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A Computational complexity

As discussed in the Experiments, we used the high-dimensional synthetic data to consider our method’s computa-
tional complexity. The effect of the dimensionality d was negligible in practice, because the main calculations
rely only on an n⇥ n Gram matrix whose calculation is relatively fast even for high dimensions. Our method’s
time complexity scales as O(n2

) as shown in the Appendix in Fig. A5 (but as discussed in Section 4.2, a primal
representation is available which would give linear scaling.) where we used s = 200 sample points to estimate ˜k.
While a small s worked well in practice, we investigated much larger values of s. As shown in the Appendix in
Fig. A6 the time complexity scaled as O(s2) where the number of points was fixed to be 150; note that we fixed
the rank of the eigendecomposition to be 20.
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Figure A5: Run-time of our method versus number of points in the point pattern dataset.
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Figure A6: Run-time of our method versus number of sample points used to calculate ˜k.
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B Supplementary results
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Figure A7: Comparison of kernel intensity estimation versus the naïve RKHS approach, as the dimensionality
grows, with 95% confidence intervals shown in gray based on 100 random intensities for each dimension. The
number of points in the point pattern was fixed to be between 190 and 210. Kernel intensity estimation almost
always outperforms the naïve approach.
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Figure A8: Standard Ramachandran plot (left) based on a two-dimensional histogram versus our proposed
Ramachandran plot based on an intensity estimate with a two-dimensional Sobolev kernel
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C Kernels with Explicit Mercer Expansions

C.1 Sobolev space on [0, 1] with a periodic boundary condition

We consider domain S = [0, 1]. The kernel is given by:

k(x, y) = 1 +

1X
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2 cos (2⇡m (x� y))

(2⇡m)

2s

= 1 +

1X
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2
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2s
[cos (2⇡mx) cos (2⇡my) + sin (2⇡mx) sin (2⇡my)] ,

= 1 +

(�1)

s�1

(2s)!
B2s({x� y}),

where s = 1, 2, . . . denotes the order of the Sobolev space and B2s({x�y}) is the Bernoulli polynomial of degree 2s
applied to the fractional part of x� y. The corresponding RKHS is the space of functions on [0, 1] with absolutely
continuous f, f 0, . . . , f (s�1) and square integrable f (s) satisfying a periodic boundary condition f (l)

(0) = f (l)
(1),

l = 0, . . . , s� 1. For more details, see (Wahba, 1990, Chapter 2) Bernoulli polynomials admit a simple form for
low degrees. In particular,
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If we consider the Mercer expansion where the underlying measure ⇢ is uniform on [0, 1]: d⇢(x) = dx, we have
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where kernel matrix ˜R is computed using kernel r̃ of T 2
k

(T
k

+ cI)�2, i.e.

r̃(x, y) =

X

m2Z

⌘2
m

(⌘
m

+ c)2
e
m

(x)e
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=
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(1 + c)2
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2 cos (2⇡m (x� y))
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2s
)

2
.

• To generate a function f 2 H
k

of unit norm kfkHk = 1, one takes

f(x) = a0 +
p
2

MX

m=1

(a
m

cos(2⇡mx) + a�m

sin(2⇡mx)) , (23)

for which the norm is given by

kfk2Hk
= a20 +

MX

m=1

(a2
m

+ a2�m

)(2⇡m)

2s. (24)

Thus we can simply generate z = (z�M

, . . . , z0, . . . , zM ) ⇠ N (0, I2M+1), set ˜z = z/kzk and then a0 = z̃0,
a
m

= z̃
m

(2⇡|m|)�s, for m 6= 0.

C.2 Squared exponential kernel

A Mercer expansion for the squared exponential kernel was proposed in Zhu et al. (1997) and refined in Fasshauer
and McCourt (2012). However, this expansion is with respect to a Gaussian measure on R, i.e., it consists of
eigenfunctions which form an orthonormal set in L2

(R, ⌫) where ⌫ = N (0, `2I). The formalism can therefore be
used to estimate Poisson intensity functions with respect to such Gaussian measure. In the classical framework,
where the intensity is with respect to a Lebesgue measure, numerical approximations of Mercer expansion, as
described in Section 4.2 are needed. Following the exposition in (Rasmussen and Williams, 2006, section 4.3.1)
and the relevant errata3 we parameterize the kernel as:

k(x, x0
) = exp(�kx� x0k2

2�2
) (25)

The Mercer expansion with respect to ⌫ = N (0, `2I) then has the following eigenvalues:

⌘
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(

p
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where H
i

is the i-th order (physicist’s) Hermite polynomial, a =

1
4�2 , b = 1

2`2 , c =
p
a2 + 2ab, A = a+ b+ c, and

B = b/A. Thus we have the following eigenvalues for ˜k:
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while the eigenfunctions remain the same.

C.3 Brownian Bridge kernel

This is the kernel on [0, 1], given by

k(x, y) = min(x, y)� xy =

1X

m=1

2 sin(⇡mx) sin(⇡my)

⇡2m2
,

with the eigenvalues and eigenfunctions in the Mercer expansion with respect to Lebesgue measure

⌘
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, e
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3http://www.gaussianprocess.org/gpml/errata.html
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Thus one can form

˜k(x, y) =

1X
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The functions in the corresponding RKHS are pinned to zero at both ends of the segment.

C.4 Extending the Mercer expansion to multiple dimensions

The extension of any kernel to higher dimensions can be constructed by considering tensor product spaces: H
k1⌦k2

(where k1 and k2 could potentially be different kernels with different hyperparameters). If k1 has eigenvalues ⌘
i

and eigenfunctions e
i

and k2 has eigenvalues �
j

and eigenfunctions f
j

, then the eigenvalues of the product space
are then given by the Cartesian product ⌘

i

�
j

, 8i, j, and similarly the eigenfunctions are given by e
i

(x)f
j

(y). Our
regularized kernel has the following Mercer expansion:
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Notice that k̂1 ⌦ k2 is the kernel corresponding to the integral operator (T
k1 ⌦ T

k2)(aTk1 ⌦ T
k2 + �I)�1 which is

different than ˜k1 ⌦ ˜k2.

D Proof of the Representer Theorem

We decompose f 2 H
k̃

as the sum of two functions:

f(·) =
NX

j=1

↵
j

˜k(x
j

, ·) + v (31)

where v is orthogonal to the span of {˜k(x
j

, ·)}
j

. We prove that the first term in the objective J [f ] given in
Eq. (13), �

P
N

i=1 log(af
2
(x

i

)), is independent of v. It depends on f only through the evaluations f(x
i

) for all i.
Using the reproducing property we have:
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i
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, ·)i =
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, ·)i =
X
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˜k(x
j

, x
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where the last step is by orthogonality. Next we substitute into the regularization term:
�k

X

j

↵
j

˜k(x
j

, ·) + vk2Hk̃
= �k

X

j

↵
j

˜k(x
j

, ·)k2Hk̃
+ kvk2Hk̃

� �k
X

j

↵
j

˜k(x
j

, ·)k2Hk̃
. (33)

Thus, the choice of v has no effect on the first term in J [f ] and a non-zero v can only increase the second term
kfk2Hk̃

, so we conclude that v = 0 and that f⇤
=

P
N

j=1 ↵j

˜k(x
j

, ·) is the minimizer.

E Numerical evaluation of kernel approximations

Here we present an evaluation of the numerical approximation to ˜k described in 4.2 on the case of the Sobolev
kernel where Mercer expansion is also available so that truncated Mercer expansion representation of ˜k can be
treated as a ground truth. As Figure A9, demonstrates, good approximation is possible with a fairly coarse grid
u = (u1, . . . , um

) as well as with a low-rank approximation.
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Figure A9: We compared the exact calculation of ˜K
uu

with s = 1, a = 10, and � = .5 to our approximate
calculation. For illustration we tried a coarse grid of size 10 on the unit interval (top left) to a finer grid of size 100
(top right). The RMSE was 2E-3 for the coarse grid and 1.6E-5 for the fine grid. We compare the exact calculation
of ˜K

xx

with s = 1, a = 10, and � = .5 to our Nyström-based approximation, where x1, . . . , x400 ⇠ Beta(.5, .5)
distribution (bottom left). The RMSE was 0.98E-3. A low-rank approximation using only the top 5 eigenvalues
gives the RMSE of 1.6E-2 (bottom right).
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