ = XX> − ρIm for any ρ ∈ R, and λr(MM>)− λr+1(MM>) =
σr(M)2 − σr+1(M)2 = σr(M)2:

(10) d(U, Û)2 ≤
8 minρ

∥∥MM> − (XX> − ρIm)
∥∥2
F

σ4
r(M)

.

To upper bound the numerator, we make the following decomposition:

min
ρ

∥∥MM> − (XX> − ρIm)
∥∥
F
≤ 2

∥∥Mε>
∥∥
F

+ min
ρ

∥∥εε> − ρIm∥∥F
≤ 2

∥∥Mε>
∥∥
F

+
∥∥εε> − E[εε>]

∥∥
F

+ min
ρ

∥∥E[εε>]− ρIm
∥∥
F
,

and since (a+ b+ c)2 ≤ 3(a2 + b2 + c2) for any a, b, c ∈ R, we have

min
ρ

∥∥MM> − (XX> − ρIm)
∥∥2
F
≤ 3

(
4
∥∥Mε>

∥∥2
F

+
∥∥εε> − E[εε>]

∥∥2
F

+ min
ρ

∥∥E[εε>]− ρIm
∥∥2
F

)
.
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We have decomposed the numerator of (10) into three terms. The last term is a deterministic quantity. The
proof concludes by bounding the expectation of the first two terms. All of the following calculations proceed in
the same manner: the first equality is a rewriting of expressions in expanded form, the second equality comes
from setting any summands with a lone E[εij ] to zero, and the inequality applies the fact that E[ε6ij ] ≤ K6.

E
[∥∥Mε>

∥∥2
F

]
=

∑
i1∈[m],i2∈[m]

E


 ∑
j∈[mn]

Mi1jεi2j

2
(11)

=
∑

i1∈[m],i2∈[m]

∑
j∈[mn]

M2
i1jE

[
ε2i2j
]
≤ K2m ‖M‖2F

E
[∥∥ε1∥∥2

F

∥∥Mε>
∥∥2
F

]
= E

∥∥ε1∥∥2F ∑
i1,i2∈[m]

 ∑
j∈[mn]

Mi1jεi2j

2
(12)

=
∑

i1,i2∈[m]

∑
j∈[mn]

M2
i1jE

[
ε2i2j

∥∥ε1∥∥2
F

]
≤ K4m3 ‖M‖2F

E
[∥∥εε> − E[εε>]

∥∥2
F

]
=
∑
i∈[m]

Var

 ∑
j∈[mn]

ε2ij

+
∑

i1∈[m],i2∈[m],i1 6=i2

E


 ∑
j∈[mn]

εi1jεi2j

2
(13)

=
∑
i∈[m]

∑
j∈[mn]

Var
[
ε2ij
]

+
∑

i1∈[m],i2∈[m],i1 6=i2

∑
j∈[mn]

E
[
ε2i1j
]
E
[
ε2i2j
]

≤ K4m2n+K4m2(m− 1)n = K4m3n

E
[∥∥ε1∥∥2

F

∥∥εε> − E[εε>]
∥∥2
F

]
= E

∥∥ε1∥∥2F ∑
i∈[m]

 ∑
j∈[mn]

ε2ij − E
[
ε2ij
]2

+
∥∥ε1∥∥2

F

∑
i1,i2∈[m],i1 6=i2

 ∑
j∈[mn]

εi1jεi2j

2


(14)

= E

∥∥ε1∥∥2
F

∑
i∈[m]

∑
j∈[mn]

(
ε2ij − E

[
ε2ij
])2

+
∥∥ε1∥∥2

F

∑
i1,i2∈[m],i1 6=i2

∑
j∈[mn]

ε2i1jε
2
i2j


≤ K6m4n+K6m4(m− 1)n = K6m5n

Combining (11) and (13) completes the first result, and combining (12) and (14), along with the fact that
E
[∥∥ε1∥∥2

F

]
≤ K2m2, completes the second.

D.2 Step 2: Projection onto Estimated Spaces

Lemma 3 decomposes the error of the projection step in terms of the error of our column and row space estimates.
For any slice Mk, our estimate of this slice is the projection of Xk onto the estimated subspaces Û and V̂ , i.e.
PÛM

kPV̂ + PÛ ε
kPV̂ . If Û and V̂ are close to U and V , then PÛM

kPV̂ ≈ PUMkPV = Mk. Furthermore, since
Û and V̂ are low-dimensional subspaces, PÛ ε

kPV̂ will be small (this argument needs to be made carefully as Û
and V̂ depend on εk).
Lemma 3. Let M1 ∈ Rm×m be a matrix with column and row spaces U, V ∈ Rm×r. Let ε1 ∈ Rm×m be a random
matrix, and let Û , V̂ ∈ Rm×r be random subspaces, where none of these variables are required to be independent.
If M̂1 = PÛ (M1 + ε1)PV̂ , then taking expectation over ε1, Û , and V̂ :

E

[∥∥∥M̂1 −M1
∥∥∥2
F

]
≤ 9E

[∥∥PU ε1PV ∥∥2F ]+3
∥∥M1

∥∥2
F
E
[
4d(U, Û)2 + d(V, V̂ )2

]
+9E

[∥∥ε1∥∥2
F

(
4d(U, Û)2 + d(V, V̂ )2

)]
.
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Proof. We begin by making the following decomposition, where the first two inequalities rely on the sub-
multiplicative and sub-additive properties of the frobenius norm, and the first inequality also relies on the fact
that

∥∥PV̂ − PV ∥∥2 ≤ 1. The final inequality comes from (a+ b+ c)2 ≤ 3(a2 + b2 + c2).∥∥∥M̂1 −M1
∥∥∥2
F

=
∥∥PÛ (M1 + ε1)PV̂ −M

1
∥∥2
F

=
∥∥[PU + (PÛ − PU )]M1[PV + (PV̂ − PV )]−M1 + PÛ ε

1PV̂
∥∥2
F

=
∥∥M1(PV̂ − PV ) + (PÛ − PU )

[
M1 +M1(PV̂ − PV )

]
+ PÛ ε

1PV̂
∥∥2
F

≤
(∥∥M1(PV̂ − PV )

∥∥
F

+ 2
∥∥(PÛ − PU )M1

∥∥
F

+
∥∥PÛ ε1PV̂ ∥∥F )2

≤
(∥∥M1

∥∥
F

(
2d(U, Û) + d(V, V̂ )

)
+
∥∥PÛ ε1PV̂ ∥∥F)2

≤ 3
∥∥M1

∥∥2
F

(
4d(U, Û)2 + d(V, V̂ )2

)
+ 3

∥∥PÛ ε1PV̂ ∥∥2F .
The last term is decomposed further in a similar way:∥∥PÛ ε1PV̂ ∥∥2F =

∥∥[PU + (PÛ − PU )]ε1[PV + (PV̂ − PV )]
∥∥2
F

≤
(∥∥PU ε1PV ∥∥F +

∥∥ε1(PV̂ − PV )
∥∥
F

+ 2
∥∥(PÛ − PU )ε1

∥∥
F

)2
≤
(∥∥PU ε1PV ∥∥F +

∥∥ε1∥∥
F

(
2d(U, Û) + d(V, V̂ )

))2
≤ 3

∥∥PU ε1PV ∥∥2F + 3
∥∥ε1∥∥2

F

(
4d(U, Û)2 + d(V, V̂ )2

)
.

We conclude the proof by taking expectations.

D.3 Final Steps

We are now ready to conclude the proof. Fix any k ∈ [n]. Lemma 3 first gives us:

E

[∥∥∥M̂k −Mk
∥∥∥2
F

]
≤ 9E

[∥∥PU εkPV ∥∥2F ]+3
∥∥Mk

∥∥2
F
E
[
4d(U, Û)2 + d(V, V̂ )2

]
+9E

[∥∥εk∥∥2
F

(
4d(U, Û)2 + d(V, V̂ )2

)]
.

The first term is bounded as follows:

E
[∥∥PU εkPV ∥∥2F ] = E

[∥∥UU>εkV V >∥∥2
F

]
= E

[∥∥U>εkV ∥∥2
F

]
=

∑
i1∈[r],i2∈[r]

E
[(
U>i1 ε

kVi2
)2] ≤ r2K2.

The remaining terms are bounded by applying Lemma 1 directly:

E
[
d(U, Û)2

]
≤ 24

4K2m
∥∥M(1)

∥∥2
F

+K4m3n+mδ2

σ4
r(M(1))

,

E
[∥∥εk∥∥2

F
d(U, Û)2

]
≤ 24K2m2

4K2m
∥∥M(1)

∥∥2
F

+K4m3n+mδ2

σ4
r(M(1))

,

and similarly for E
[
d(V, V̂ )2

]
and E

[∥∥εk∥∥2
F
d(V, V̂ )2

]
.

Putting all of this together, and replacing running constants with c, we have

1

m2
E

[∥∥∥M̂k −Mk
∥∥∥2
F

]
≤ c

[
K2r2

m2
+

(∥∥Mk
∥∥2
F

m2
+K2

)(
K2m

∥∥M(1)

∥∥2
F

+K4m3n+mδ2

mini=1,2{σ4
r(M(i))}

)]

≤ c
[
K2r2

m2
+
(
K2 + 1

)(K2m3n+K4m3n+mδ2

γ2Mm
4n2/r2

)]
≤ c

[
K2r2

m2
+

(
K2(K2 + 1)2m3n+ (K2 + 1)mδ2

γ2Mm
4n2/r2

)]
≤ c

[
K2r2

m2
+
K2(K4 + 1)r2

γ2Mmn
+

(K2 + 1)r2δ2

γ2Mm
3n2

]
.
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In the second step, we plug in our definition of γM , mini=1,2{σ2
r(M(i))} ≥ γMm

2n/r, and use the facts that∥∥Mk
∥∥2
F
≤ m2 and

∥∥M(1)

∥∥2
F
≤ m2n. The last two steps are a rearrangement of terms. Note that this entire

analysis holds for any k ∈ [n], so

SMSE(M̂) = max
k∈[n]

1

m2
E

[∥∥∥M̂k −Mk
∥∥∥2
F

]
≤ c

[
K2r2

m2
+
K2(K4 + 1)r2

γ2Mmn
+

(K2 + 1)r2δ2

γ2Mm
3n2

]
.

E Additional Numerical Results

Tables 2 and 3 summarize the results of the experiments using data from Xiami.com, in terms of recovering the
Download and Listen slices. See Section 6.2 for a detailed description of the experiment.

Users Songs Sparsity Naive Matrix Slice

2,412 1,541 9.6 0.84 (11) 0.87 (7) 0.91 (12)
4,951 2,049 7.9 0.83 (14) 0.85 (9) 0.91 (12)
27,411 3,472 3.2 0.83 (11) 0.86 (8) 0.91 (14)
23,300 10,106 14.2 0.94 (18) 0.93 (13) 0.94 (18)
53,713 10,199 8.2 0.93 (10) 0.93 (7) 0.94 (20)

Table 2: Summary of experiments on Xiami data for recovering the Download slice. Each row corresponds to an
experiment on a subset of the data. Columns ‘Users’ and ‘Songs’ show the number of users and songs in each
experiment, and ‘Sparsity’ gives the average number of downloads per user in the data. Results for the naive
benchmark, the matrix-based benchmark, and the slice learning algorithm are shown in the last three columns.
The average AUC over 10 replications is reported, along with the rank in parentheses.

Users Songs Sparsity Naive Matrix Slice

2,412 1,541 14.8 0.88 (6) 0.88 (7) 0.91 (11)
4,951 2,049 12.6 0.88 (7) 0.87 (11) 0.91 (11)
27,411 3,472 7.5 0.87 (6) 0.87 (3) 0.90 (9)
23,300 10,106 21.3 0.94 (7) 0.92 (8) 0.94 (15)
53,713 10,199 14.1 0.92 (5) 0.92 (12) 0.93 (7)

Table 3: Summary of experiments on Xiami data for recovering the Listen slice. Each row corresponds to
an experiment on a subset of the data. Columns ‘Users’ and ‘Songs’ show the number of users and songs in
each experiment, and ‘Sparsity’ gives the average number of listens per user in the data. Results for the naive
benchmark, the matrix-based benchmark, and the slice learning algorithm are shown in the last three columns.
The average AUC over 10 replications is reported, along with the rank in parentheses.
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