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Abstract

While a large body of empirical results show
that temporally-extended actions and op-
tions may significantly affect the learning per-
formance of an agent, the theoretical under-
standing of how and when options can be
beneficial in online reinforcement learning is
relatively limited. In this paper, we derive
an upper and lower bound on the regret of
a variant of UCRL using options. While we
first analyze the algorithm in the general case
of semi-Markov decision processes (SMDPs),
we show how these results can be translated
to the specific case of MDPs with options and
we illustrate simple scenarios in which the re-
gret of learning with options can be provably
much smaller than the regret suffered when
learning with primitive actions.

1 Introduction

The option framework [Sutton et al., 1999] is a simple
yet powerful model to introduce temporally-extended
actions and hierarchical structures in reinforcement
learning (RL) [Sutton and Barto, 1998]. An important
feature of this framework is that Markov decision pro-
cess (MDP) planning and learning algorithms can be
easily extended to accommodate options, thus obtain-
ing algorithms such as option value iteration and Q-
learning [Sutton et al., 1999], LSTD [Sorg and Singh,
2010], and actor-critic [Bacon and Precup, 2015].
Temporally extended actions are particularly useful
in high dimensional problems that naturally decom-
pose into a hierarchy of subtasks. For instance,
Tessler et al. [2016] recently obtained promising re-
sults by combining options and deep learning for life-
long learning in the challenging domain of Minecraft.
A large body of the literature has then focused on
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how to automatically construct options that are bene-
ficial to the learning process within a single task or
across similar tasks (see e.g., [McGovern and Barto,
2001, Menache et al., 2002, Şimşek and Barto, 2004,
Castro and Precup, 2012, Levy and Shimkin, 2011]).
An alternative approach is to design an initial set of op-
tions and optimize it during the learning process itself
(see e.g., interrupting options Mann et al. 2014 and op-
tions with exceptions Sairamesh and Ravindran 2012).
Despite the empirical evidence of the effectiveness of
most of these methods, it is well known that options
may as well worsen the performance w.r.t. learning
with primitive actions [Jong et al., 2008]. Moreover,
most of the proposed methods are heuristic in nature
and the theoretical understanding of the actual im-
pact of options on the learning performance is still
fairly limited. Notable exceptions are the recent re-
sults of Mann and Mannor [2014] and Brunskill and Li
[2014]. Nonetheless, Mann and Mannor [2014] rather
focus on a batch setting and they derive a sample
complexity analysis of approximate value iteration
with options. Furthermore, the PAC-SMDP analysis
of Brunskill and Li [2014] describes the performance in
SMDPs but it cannot be immediately translated into a
sample complexity of learning with options in MDPs.

In this paper, we consider the case where a fixed set
of options is provided and we study their impact on
the learning performance w.r.t. learning without op-
tions. In particular, we derive the first regret analy-
sis of learning with options. Relying on the fact that
using options in an MDP induces a semi-Markov deci-
sion process (SMDP), we first introduce a variant of
the UCRL algorithm [Jaksch et al., 2010] for SMDPs
and we upper- and lower-bound its regret (sections 3
and 4). While this result is of independent interest
for learning in SMDPs, its most interesting aspect is
that it can be translated into a regret bound for learn-
ing with options in MDPs and it provides a first un-
derstanding on the conditions sufficient for a set of
options to reduce the regret w.r.t. learning with prim-
itive actions (Sect. 5). Finally, we provide an illustra-
tive example where the empirical results support the
theoretical findings (Sect. 6).
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2 Preliminaries

MDPs and options. A finite MDP is a tuple
M =

{
S,A, p, r

}
where S is a finite set of states, A

is a finite set of actions, p(s′|s, a) is the probability of
transitioning from state s to state s′ when action a is
taken, r(s, a, s′) is a distribution over rewards obtained
when action a is taken in state s and the next state
is s′. A stationary deterministic policy π : S → A
maps states to actions. A (Markov) option is a tu-
ple o =

{
Io, βo, πo

}
where Io ⊂ S is the set of states

where the option can be initiated, βo : S → [0, 1] is
the probability distribution that the option ends in a
given state, and πo : S → A is the policy followed until
the option ends. Whenever the set of primitive actions
A is replaced by a set of options O, the resulting deci-
sion process is no longer an MDP but it belongs to the
family of semi-Markov decision processes (SMDP).

Proposition 1. [Sutton et al. 1999] For any MDP M
and a set of options O, the resulting decision process is
an SMDP MO =

{
SO,O, pO, rO, τO

}
, where SO ⊆ S

is the set of states where options can start and end,

SO =
(
∪o∈O Io

)⋃(
∪o∈O {s : βo(s) > 0}

)
,

O is the set of available actions, pO(s, o, s′) is the prob-
ability of transition from s to s′ by taking the policy πo

associated to option o, i.e.,

pO(s, o, s
′) =

∞∑

k=1

p(sk = s′|s, πo)βo(s
′),

where p(sk = s′|s, πo) is the probability of reach-
ing state s′ after exactly k steps following policy πo,
rO(s, o, s′) is the distribution of the cumulative reward
obtained by executing option o from state s until inter-
ruption at s′, and τO(s, o, s′) is the distribution of the
holding time (i.e., number of primitive steps executed
to go from s to s′ by following πo).

Throughout the rest of the paper, we only consider an
“admissible” set of options O such that all options ter-
minate in finite time with probability 1 and in all possi-
ble terminal states there exists at least one option that
can start, i.e., ∪o∈O{s : βo(s) > 0} ⊆ ∪o∈OIo. This
also implies that the resulting SMDP MO is communi-
cating whenever the original MDP M is communicat-
ing. Finally, we notice that a stationary deterministic
policy constructed on a set of options O may result
into a non-stationary policy on the set of actions A.

Learning in SMDPs. Relying on this mapping, we
first study the exploration-exploitation trade-off in a
generic SMDP. A thorough discussion on the impli-
cations of the analysis of learning in SMDPs for the
case of learning with options in MDPs is reported

in Sect. 5. For any SMDP M =
{
S,A, p, r, τ

}
,

we denote by τ(s, a, s′) (resp. r(s, a, s′)) the ex-
pectation of τ(s, a, s′) (resp. r(s, a, s′)) and by
τ (s, a) =

∑
s′∈S τ(s, a, s′)p(s′|s, a) (resp. r(s, a) =∑

s′∈S r(s, a, s′)p(s′|s, a)) the expected holding time
(resp. cumulative reward) of action a from state s.
In the next proposition we define the average-reward
performance criterion and we recall the properties of
the optimal policy in SMDPs.

Proposition 2. Denote N(t) = sup
{
n ∈

N,
∑n

i=1 τi ≤ t
}

the number of decision steps that
occurred before time t. For any policy π and s ∈ S:

ρπ(s)
def
= lim sup

t→+∞
Eπ

[∑N(t)
i=1 ri
t

∣∣∣∣s0 = s

]

ρπ(s)
def
= lim inf

t→+∞
Eπ

[∑N(t)
i=1 ri
t

∣∣∣∣s0 = s

]
.

(1)

If M is communicating and the expected holding times
and reward are finite, there exists a stationary deter-
ministic optimal policy π∗ such that for all states s and
policies π, ρπ

∗

(s) ≥ ρπ(s) and ρπ
∗

(s) = ρπ
∗

(s) = ρ∗.

Finally, we recall the average reward optimality equa-
tion for a communicating SMDP

u∗(s) = max
a∈A

{
r(s, a)− ρ∗τ (s, a) (2)

+
∑

s′∈S
p(s′|s, a)u∗(s′)

}
,

where u∗ and ρ∗ are the bias (up to a constant) and
the gain of the optimal policy π∗.

We are now ready to consider the learning problem.
For any i ∈ N∗, ai denotes the action taken by the
agent at the i-th decision step1 and si denotes the
state reached after ai is taken, with s0 being the
initial state. We denote by (ri(s, a, s

′))i∈N∗ (resp.
(τi(s, a, s

′))i∈N∗) a sequence of i.i.d. realizations from
distribution r(s, a, s′) (resp. τ(s, a, s′)). When the
learner explores the SMDP, it observes the sequence
(s0, . . . , si, ai+1, ri+1(si, ai+1, si+1), τi+1(si, ai+1, si+1),
. . .). The performance of a learning algorithm is mea-
sured in terms of its cumulative regret.

Definition 1. For any SMDP M , any starting state
s ∈ S, and any number of decision steps n ≥ 1, let
{τi}ni=1 be the random holding times observed along the
trajectory generated by a learning algorithm A. Then
the total regret of A is defined as

∆(M,A, s, n) =

( n∑

i=1

τi

)
ρ∗(M)−

n∑

i=1

ri. (3)

1Notice that decision steps are discrete points in time in
which an action is started, while the (possibly continuous)
holding time is determined by the distribution τ .
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We first notice that this definition reduces to the stan-
dard regret in MDPs for τi = 1 (i.e., primitive actions
always terminate in one step). The regret measures
the difference in cumulative reward obtained by the
optimal policy and the learning algorithm. While the
performance of the optimal policy is measured by its
asymptotic average reward ρ∗, the total duration after
n decision steps may vary depending on the policy. As
a result, when comparing the performance of π∗ after
n decision steps, we multiply it by the length of the tra-
jectory executed by the algorithm A. More formally,
from the definition of ρ∗ (Eq. 1) and Prop. 2 we have2

Eπ∗

[N(t)∑

i=1

ri

∣∣∣s0 = s

]
∼

t→+∞
ρ∗t+ o(t).

By introducing the total duration N(t) of A we have

ρ∗t+ o(t) = ρ∗
(N(t)∑

i=1

τi

)
+ ρ∗

(
t−

N(t)∑

i=1

τi

)
+ o(t).

We observe that
(
t −∑N(t)

i=1 τi
)
= o(t) almost surely

since
(
t−∑N(t)

i=1 τi
)
≤ τN(t)+1 and τN(t)+1 is bounded

by an almost surely finite (a.s.) random variable since
the expected holding time for all state-action pairs is
bounded by assumption. So τN(t)+1/t →

t→+∞
0 a.s. and

Eπ∗

[N(t)∑

i=1

ri

∣∣∣s0 = s

]
∼

t→+∞
ρ∗
(N(t)∑

i=1

τi

)
+ o(t),

which justifies the definition of the regret.

3 SMDP-UCRL

In this section we introduce UCRL-SMDP (Fig. 1), a
variant of UCRL [Jaksch et al., 2010]. At each episode
k, the set of plausible SMDPs Mk is defined by the
current estimates of the SMDP parameters and a set of
constraints on the rewards, the holding times and the
transition probabilities derived from the confidence in-
tervals. Given Mk, extended value iteration (EVI)

finds an SMDP M̃k ∈ Mk that maximizes ρ∗(M̃k)
and the corresponding optimal policy π̃∗

k is computed.
To solve this problem, we note that it can be equiv-
alently formulated as finding the optimal policy of
an extended3 SMDP M̃+

k obtained by combining all

SMDPs in Mk: M̃+
k has the same state space and

an extended continuous action space Ã+
k . Choosing

an action a+ ∈ Ã+
k amounts to choosing an action

2In this expectation, N(t) is a r.v. depending on π∗.
3In the MDP literature, the term Bounded Parameter

MDPs (BPMDPs) [Tewari and Bartlett, 2007] is often used
for "extended" MDPs built using confidence intervals on
rewards and transition probabilities.

Input: Confidence δ ∈]0, 1[, S , A, br, σr,
bτ , στ , Rmax, τmax and τmin.
Initialization: Set i = 1, and observe initial state s0.

For episodes k = 1, 2, ... do
Initialize episode k:

1. Set the start step of episode k, ik := i
2. For all (s, a) initialize the counter for episode k,

νk(s, a) := 0 and set counter prior to episode k,

Nk(s, a) = #{ι < ik : sι = s, aι = a}

3. For s, s′, a set the accumulated rewards, duration and
transition counts prior to episode k,

Rk(s, a)=

ik−1∑

ι=1

rι1sι=s,aι=a, Tk(s, a)=

ik−1∑

ι=1

τι1sι=s,aι=a

Pk(s, a, s
′) = #{ι < ik : sι = s, aι = a, sι+1 = s′}

Compute estimates p̂k(s
′ | s, a) := Pk(s,a,s

′)
max{1,Nk(s,a)}

and

τ̂k(s, a) :=
Tk(s,a)
Nk(s,a)

and r̂k(s, a) :=
Rk(s,a)
Nk(s,a)

Compute policy π̃k:
4. Let Mk be the set of all SMDPs with states and actions

as in M , and with transition probabilities p̃, rewards
r̃, and holding time τ̃ such that for any (s, a)

|r̃ − r̂k| ≤ βr
k and Rmaxτmax ≥ r̃(s, a) ≥ 0

|τ̃ − τ̂k| ≤ βτ
k and τmax ≥ τ̃ (s, a) ≥ r̃(s, a)/Rmax, τmin

‖p̃(·)− p̂k(·)‖1 ≤ βp
k and

∑

s′∈S

p̃(s′ | s, a) = 1

5. Use extended value iteration (EVI) to find a policy π̃k

and an optimistic SMDP M̃k ∈ Mk such that:

ρ̃k := min
s

ρ(M̃k, π̃k, s) ≥ max
M′∈Mk,π,s

ρ(M ′, π, s)−Rmax√
ik

Execute policy π̃k:
6. While νk(si, π̃k(si)) < max{1, Nk(si, π̃k(si)} do

(a) Choose action ai = π̃k(si), obtain reward ri, and
observe next state si+1

(b) Update νk(si, ai) := νk(si, ai)+1 and set i = i+1

Figure 1: UCRL-SMDP

a ∈ A, a reward r̃k(s, a), a holding time τ̃k(s, a) and
a transition probability p̃k(· | s, a) in the confidence in-

tervals. When a+ is executed in M̃+
k , the probability,

the expected reward and the expected holding time of
the transition are respectively p̃k(· | s, a), r̃k(s, a) and
τ̃k(s, a). Finally, π̃∗

k is executed until the number of
samples for a state-action pair is doubled. Since the
structure is similar to UCRL’s, we focus on the ele-
ments that need to be rederived for the specific SMDP
case: the confidence intervals construction and the ex-
tended value iteration algorithm.

Confidence intervals. Unlike in MDPs, we consider
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a slightly more general scenario where cumulative re-
wards and holding times are not bounded but are sub-
exponential r.v. (see Lem. 3). As a result, the con-
fidence intervals used at step 4 are defined as follows.
For any state action pair (s, a) and for rewards, tran-
sition probabilities, and holding times we define

βr
k(s, a)=

{
σr

√
14 log(2SAik/δ)
max{1,Nk(s,a)}

, if Nk(s, a)≥ 2b2r
σ2
r
log

( 240SAi7k
δ

)

14br
log(2SAik/δ)

max{1,Nk(s,a)}
, otherwise

βp
k(s, a) =

√
14S log(2Aik/δ)

max{1, Nk(s, a)}
,

βτ
k (s, a)=

{
στ

√
14 log(2SAik/δ)
max{1,Nk(s,a)}

, if Nk(s, a)≥ 2b2τ
σ2
τ
log

( 240SAi7k
δ

)

14bτ
log(2SAik/δ)

max{1,Nk(s,a)}
, otherwise

where σr, br, στ , br are suitable constants character-
izing the sub-exponential distributions of rewards and
holding times. As a result, the empirical estimates r̂k,
τ̂k, and p̂k are ±βr

k(s, a), β
τ
k (s, a), β

p
k(s, a) away from

the true values.

Extended value iteration (EVI). We rely on a
data-transformation (also called “uniformization”) that
turns an SMDP M into an “equivalent” MDP Meq ={
S,A, peq, req

}
with same state and action spaces and

such that ∀s, s′ ∈ S, ∀a ∈ A:

req(s, a) =
r(s, a)

τ (s, a)

peq(s
′|s, a) = τ

τ (s, a)

(
p(s′|s, a)− δs,s′

)
+ δs,s′

(4)

where δs,s′ = 0 if s 6= s′ and δs,s′ = 1 otherwise, and
τ is an arbitrary non-negative real such that τ < τmin.
Meq enjoys the following equivalence property.

Proposition 3 ([Federgruen et al., 1983], Lemma 2).
If (v∗, g∗) is an optimal pair of bias and gain in Meq

then (τ−1v∗, g∗) is a solution to Eq. 2, i.e., it is an
optimal pair of bias/gain for the original SMDP M .

As a consequence of the equivalence stated in Prop. 3,
computing the optimal policy of an SMDP amounts
to computing the optimal policy of the MDP obtained
after data transformation (see App. A for more de-
tails). Thus, EVI is obtained by applying a value it-

eration scheme to an MDP M̃+
k,eq equivalent to the

extended SMDP M̃+
k . We denote the state values of

the j-th iteration by uj(s). We also use the vector
notation uj = (uj(s))s∈S . Similarly, we denote by
p̃(· | s, a) = (p̃(s′ | s, a))s′∈S the transition probabil-
ity vector of state-action pair (s, a). The optimistic
reward at episode k is fixed through the EVI itera-
tions and it is obtained as r̃j+1(s, a) = min

{
r̂k(s, a) +

βr
k(s, a);Rmaxτmax

}
, i.e., by taking the largest possible

value compatible with the confidence intervals. At iter-
ation j, the optimistic transition model is obtained as

p̃j+1(· | s, a) ∈ Argmaxp(·)∈Pk(s,a) {p⊺uj} and Pk(s, a)
is the set of probability distributions included in the
confidence interval defined by βp

k(s, a). This optimiza-
tion problem can be solved in O(S) operations using
the same algorithm as in UCRL. Finally, the optimistic
holding time depends on uj and the optimistic transi-
tion model p̃j+1 as

τ̃j+1(s, a) = min
{
τmax; max

{
τmin; τ̂k(s, a)

−sgn
[
r̃j+1(s, a)+τ

(
p̃j+1(·|s, a)⊺uj− uj(s)

)]
βτ
k (s, a)

}}
,

The min and max insure that τ̃j+1 ranges between τmin

and τmax. When the term r̃j+1(s, a)+
(
p̃j+1(·|s, a)⊺uj−

uj(s)
)

is positive (resp. negative), τ̃j+1(s, a) is set to
the minimum (resp. largest) possible value compati-
ble with its confidence intervals so as to maximize the
right-hand side of Eq. 5 below. As a result, for any
τ ∈ ]0, τmin[, EVI is applied to an MDP equivalent to

the extended SMDP M̃+
k generated over iterations as

uj+1(s) = max
a∈A

{
r̃j+1(s, a)

τ̃j+1(s, a)
(5)

+
τ

τ̃j+1(s, a)

(
p̃j+1(· | s, a)⊺uj − uj(s)

)}
+ uj(s)

with arbitrary u0. Finally, the stopping condition is

max
s∈S
{ui+1(s)−ui(s)}−min

s∈S
{ui+1(s)−ui(s)} < ǫ. (6)

We prove the following.

Lemma 1. If the stopping condition holds at iteration
i of EVI, then the greedy policy w.r.t. ui is ǫ-optimal
w.r.t. extended SMDP M̃+

k . The stopping condition is
always reached in a finite number of steps.

As a result, we can conclude that running EVI at
each episode k with an accuracy parameter ǫ =
Rmax/

√
ik guarantees that π̃k is Rmax/

√
ik-optimal

w.r.t. maxM ′∈Mk
ρ∗(M ′).

4 Regret Analysis

In this section we report upper and lower bounds on
the regret of UCRL-SMDP. We first extend the notion
of diameter to the case of SMDP as follows.

Definition 2. For any SMDP M , we define the diam-
eter D(M) by

D(M) = max
s,s′∈S

{
min
π

{
Eπ
[
T (s′)|s0 = s

]}}
(7)

where T (s′) is the first time in which s′ is encountered,
i.e., T (s′) = inf

{∑n
i=1 τi : n ∈ N, sn = s′

}
.

Note that the diameter of an SMDP corresponds to an
average actual duration and not an average number of
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decision steps. However, if the SMDP is an MDP the
two definitions of diameter coincides. Before reporting
the main theoretical results about UCRL-SMDP, we
introduce a set of technical assumptions.

Assumption 1. For all s ∈ S and a ∈ A, we
assume that τmax ≥ τ (s, a) ≥ τmin > 0 and

maxs∈S,a∈A
{

r(s,a)
τ(s,a)

}
≤ Rmax with τmin, τmax, and

Rmax known to the learning algorithm. Furthermore,
we assume that the random variables (r(s, a, s′))s,a,s′
and (τ(s, a, s′))s,a,s′ are either 1) sub-Exponential
with constants (σr, br) and (στ , bτ ), or 2) bounded in
[0, RmaxTmax] and [Tmin, Tmax], with Tmin > 0. We
also assume that the constants characterizing the dis-
tributions are known to the learning agent.

We are now ready to introduce our main result.

Theorem 1. With probability of at least 1−δ, it holds
that for any initial state s ∈ S and any n > 1, the
regret of UCRL-SMDP ∆(M,A, s, n) is bounded by:

O

((
D
√
S + C(M,n, δ)

)
Rmax

√
SAn log

(n
δ

))
, (8)

where C(M,n, δ) depends on which case of Asm. 1 is
considered 4

1) sub-Exponential

C(M,n, δ) = τmax +
(σr ∨ br

Rmax
+ στ ∨ bτ

)√
log
(n
δ

)
,

2) bounded

C(M,n, δ) = Tmax + (Tmax − Tmin).

Proof. The proof (App. B) follows similar steps as
in [Jaksch et al., 2010]. Apart from adapting the con-
centration inequalities to sub-exponential r.v. and de-
riving the guarantees about EVI applied to the equiv-
alent MDP Meq (Lem. 1), one of the key aspects
of the proof is to show that the learning complex-
ity is actually determined by the diameter D(M) in
Eq. 2. As for the analysis of EVI, we rely on the
data-transformation and we show that the span of uj

(Eq. 5) can be bounded by the diameter of Meq, which
is related to the diameter of the original SMDP as
D(Meq) = D(M)/τ (Lem. 6 in App. B).

The bound. The upper bound is a direct generalization
of the result derived by Jaksch et al. [2010] for UCRL

in MDPs. In fact, whenever the SMDP reduces to an
MDP (i.e., each action takes exactly one step to exe-
cute), then n = T and the regret, the diameter, and
the bounds are the same as for UCRL. If we consider
Rmax = 1 and bounded holding times, the regret scales
as Õ(DS

√
An+Tmax

√
SAn). The most interesting as-

pect of this bound is that the extra cost of having

4We denote max{a, b} = a ∨ b.

actions with random duration is only partially addi-
tive rather than multiplicative (as it happens e.g., with
the per-step reward Rmax). This shows that errors in
estimating the holding times do not get amplified by
the diameter D and number of states S as much as it
happens for errors in reward and dynamics. This is
confirmed in the following lower bound.

Theorem 2. For any algorithm A, any inte-
gers S,A ≥ 10, any reals Tmax ≥ 3Tmin ≥ 3,
Rmax > 0, D > max{20TminlogA(S), 12Tmin}, and for
n ≥ max{D,Tmax}SA, there is an SMDP M with at
most S states, A actions, and diameter D, with holding
times in [Tmin, Tmax] and rewards in

[
0, 12RmaxTmax

]

satisfying ∀s ∈ S, ∀a ∈ As, r(s, a) ≤ Rmaxτ (s, a),
such that for any initial state s ∈ S the expected regret
of A after n decision steps is lower-bounded by:

E [∆(M,A, s, n)] = Ω
((√

D +
√
Tmax

)
Rmax

√
SAn

)

Proof. Similar to the upper bound, the proof (App. C)
is based on [Jaksch et al., 2010] but it requires to per-
turb transition probabilities and rewards at the same
time to create a family of SMDPs with different opti-
mal policies that are difficult to discriminate. The con-
tributions of the two perturbations can be made inde-
pendent. More precisely, the lower bound is obtained
by designing SMDPs where learning to distinguish be-
tween “good” and “bad” transition probabilities and
learning to distinguish between “good” and “bad” re-
wards are two independent problems, leading to two
additive terms

√
D and

√
Tmax in the lower bound.

The bound. Similar to UCRL, this lower bound reveals
a gap of

√
DS on the first term and

√
Tmax. While

closing this gap remains a challenging open question,
it is a problem beyond the scope of this paper.

In the next section, we discuss how these results can
be used to bound the regret of options in MDPs and
what are the conditions that make the regret smaller
than using UCRL on primitive actions.

5 Regret in MDPs with Options

Let M be an MDP and O a set of options and let MO
be the corresponding SMDP obtained from Prop. 1.
We index time steps (i.e., time at primitive action level)
by t and decision steps (i.e., time at option level) by
i. We denote by N(t) the total number of decision
steps that occurred before time t. Given n decision
steps, we denote by Tn =

∑n
i=1 τi the number of time

steps elapsed after the execution of the n first options
so that N(Tn) = n. Any SMDP-learning algorithm
AO applied to MO can be interpreted as a learning
algorithm A on M so that at each time step t, A selects
an action of M based on the policy associated to the
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option started at decision step N(t). We can thus
compare the performance of UCRL and UCRL-SMDP

when learning in M . We first need to relate the notion
of average reward and regret used in the analysis of
UCRL-SMDP to the original counterparts in MDPs.

Lemma 2. Let M be an MDP, O a set of options
and MO the corresponding SMDP. Let πO be any sta-
tionary policy on MO and π the equivalent policy on
M (not necessarily stationary). For any state s ∈ SO,
any learning algorithm A, and any number of decision
steps n we have ρπO (MO, s) = ρπ(M, s) and

∆(M,A, Tn) = ∆(MO,A, n) + Tn (ρ
∗(M)− ρ∗(MO)) .

The linear regret term is due to the fact that the intro-
duction of options amounts to constraining the space
of policies that can be expressed in M . As a result, in
general we have ρ∗(M) ≥ ρ∗(MO) = maxπO

ρπO (MO),
where πO is a stationary deterministic policy on MO.
Thm. 2 also guarantees that the optimal policy com-
puted in the SMDP MO (i.e., the policy maximizing
ρπO (MO, s)) is indeed the best in the subset of policies
that can be expressed in M by using the set of options
O. In order to use the regret analysis of Thm. 1, we
still need to show that Asm. 1 is verified.

Lemma 3. An MDP provided with a set of op-
tions is an SMDP where the holding times and re-
wards τ(s, o, s′) and r(s, o, s′) are distributed as sub-
exponential random variables. Moreover, the holding
time of an option is sub-Gaussian if and only if it is
almost surely bounded.

This result is based on the fact that once an option
is executed, we obtain a Markov chain with absorb-
ing states corresponding to the states with non-zero
termination probability βo(s) and the holding time is
the number of visited states before reaching a termi-
nal state. While in general this corresponds to a sub-
exponential distribution, whenever the option has a
zero probability to reach the same state twice before
terminating (i.e., there is no cycle), then the holding
times become bounded. Finally, we notice that no in-
termediate case between sub-exponential and bounded
distributions is admissible (e.g., sub-Gaussian). Since
these are the two cases considered in Thm. 1, we can
directly apply it and obtain the following corollary.

Corollary 1. For any MDP M = {S,A, p, r} with
r(s, a, s′) ∈ [0, Rmax] and a set of options O, con-
sider the resulting SMDP MO = {SO,AO, pO, rO, τO}.
Then with probability of at least 1− δ, it holds that for
any initial state s ∈ S and any n > 1, the regret of
UCRL-SMDP in the original MDP is bounded as

O
((

DO
√
SO + C(MO, n, δ)

)
RO

max

√
SOOn log

(n
δ

))

+ Tn (ρ
∗(M)− ρ∗(MO)) ,

where O is the number of options.

We can also show that the lower bound holds for MDPs
with options as well. More precisely, it is possible to
create an MDP and a set of options such that the lower
bound is slightly smaller than that of Thm. 2.

Corollary 2. Under the same assumptions as in The-
orem 2, there exists an MDP with options such that
the regret of any algorithm is lower-bounded as

Ω
((√

DO +
√
Tmax − Tmin

)
RO

max

√
SOOn

)

+ Tn (ρ
∗(M)− ρ∗(MO)) .

This shows that MDPs with options are slightly eas-
ier to learn than SMDPs. This is due to the fact
that in SMDPs resulting from MDPs with options re-
wards and holding times are strictly correlated (i.e.,
r(s, o, s′) ≤ Rmaxτ(s, o, s

′) a.s. and not just in expec-
tation for all (s, o, s′)).

We are now ready to proceed with the comparison
of the bounds on the regret of learning with options
and primitive actions. We recall that for UCRL

∆(M,UCRL, s, Tn) = Õ(DSRmax

√
ATn). We first no-

tice that5 RO
max ≤ Rmax and since SO ⊆ S we have

that SO ≤ S. Furthermore, we introduce the following
simplifying conditions: 1) ρ∗(M) = ρ∗(MO) (i.e., the
options do not prevent from learning the optimal pol-
icy), 2) O ≤ A (i.e., the number of options is not larger
than the number of primitive actions), 3) options have
bounded holding time (case 2 in Asm. 1). While in gen-
eral comparing upper bounds is potentially loose, we
notice that both upper-bounds are derived using simi-
lar techniques and thus they would be “similarly” loose
and they both have almost matching worst-case lower
bounds. Let R(M,n, δ) be the ratio between the re-
gret upper bounds of UCRL-SMDP using options O
and UCRL, then we have (up to numerical constants)

R(M,n) ≤
(
DO
√
SO + Tmax

)√
SOOn log(n/δ)

DS
√
ATn log(Tn/δ)

≤ DO
√
S + Tmax

D
√
S

√
n

Tn
,

where we used n ≤ Tn to simplify the logarithmic
terms. Since lim inf

n→+∞
Tn

n ≥ τmin, then the previous ex-

pression gives an (asymptotic) sufficient condition for
reducing the regret when using options, that is

DO
√
S + Tmax

D
√
Sτmin

≤ 1. (9)

In order to have a better grasp on the cases covered
by this condition, let DO = αD, with α ≥ 1. This cor-
responds to the case when navigating through some

5The largest per-step reward in the SMDP is defined as
RO

max ≥ maxs∈S,a∈A

{ r(s,a)
τ(s,a)

}
.



Ronan Fruit, Alessandro Lazaric

Figure 2: Navigation problem.

states becomes more difficult with options than with
primitive actions, thus causing an increase in the di-
ameter. If options are such that Tmax ≤ D

√
S and

τmin > (1 + α)2, then it is easy to see that the condi-
tion in Eq. 9 is satisfied. This shows that even when
the introduction of options partially disrupt the struc-
ture of the original MDP (i.e., DO ≥ D), it is enough
to choose options which are long enough (but not too
much) to guarantee an improvement in the regret. No-
tice that while conditions 1) and 2) are indeed in favor
of UCRL-SMDP, SO, O, and Tmax are in general much
smaller than S, A, D

√
S (S and D are large in most of

interesting applications). Furthermore, τmin is a very
loose upper-bound on lim infn→+∞

Tn

n and in practice

the ratio Tn

n can take much larger values if τmax is large
and many options have a high expected holding time.
As a result, the set of MDPs and options on which the
regret comparison is in favor of UCRL-SMDP is much
wider than the one defined in Eq. 9. Nonetheless, as
illustrated in Lem. 3, the case of options with bounded
holding times is quite restrictive since it requires the
absence of self-loops during the execution of an option.
If we reproduce the same comparison in the general
case of sub-exponential holding times, then the ratio
between the regret upper bounds becomes

R(M,n) ≤ DO
√
S + C(M,n, δ)

D
√
S

√
n

Tn
,

where C(M,n, δ) = O(
√

log(n/δ)). As a result, as
n increases, the ratio is always greater than 1, thus
showing that in this case the regret of UCRL-SMDP

is asymptotically worse than UCRL. Whether this is
an artefact of the proof or it is an intrinsic weakness
of options, it remains an open question.

6 Illustrative Experiment

We consider the navigation problem in Fig. 2. In any
of the d2 states of the grid except the target, the four
cardinal actions are available, each of them being suc-
cessful with probability 1. If the agent hits a wall

then it stays in its current position with probability 1.
When the target state is reached, the state is reset to
any other state with uniform probability. The reward
of any transition is 0 except when the agent leaves the
target in which case it equals Rmax. The optimal pol-
icy simply takes the shortest path from any state to the
target state. The diameter of the MDP is the longest
shortest path in the grid, that is D = 2d − 2. Let m
be any non-negative integer smaller than d and in ev-
ery state but the target we define four macro-actions:
LEFT, RIGHT, UP and DOWN (blue arrows in the
figure). When LEFT is taken, primitive action left is
applied up to m times (similar for the other three op-
tions). For any state s′ which is k ≤ m steps on the
left of the starting state s, we set βo(s

′) = 1/(m−k+1)
so that the probability of the option to be interrupted
after any k ≤ m steps is 1/m. If the starting state s is
l steps close to the left border with l < m then we set
βo(s

′) = 1/(l − k + 1) for any state s′ which is k ≤ l
steps on the left. As a result, for all options started m
steps far from any wall, Tmax = m and the expected
duration is τ := τ(s, o) = (m + 1)/2, which reduces
to Tmax = l and τ = (l + 1)/2 for an option started
l < m step from the wall and moving towards it.
More precisely, all options have an expected duration
of τ(s, o) = τ in all but in md states, which is small
compared to the total number of d2 states. The SMDP
formed with this set of options preserves the number
of state-action pairs SO = S = d2 and A′ = A = 4 and
the optimal average reward ρ∗(M) = ρ∗(M ′), while it
slightly perturbs the diameter DO ≤ D+m(m+1) (see
App. F for further details). Thus, the two problems
seem to be as hard to learn. However the (asymptotic)
ratio between the regret upper bounds becomes

lim
n→∞

R(M,n) ≤ (2d− 2 +m2 +m)d+m

(2d− 2)d

(
lim

n→∞

√
n

Tn

)

≤
(
1 + 2

m2

d

)(
lim
n→∞

√
n

Tn

)
,

where we assume m, d ≥ 2. While a rigorous analy-
sis of the ratio between the number of option decision
steps n and number of primitive actions Tn is difficult,
we notice that as d increases w.r.t. m, the chance of ex-
ecuting options close to a wall decreases, since for any
option only md out of d2 states will lead to a duration
smaller than τ and thus we can conclude that n/Tn

tends to 1/τ = 2/(m + 1) as n and d grow. As a re-
sult, the ratio would reduce to (1+2m2/d)

√
2/(m+ 1)

that is smaller than 1 for a wide range of values for m
and d. Finally, the ratio is (asymptotically in d) min-
imized by m ≈

√
d, which gives R(M,n) = O(d−1/4),

thus showing that as d increases there is always an
appropriate choice of m for which learning with op-
tions becomes significantly better than learning with
primitive actions. In Fig. 3a we empirically validate
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Figure 3: (a) Ratio of the regrets with and without options for different values of Tmax; (b) Regret as a function
of Tn for a 20x20 grid; (c) Evolution of Tn/n for a 20x20 grid.

this finding by studying the ratio between the actual
regrets (and not their upper-bounds) as d and m (i.e.,
Tmax) vary, and with a fixed value of Tn that is cho-
sen big enough for every d. As expected, for a fixed
value of d, the ratio R first decreases as m increases,
reaches a minimum and starts increasing to eventually
exceed 1. As d increases, the value of the minimum de-
creases, while the optimal choice of m increases. This
behaviour matches the theory, which suggests that the
optimal choice for m increases as O(

√
d). In Fig. 3b we

report the cumulative regret and we observe that high
values of Tmax worsen the learning performances w.r.t.
learning without options (Tmax = 1, plotted in black).
Finally, Fig. 3c shows that, as n tends to infinity, Tn/n
tends to converge to (m+ 1)/2 when m≪ d, whereas
it converges to slightly smaller values when m is close
to d because of the truncations operated by walls.

Discussion. Despite its simplicity, the most interest-
ing aspect of this example is that the improvement
on the regret is not obtained by trivially reducing the
number of state-action pairs, but it is intrinsic in the
way options change the dynamics of the exploration
process. The two key elements in designing a success-
ful set of options O is to preserve the average reward
of the optimal policy and the diameter. The former is
often a weaker condition than the latter. In this exam-
ple, we achieved both conditions by designing a set O
where the termination conditions allow any option to
end after only one step. This preserves the diameter of
the original MDP (up to an additive constant), since
the agent can still navigate at the level of granular-
ity of primitive actions. Consider a slightly different
set of options O′, where each option moves exactly
by m steps (no intermediate interruption). The num-
ber of steps to the target remains unchanged from any
state and thus we can achieve the optimal performance.
Nonetheless, having π∗ in the set of policies that can

be represented with O′ does not guarantee that the
UCRL-SMDP would be as efficient in learning the op-
timal policy as UCRL. In fact, the expected number of
steps needed to go from a state s to an adjacent state
s′ may significantly increase. Despite being only one
primitive action apart, there may be no sequence of
options that allows to reach s′ from s without relying
on the random restart triggered by the target state. A
careful analysis of this case shows that the diameter is
as large as DO′ = D(1+m2) and there exists no value
of m that satisfies Eq. 9 (see App. F).

7 Conclusions

We derived upper and lower bounds on the regret of
learning in SMDPs and we showed how these results
apply to learning with options in MDPs. Comparing
the regret bounds of UCRL-SMDP with UCRL, we
provided sufficient conditions on the set of options and
the MDP (i.e., similar diameter and average reward) to
reduce the regret w.r.t. learning with primitive actions.
To the best of our knowledge, this is the first attempt
of explaining when and how options affect the learning
performance. Nonetheless, we believe that this result
leaves space for improvements. In fact, Prop. 1 implies
that the class of SMDPs is a strict superset of MDPs
with options. This suggests that a more effective anal-
ysis could be done by leveraging the specific structure
of MDPs with options rather than moving to the more
general model of SMDPs. This may actually remove
the additional

√
log(n/δ) factor appearing because of

sub-exponential distributions in the UCRL-SMDP re-
gret. An interesting direction of research is to use this
theoretical result to provide a more explicit and quan-
titative objective function for option discovery, in the
line of what is done in [Brunskill and Li, 2014]. Finally,
it would be interesting to extend the current analysis
to more sophisticated hierarchical approaches to RL
such as MAXQ [Dietterich, 2000].
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A Optimal average reward in discrete and continuous SMDPs: existence and
computation

In this section we prove Proposition 2 and Lemma 1. Since extended value iteration is run on SMDP M̃+
k with

continuous actions (the choice of the transition probability), in the following we consider both the continuous
and discrete case at the same time. In order to have a more rigorous treatment of SMDPs, we introduce further
notations from [Puterman, 1994].

A decision rule is a function d : H → ∆(A) where H is the set of possible histories and ∆(A) is the set
of probability distributions over A. For an SMDP M , we will denote by DHR

M the set of history-dependent
randomized decision rules and DMD

M the subset of Markovian deterministic decision rules (DMD
M ⊂ DHR

M ). A
history-dependent randomized policy is a sequence of elements of DHR

M indexed by the decision steps, i.e., π =
(d1, d2, ...) ∈ (DHR

M )N, while a stationary deterministic policy is a constant sequence of elements of DMD
M : π =

(d, d, ...) = d∞. The set of history-dependent randomized policies will be denoted ΠHR
M and the subset of

stationary deterministic policies will be denoted ΠSD
M : ΠSD

M ⊂ ΠHR
M . We also consider the more general case

where the set of available actions may depend on the state, i.e., there exists a set As for each s ∈ S.

A.1 Optimality criterion

We start by defining the optimality criterion in SMDPs. Unlike for MDPs, where the average reward of a fixed
policy is uniquely defined, in SMDPs there are three different definitions that are usually encountered in the
literature (see Schäl 1992, Federgruen et al. 1983, and Ros 1970).6

Definition 3. Denote N(t) = sup

{
n : n ∈ N,

∑n
i=1 τi ≤ t

}
the number of decision steps that occured before

time t. For any π ∈ ΠHR
M and s ∈ S, we define:

ρ1
π(s) = lim sup

t→+∞
Eπ

[∑N(t)
i=1 ri
t

∣∣∣∣s0 = s

]
, ρ1

π(s) = lim inf
t→+∞

Eπ

[∑N(t)
i=1 ri
t

∣∣∣∣s0 = s

]
(10)

ρ2
π(s) = lim sup

n→+∞

Eπ
[∑n

i=1 ri
∣∣s0 = s

]

Eπ
[∑n

i=1 τi
∣∣s0 = s

] , ρ2
π(s) = lim inf

n→+∞

Eπ
[∑n

i=1 ri
∣∣s0 = s

]

Eπ
[∑n

i=1 τi
∣∣s0 = s

] (11)

and for any d∞ ∈ ΠSD
M and s ∈ S we define:

ρd
∞

3 (s) =

ν(d)∑

α=1

pd(α|s)gd(α), with gd(α) =

∑
s∈Rd

α
µd
α(s)r(s, d(s))∑

s∈Rd
α
µd
α(s)τ (s, d(s))

(12)

where ν(d) is the number of positive recurrent classes under d∞, pd(α|s) is the probability of entering positive
recurrent class α starting from s and following policy d∞, Rd

α is the set of states of class α and µd
α is the stationary

probability distribution of class α.

A.2 Proof of Proposition 2

We say that (d∗)∞ is (3)-average-optimal if for all states s ∈ S and decision rules d ∈ DMD
M , ρ

(d∗)∞

3 (s) ≥
ρd

∞

3 (s). We say that π∗ is (1)-average-optimal (respectively (2)-average-optimal) if for all states s ∈ S and all
π ∈ ΠHR

M , ρ1
π∗

(s) ≥ ρ1
π(s) (respectively ρ2

π∗

(s) ≥ ρ2
π(s)). We prove a slightly more general formulation than

Proposition 2.

Proposition 4. If M is communicating and the expected holding times and rewards are finite, then

• There exists a stationary policy π∗ = (d∗)∞ which is (1,2,3)-average-optimal.

• All optimal values are equal and constant and we will denote this value by ρ∗:

∀s ∈ S, ρ1
(d∗)∞(s) = ρ1

(d∗)∞(s) = ρ2
(d∗)∞(s) = ρ2

(d∗)∞(s) = ρ
(d∗)∞

3 (s) = ρ∗.
6Notice that the definition we provide in Eq. 1 of Prop. 2 is ρ1.
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Proof. Step 1: Optimality equation of a communicating SMDP. We first recall the average reward
optimality equations for a communicating SMDP (Eq. 2)

∀s ∈ S, u∗(s) = max
a∈As

{
r(s, a)− ρ∗τ(s, a) +

∑

s′∈S
p(s′|s, a)u∗(s′)

}
(13)

where u∗ and ρ∗ are the bias (up to additive constant) and average reward respectively. Since we need to
analyse both the case where As is finite and the case where As is continuous, we verify that it is appropriate
to consider the max instead of sup in the previous expression. For the original SMDP M , As is finite and the
maximum is well-defined. For the extended SMDPs M̃+

k considered while computing the optimistic SMDP, Ã+
k,s

is compact and r(s, a), τ (s, a) and p(· | s, a) are continuous in Ã+
k,s by the very definition of M̃+

k . The function

r(s, a) − ρ∗τ (s, a) +
∑

s′∈S p(s′|s, a)u∗(s′) is thus continuous on Ã+
k,s compact and by Weierstrass theorem, we

know that the maximum is reached (i.e., there exists a maximizer). As a result, Eq. 13 is well-defined and we
can study the existence and properties of its solutions.

Step 2: Data-transformation (uniformization) of an SMDP. The structure of EVI is based on a data-
transformation (also called "uniformization") which turns the initial SMDP M into an “equivalent” MDP Meq ={
S,A, peq, req

}
defined as in Eq. 4. As a result, we can just apply standard MDP theory to the equivalent MDP.

The average optimality equation of Meq is [Puterman, 1994]

∀s ∈ S, v∗(s) = max
a∈As

{
r(s, a)

τ(s, a)
− g∗ +

τ

τ (s, a)

∑

s′∈S
p(s′|s, a)v∗(s′) +

(
1− τ

τ (s, a)

)
v∗(s)

}
(14)

Since τ < τmin, every Markov Chain induced by a stationary deterministic policy on Meq is necessarily aperiodic
(for any action, the probability of any state to loop on itself is strictly positive). Moreover, since M is assumed

to be communicating, Meq is also communicating. The same holds for M̃+
k,eq (i.e., the MDP obtained from the

extended SMDP M̃+
k after data transformation). Under these conditions, Eq. 14 has a solution (v∗, g∗) where

g∗ is the optimal average reward of Meq (respectively M̃+
k,eq) and the (stationary deterministic) greedy policy

w.r.t. v∗ is average-optimal. Moreover, standard value iteration is guaranteed to converge and it can be applied
with the stopping condition in Eq. 6 to obtain an ǫ-optimal policy in finitely many steps. This holds for both
finite and compact As with continuous req(s, a) and peq(s

′|s, a) (see for example Puterman 1994 and Leizarowitz

2013). It is easy to show that EVI in Eq. 5 is exactly value iteration applied to M̃+
k,eq. Finally, Lemma 2

of [Federgruen et al., 1983] (Prop. 3) shows the “equivalence” between M and Meq (respectively M̃+
k and M̃+

k,eq):

if (v∗, g∗) is a solution to Eq. 14, then (τ−1v∗, g∗) is a solution to Eq. 13 and conversely. As a result, there exists

a solution (u∗, ρ∗) to Eq. 13 for both M and M̃+
k .

Step 3: Existence of deterministic stationary optimal policy. We are now ready to prove the existence
of a deterministic stationary policy that is (1,2,3)-optimal and that the corresponding optimal value is constant
and equal in all three cases. We consider the case of finite and continuous As separately.

Step 3a: For M (finite As). Since conditions (L), (F) and (R) of [Schäl, 1992] hold, we can apply their main
theorem and obtain that

1. Any greedy policy (d∗)∞ w.r.t. u∗ is such that ρ1
(d∗)∞(s) ≥ ρ1

π(s) for any π ∈ ΠHR
M and any s ∈ S,

2. ∀s ∈ S, ρ1
(d∗)∞(s) = ρ∗,

where (u∗, ρ∗) is a solution of Eq. 13. Furthermore, from renewal theory (see e.g., Tij 2003 and [Ros, 1970]) we
have that ∀d∞ ∈ ΠSD

M , ρ1
d∞

= ρ1
d∞

= ρd
∞

1 (i.e., the limit exists for deterministic stationary policies), thus

we can conclude that (d∗)∞ is (1)-optimal. Furthermore, by Lemma 2.7 of [Schäl, 1992]: ∀d∞ ∈ ΠSD
M , ∀s ∈

S, ρ1
d∞

(s) = ρd
∞

3 (s) so d∗ is also necessarily (3)-optimal. Finally, by Theorem 7.6 of [Ros, 1970], since (u∗, ρ∗)
is a solution of Eq. 13:

1. Any greedy policy (d∗)∞ w.r.t. u∗ is such that ρ2
(d∗)∞(s) ≥ ρ2

π(s) for any π ∈ ΠHR
M and any s ∈ S,

2. ∀s ∈ S, ρ2(d
∗)∞(s) = ρ∗.
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By Theorem 11.4.1 of [Puterman, 1994] we have ∀d∞ ∈ ΠSD
M , ρ2 = ρ2 = ρd

∞

2 and thus d∗ is also (2)-optimal.
This concludes the proof for the finite case, which proves the statement of Prop. 2.

Step 3b: For M̃+
k (compact Ã+

k,s with continuous rewards, holding times and transition probabili-
ties). The proof is almost the same as with discrete action spaces. The only difference is that we can’t apply
the Theorem of [Schäl, 1992] because conditions (R) and (C*) do not hold in general. However, we can use
Propositions 5.4 and 5.5 of [Schäl, 1992] and we have the same result as in the discrete case (assumptions (L),
(C), (P) and (I) hold in our case and we know that the optimality equation 13 admits a solution (u∗, ρ∗), see
above). Since the state space is finite, the rest of the proof is rigorously the same (the Theorems and Lemmas

still applies). This guarantees the same statement as Prop. 2 but for the optimistic SMDP M̃+
k .

A.3 Proof of Lemma 1

Proof. From the proof of Prop. 2, we already have that EVI converges towards the optimal average reward of
M̃+

k,eq, which is also the optimal average reward of M̃+
k . We also know that the stopping criterion is met in a

finite number of steps and that the greedy policy when the stopping criterion holds is ǫ-optimal in the equivalent
M̃+

k,eq. Then, in order to prove Lemma 1, we only need to prove that this policy is also ǫ-optimal in the optimistic

SMDP M̃+
k . Tij [2003] shows that for any stationary deterministic policy d∞ ∈ ΠSD

M̃+

k

, the (1)-average reward is

the same in the SMDP and the MDP obtained by uniformization, that is

∀s ∈ S, ρd∞

1 (M̃+
k ) = ρd

∞

(M̃+
k,eq).

Then it immediately follows that the policy returned by EVI is (1)-ǫ-optimal in M̃+
k and since ∀d∞ ∈ ΠSD

M , ρd
∞

1 =
ρd

∞

3 , it is also (3)-ǫ-optimal. Note that for any deterministic stationary policy d ∈ ΠSD
M̃+

k

defining a unichain

Markov chain in M̃+
k,eq (or equivalently in M̃+

k ), we have: ∀s ∈ S, ρd∞

1 (s) = ρd
∞

2 (s) and this value is constant
across states (see for example chapter 11 of [Puterman, 1994], Theorem 7.5 of [Ros, 1970] or [Liu and Zhao,
2004]). However, in the general case, this equality does not hold (see Example 2.1 of [Liu and Zhao, 2004]).
Nevertheless, by Theorem 3.1 of [Liu and Zhao, 2004] we have

∀d∞ ∈ ΠSD
M̃+

k

, ∀s ∈ S,
∣∣ρd∞

2 (M̃+
k , s)− ρd

∞

(M̃+
k,eq, s)

∣∣ ≤ ρd
∞

max(M̃
+
k,eq)− ρd

∞

min(M̃
+
k,eq)

where ρd
∞

max(M̃
+
k,eq) = max

s∈S
ρd

∞

(M̃+
k,eq, s) and ρd

∞

min(M̃
+
k,eq) = min

s∈S
ρd

∞

(M̃+
k,eq, s).

(15)

If we denote by d the policy returned by EVI and ρ∗ the optimal gain of M̃+
k,eq and M̃+

k we obtain

∀s ∈ S, ρ∗ − ρd
∞

2 (M̃+
k , s) = ρd

∞

(M̃+
k,eq, s)− ρd

∞

2 (M̃+
k , s) + ρ∗ − ρd

∞

(M̃+
k,eq, s)

≤ ρd
∞

max(M̃
+
k,eq)− ρd

∞

min(M̃
+
k,eq) + ǫ

= ρd
∞

max(M̃
+
k,eq)− ρ∗ + ρ∗ − ρd

∞

min(M̃
+
k,eq) + ǫ ≤ 2ǫ.

For the first inequality we used Eq. 15 and the fact that d is ǫ-optimal in M̃+
k,eq. For the second inequality, we

used again that d is ǫ-optimal in M̃+
k,eq and we also used the fact that ρd

∞

max(M̃
+
k,eq) ≤ ρ∗. In conclusion, the

policy returned by EVI is (2)-2ǫ-optimal. The remaining part of Theorem 1 is thus proved for all optimality
criteria.

By Theorem 8.3.2 of [Puterman, 1994], we know that there exists an optimal policy d̃∗ of MDP M̃+
k,eq that

yields a unichain Markov Chain (i.e., a Markov Chain with a single positive recurrent class). The Markov Chain

induced by d̃∗ in M̃+
k is thus also unichain and moreover: ρ

(d̃∗)∞

1 (M̃+
k ) = ρ(d̃

∗)∞(M̃+
k,eq) = ρ∗(M̃+

k,eq) = ρ∗(M̃+
k ).

We have seen that for any policy d ∈ ΠSD
M̃+

k

yielding a unichain Markov Chain ρd
∞

1 (M̃+
k ) = ρd

∞

2 (M̃+
k ) and so in

particular, it is true for d̃∗. Therefore, there exists a policy of M̃+
k which yields a unichain Markov Chain and

which is (1)-optimal, (2)-optimal and (3)-optimal. This explains why the optimal gain is the same for criteria
(1) and (2) but EVI must be run with a different accuracy to insure ǫ-accuracy (the Markov Chain induced by
the policy returned by EVI is not necessarily unichain).
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B Analysis of SMDP-UCRL (proof of Theorem 1)

The proof follows the same steps as in [Jaksch et al., 2010]. Therefore, in the following we only emphasize the
differences between SMDPs and MDPs and we refer to [Jaksch et al., 2010] for the parts of the proof which are
similar.

B.1 Splitting into Episodes

We first recall the definition of sub-exponential random variables.

Definition 4 (Wainwright [2015]). A random variable X with mean µ < +∞ is said to be sub-exponential, if
one of the following equivalent conditions is satisfied:

1. (Laplace transform condition) There exists (σ, b) ∈ R+ × R+∗ such that:

E[eλ(X−µ)] ≤ e
σ2λ2

2 for all |λ| < 1

b
. (16)

In this case, we say that X is sub-exponential of parameters σ, b and we denote it by X ∈ subExp(σ, b).

2. There exists c0 > 0 such that E[eλ(X−µ)] < +∞ for all |λ| ≤ c0.

In order to define the confidence intervals, we use the Bernstein concentration inequality for sub-exponential
random variables.

Proposition 5 (Bernstein inequality, [Wainwright, 2015]). Let (Xi)1≤i≤n be a collection of independent sub-
Exponential random variables s.t. ∀i ∈ {1, ..., n}, Xi ∈ subExp(σi, bi) and E[Xi] = µi. We have the following
concentration inequalities:

∀t ≥ 0, P

(
n∑

i=1

Xi −
n∑

i=1

µi ≥ t

)
≤
{
e−

t2

2nσ2 , if 0 ≤ t ≤ σ2

b

e−
t
2b , if t > σ2

b

P

(
n∑

i=1

Xi +
n∑

i=1

µi ≤ t

)
≤
{
e−

t2

2nσ2 , if 0 ≤ t ≤ σ2

b

e−
t
2b , if t > σ2

b

(17)

where σ =

√∑n
i=1

σ2
i

n and b = max1≤i≤n{bi}.

Denoting by N(s, a) the state-action counts we have

n∑

i=1

ri(si−1, ai−1) =
∑

s∈S

∑

a∈As

N(s,a)∑

j=1

rkj (s, a).

Conditionally on knowing (N(s, a))s,a, the previous sum is equal (in distribution) to a sum of independent
random variables with mean

∑
s∈S

∑
a∈As

N(s, a)r(s, a) and from Prop. 5 we have

P

(
n∑

i=1

ri ≤
∑

s∈S

∑

a∈As

N(s, a)r(s, a)− σr

√
5

2
n log

(
13n

δ

)∣∣∣∣∣ (N(s, a))s,a

)
≤
(

δ

13n

)5/4

≤ δ

24n5/4
,

if n ≥ 5b2r
2σ2

r

log

(
13n

δ

)

P

(
n∑

i=1

ri ≤
∑

s∈S

∑

a∈As

N(s, a)r(s, a)− 5

2
br log

(
13n

δ

) ∣∣∣∣∣ (N(s, a))s,a

)
≤
(

δ

13n

)5/4

≤ δ

24n5/4
,

if n ≤ 5b2r
2σ2

r

log

(
13n

δ

)
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Similarly, the total holding time satisfies

P

(
n∑

i=1

τi ≥
∑

s∈S

∑

a∈As

N(s, a)τ(s, a) + στ

√
5

2
n log

(
13n

δ

)∣∣∣∣∣ (N(s, a))s,a

)
≤
(

δ

13n

)5/4

≤ δ

24n5/4
,

if n ≥ 5b2τ
2σ2

τ

log

(
13n

δ

)

P

(
n∑

i=1

τi ≥
∑

s∈S

∑

a∈As

N(s, a)τ (s, a) +
5

2
bτ log

(
13n

δ

) ∣∣∣∣∣ (N(s, a))s,a

)
≤
(

δ

13n

)5/4

≤ δ

24n5/4
,

if n ≤ 5b2τ
2σ2

τ

log

(
13n

δ

)

Lemma 4. The optimal average reward can be bounded as follows:

ρ∗(M) ≤ max
s∈S,a∈As

{
r(s, a)

τ(s, a)

}
≤ Rmax.

Proof. In App. A we prove that ρ∗(M) = ρ∗(Meq) where ρ∗(Meq) is the optimal average reward of an MDP

Meq with same state and action spaces as SMDP M and with average rewards of the form r(s,a)
τ(s,a) . All the

rewards of Meq are thus bounded by Rmax and so ρ∗(Meq) is necessarily bounded by Rmax as well and thus:
ρ∗(M) ≤ Rmax.

We are now ready to split the regret over episodes. We define the per-episode regret as

∆k =
∑

s∈S

∑

a∈As

νk(s, a) (τ (s, a)ρ
∗ − r(s, a)).

Setting γr = max
{

5
2br,

√
5
2σr

}
and γτ = max

{
5
2bτ ,

√
5
2στ

}
, and using a union bound on the previous inequali-

ties we have that with probability at least 1− δ
12n5/4

∆(M,A, s, n) ≤
n∑

k=1

∆k + (γr + γτRmax) log

(
13n

δ

)√
n

B.2 Dealing with Failing Confidence Regions

Lemma 5. For any episode k ≥ 1, the probability that the true SMDP M is not contained in the set of plausible
MDPs Mk at step i is at most δ

15i6k
, that is:

∀k ≥ 1, P (M 6∈ Mk) <
δ

15i6k
(18)

Proof. This lemma is the SMDP-analogue of Lemma 17 in [Jaksch et al., 2010] and the proof is similar. Using
an ℓ1-concentration inequality for discrete probability distributions we obtain

P
(∥∥p(·|s, a)− p̂k(·|s, a)

∥∥
1
≥ βp

k(s, a)
)
= P

(
∥∥p(·|s, a)− p̂k(·|s, a)

∥∥
1
≥
√

14S

n
log

(
2Aik
δ

))

≤ P

(
∥∥p(·|s, a)− p̂k(·|s, a)

∥∥
1
≥
√

2

n
log

(
2S20SAi7k

δ

))

≤ 2S exp

(
−n

2
× 2

n
log

(
2S20SAi7k

δ

))

=
δ

20i7kSA
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In the inequalities above, it is implicitly assumed that the value Nk(s, a) = n is fixed. To be more rigorous,
we are bounding the probability of the intersection of event {

∥∥p̃(·|s, a) − p̂k(·|s, a)
∥∥
1
≥ βp

k(s, a)} with event
{Nk(s, a) = n} but we omitted the latter to simplify notations, and we will also omit it in the next inequalities.

Using Bernstein inequality (Prop. 5) and noting that 240 ≤ 27
(
SA
δ

)6
for S,A ≥ 2 and δ ≤ 1, we have:

• If n ≥ 2b2r
σ2
r
log
(

240SAi7k
δ

)
:

P
(
|r(s, a)− r̂k(s, a)| ≥ βr

k(s, a)
)
= P

(
|r(s, a)− r̂k(s, a)| ≥ σr

√
14

n
log

(
2SAik

δ

))

≤ P

(
|r(s, a)− r̂k(s, a)| ≥ σr

√
2

n
log

(
240SAi7k

δ

))

≤ 2 exp

(
− n

2σ2
r

× 2

n
σ2
r log

(
240SAi7k

δ

))

=
δ

120i7kSA

• If n <
2b2r
σ2
r
log
(

240SAi7k
δ

)
:

P
(
|r(s, a)− r̂k(s, a)| ≥ βr

k(s, a)
)
= P

(
|r(s, a)− r̂k(s, a)| ≥

14br
n

log

(
2SAik

δ

))

≤ P

(
|r(s, a)− r̂k(s, a)| ≥

2br
n

log

(
240SAi7k

δ

))

≤ 2 exp

(
− n

2br
× 2

n
br log

(
240SAi7k

δ

))

=
δ

120i7kSA

Similarly for holding times we have:

P
(
|τ (s, a)− τ̂k(s, a)| ≥ βτ

k (s, a)
)
≤ δ

120i7kSA

Note that when there hasn’t been any observation, the confidence intervals trivially hold with probability 1.
Moreover, Nk(s, a) < ik by the stopping condition of an episode. Taking a union bound over all possible values
of Nk(s, a) yields:

P
(
|τ (s, a)− τ̂k(s, a)| ≥ βτ

k (s, a)
)
≤ δ

120i6kSA

P
(
|r(s, a)− r̂k(s, a)| ≥ βr

k(s, a)
)
≤ δ

120i6kSA

P
(∥∥p(·|s, a)− p̂k(·|s, a)

∥∥
1
≥ βp

k(s, a)
)
≤ δ

20i6kSA

Summing over all state-action pairs: P (M 6∈ Mk) <
δ

15i6k
.

We now consider the regret of episodes in which the set of plausible SMDPs Mk does not contain the true
SMDP M :

∑m
k=1 ∆k1M 6∈Mk

. By the stopping criterion for episode k (except for episodes where νk(s, a) = 1
and Nk(s, a) = 0 for which

∑
s∈S

∑
a∈As

νk(s, a) = 1 ≤ ik):

∑

s∈S

∑

a∈As

νk(s, a) ≤
∑

s∈S

∑

a∈As

Nk(s, a) = ik − 1 (19)
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We can thus bound this part of the regret:

m∑

k=1

∆k1M 6∈Mk
≤

m∑

k=1

∑

s∈S

∑

a∈As

νk(s, a)τ (s, a)ρ
∗1M 6∈Mk

≤ τmaxρ
∗

m∑

k=1

ik1M 6∈Mk
= τmaxρ

∗
n∑

i=1

i

m∑

k=1

1i=ik,M 6∈Mk

≤ τmaxρ
∗




⌊n1/4⌋∑

i=1

i+

n∑

i=⌊n1/4⌋+1

i

m∑

k=1

1i=ik,M 6∈Mk




≤ τmaxρ
∗


√n+

n∑

i=⌊n1/4⌋+1

i
m∑

k=1

1i=ik,M 6∈Mk




where we defined: τmax = maxs,a τ(s, a) < +∞.
By Lemma 5, the probability that the second term in the right hand side of the above inequality is non-zero is
bounded by

n∑

i=⌊n1/4⌋

δ

15i6
≤ δ

15n6/4
+

∫ +∞

n1/4

δ

15x6
dx ≤ δ

12n5/4
.

In other words, with probability at least 1− δ
12n5/4 :

m∑

k=1

∆k1M 6∈Mk
≤ τmaxRmax

√
n.

B.3 Episodes with M ∈ Mk

Now we assume that M ∈ Mk and we start by analysing the regret of a single episode k. By construction,
Rmax ≥ ρ̃k ≥ ρ∗ − Rmax√

ik
hence:

∆k =
∑

s∈S

∑

a∈As

νk(s, a) (τ(s, a)ρ
∗ − r(s, a)) ≤

∑

s∈S

∑

a∈As

νk(s, a) (τ (s, a)ρ̃k − r(s, a)) +Rmax

∑

s∈S

∑

a∈As

νk(s, a)√
ik

τ(s, a)

=⇒ ∆k ≤
∑

s∈S

∑

a∈As

νk(s, a) (τ̃k(s, a)ρ̃k − r(s, a)) +Rmax

∑

s∈S

∑

a∈As

νk(s, a) (τ (s, a)− τ̃k(s, a))

+Rmaxτmax

∑

s∈S

∑

a∈As

νk(s, a)√
ik

We now need two results about the extended value iteration algorithm.

Lemma 6. At any iteration i ≥ 0 of EVI (extended value iteration), the range of the state values is bounded as
follows,

∀i ≥ 0, max
s∈S

ui(s)−min
s∈S

ui(s) ≤
RmaxD(M)

τ
, (20)

where Rmax is an upper-bound on the per-step reward r(s, a)/τ(s, a), τ is the parameter used in the uniformization
of the SMDP M and D(M) is its diameter (Def. 2).

Proof. In Appendix A we show that EVI is value iteration applied to the equivalent MDP M̃+
k,eq obtained by

“uniformizing” the extended SMDP M̃+
k . Thus, we focus on any SMDP M and its equivalent MDP Meq. Using

the same argument as in section 4.3.1 of [Jaksch et al., 2010], we have that: ∀i ≥ 0, maxs∈S ui(s)−mins∈S ui(s) ≤
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RmaxD(Meq) since all rewards of Meq are bounded by Rmax whenever the average reward in M is bounded by
Rmax. Thus we need to find a relationship between D(M) and D(Meq). Let T (s′) denote the first time at which
state s′ is reached in M or Meq, that is

In SMDP M : T (s′) = inf

{ n∑

i=1

τi : n ∈ N, sn = s′
}

In MDP Meq : T (s′) = inf

{
n : n ∈ N, sn = s′

}
.

We prove that ∀s, s′ ∈ S, ∀π ∈ ΠSD
M = ΠSD

M ′ , Eπ
M

[
T (s′)|s0 = s

]
= τEπ

M ′

[
T (s′)|s0 = s

]
. We consider two cases:

1. If Pπ
M

(
T (s′) = +∞|s0 = s

)
> 0 then necessarily Eπ

M

[
T (s′)|s0 = s

]
= +∞.

Moreover: Pπ
M

(
T (s′) = +∞|s0 = s

)
> 0 =⇒ Pπ

Meq

(
T (s′) = +∞|s0 = s

)
> 0 and so Eπ

Meq

[
T (s′)|s0 = s

]
=

+∞ = 1
τ Eπ

M

[
T (s′)|s0 = s

]
.

2. Conversely: Pπ
M

(
T (s′) = +∞|s0 = s

)
= 0 =⇒ Pπ

Meq

(
T (s′) = +∞|s0 = s

)
= 0 in which case both

expectations are finite. To prove they are equal up to factor τ , we see the holding time as a “reward” (the
true rewards are ignored here). Note that any policy π induces Markov chains with different dynamics on
M and Meq (different transition probabilities). We call these Markov chains MC and MCeq respectively.
Suppose we modify MC as follows: all states that are not reachable from s are ignored, all other states
are unchanged except s′ that is assumed to be absorbing (i.e., π(s′) is an action that loops on s′ with
probability 1). Furthermore, we build a Markov reward process MR with the same dynamics as MC and
such that all transitions (s, π(s)) have an expected reward equal to τ (s, π(s)) except (s′, π(s′)) which has
a reward of zero. The total expected reward of this Markov reward process (MRP denoted MR) starting
from s trivially equals Eπ

M

[
T (s′)|s0 = s

]
. Since we assumed that Eπ

M

[
T (s′)|s0 = s

]
is finite, and because

all states of MR are reachable from s (the other states were ignored), s′ is reached with probability 1 no
matter which starting state s of MR is chosen (or in other words, even though we ignored some states, the
transition matrix of MR is stochastic −and not sub-stochastic− and has a single recurrent class consisting
of the absorbing state s′). By [Puterman, 1994], the vector

(
T (s)

)
s∈S =

(
Eπ
M

[
T (s′)|s0 = s

])
s∈S is the

unique solution to the system of equations

∀s, T (s) = τ (s, d(s)) +
∑

s̃

p(s̃|s, d(s))T (s̃).

Applying the same transformation to MCeq and assigning a reward of 1 to all transitions but (s′, π(s′)) (which
has reward 0) in order to build MReq, we deduce that the vector

(
T eq(s)

)
s∈S =

(
Eπ
Meq

[
T (s′)|s0 = s

])
s∈S is

the unique solution to the system of equations

∀s, T eq(s) = 1 +
τ

τ(s, d(s))

∑

s̃

p(s̃|s, d(s))T eq(s̃) +

(
1− τ

τ (s, d(s))

)
T eq(s)

⇐⇒ ∀s,
(
τT eq(s)

)
= τ (s, d(s)) +

∑

s̃

p(s̃|s, d(s))
(
τT eq(s̃)

)
.

By uniqueness of the solution: τT eq = T =⇒ τD(Meq) = D(M).

Lemma 7. If the convergence criterion of EVI hold at iteration i, then:

∀s ∈ S,
∣∣ui+1(s)− ui(s)− ρ̃k

∣∣ ≤ 1√
ik

(21)

Proof. We introduce the following quantities

Mi = max
s∈S
{ui+1(s)− ui(s)}, mi = min

s∈S
{ui+1(s)− ui(s)}, ǫ =

1√
ik
.
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Since EVI is just value iteration applied to MDP M ′
k, Theorem 8.5.6 of [Puterman, 1994] hold and we have:

1

2
(Mi +mi) ≥ ρ̃k −

ǫ

2
⇐⇒ mi ≥ ρ̃k −

ǫ

2
− 1

2
(Mi −mi) =⇒ mi ≥ ρ̃k − ǫ

1

2
(Mi +mi)− ρ̃k ≤

ǫ

2
⇐⇒ Mi ≤ ρ̃k +

ǫ

2
+

1

2
(Mi −mi) =⇒ Mi ≤ ρ̃k + ǫ.

In conclusion:

∀s ∈ S, −1√
ik
≤ ui+1(s)− ui(s)− ρ̃k ≤

1√
ik
.

Based on Lemma 7, Eq. 21, and optimiality equation Eq. 14, we have:

∀s ∈ S,
∣∣∣∣∣

(
ρ̃k −

r̃k(s, π̃k(s))

τ̃k(s, π̃k(s))

)
−
(
∑

s′∈S
p̃k(s

′|s, π̃k(s))ui(s
′)− ui(s)

)
τ

τ̃k(s, π̃k(s))

∣∣∣∣∣ ≤
1√
ik

(22)

Setting rk =
(
r̃k(s, π̃k(s))

)
s∈S to be the column vector of rewards under policy π̃k, P̃k =

(
p̃k(s

′|s, π̃k(s))
)
s,s′∈S the

transition matrix and vk =
(
νk(s, π̃k(s))

)
s∈S the row vector of visit counts for each state and the corresponding

action chosen by π̃k. We will use the fact that a 6= π̃k(s) =⇒ νk(s, a) = 0.

∆k ≤
∑

s,a

νk(s, a) (τ̃k(s, a)ρ̃k − r(s, a)) +Rmax

∑

s,a

νk(s, a) (τ (s, a)− τ̃k(s, a)) + Rmaxτmax

∑

s,a

νk(s, a)√
ik

=
∑

s,a

νk(s, a) (τ̃k(s, a)ρ̃k − r̃k(s, a)) +
∑

s,a

νk(s, a) (r̃k(s, a)− r(s, a)) +Rmaxτmax

∑

s,a

νk(s, a)√
ik

+Rmax

∑

s,a

νk(s, a) (τ (s, a)− τ̃k(s, a))

We will now upper-bound the four terms of the right-hand side of the above inequality. Setting cr =
max{14br,

√
14σr} and cτ = max{14bτ ,

√
14στ} we have:

r̃k(s, a)− r(s, a) ≤
∣∣r̃k(s, a)− r̂k(s, a)

∣∣+
∣∣r̂k(s, a)− r(s, a)

∣∣ ≤ 2βr
k(s, a) ≤ 2cr

log(2SAik/δ)√
max{1, Nk(s, a)}

τ(s, a)− τ̃k(s, a) ≤
∣∣τ̃k(s, a)− τ̂k(s, a)

∣∣+
∣∣τ̂k(s, a)− τ (s, a)

∣∣ ≤ 2βτ
k (s, a) ≤ 2cτ

log(2SAik/δ)√
max{1, Nk(s, a)}

Finally, using 22 and noting that τ̃k(s, a) ≤ τmax (by construction) we obtain:

τ̃k(s, a)ρ̃k − r̃k(s, a) ≤
Rmaxτmax√

ik
+ τ

(
∑

s′∈S
p̃k(s

′|s, π̃k(s))ui(s
′)− ui(s)

)
, if a = π̃k(s)

=⇒
∑

s,a

νk(s, a) (τ̃k(s, a)ρ̃k − r̃k(s, a)) ≤ Rmaxτmax

∑

s,a

νk(s, a)√
ik

+ τ
(
vk
(
P̃k − I

)
ui

)

where i is the iteration at which the stopping condition of EVI holds. Defining the column vector wk by:

wk(s) = ui(s)−
mins∈S ui(s) + maxs∈S ui(s)

2
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and since the rows of P̃k sum to one, we have: vk
(
P̃k − I

)
ui = vk

(
P̃k − I

)
wk. Moreover, by Lemma 6: ‖wk‖∞ ≤

RmaxD
2τ . Noting that max{1, Nk(s, a)} ≤ ik ≤ n we get:

∆k ≤ τ
(
vk
(
P̃k − I

)
wk

)
+ 2

(
Rmaxτmax + (cr + Rmaxcτ ) log

(
2SAn

δ

))∑

s,a

νk(s, a)√
max{1, Nk(s, a)}

Using exactly the same arguments as in Jaksch et al. [2010], it is trivial to prove that with probability at least
1− δ

12n5/4 :

m∑

k=1

vk
(
P̃k − I

)
wk1M∈Mk

≤ RmaxD

τ

[√
14S log

(
2An

δ

) m∑

k=1

∑

s,a

νk(s, a)√
max{1, Nk(s, a)}

+

√
5

2
n log

(
8n

δ

)

+SA log2

(
8n

SA

)]

Lemma 8. Consider a sequence of positive reals (zk)k and define: ∀k, Zk = max{1,∑k
i=1 zi}. Assuming that

0 ≤ zk ≤ Zk−1 we have:

∀n ≥ 1,

n∑

k=1

zk√
Zk−1

≤
(√

2 + 1
)√

Zn

Proof. See Appendix C.3 of [Jaksch et al., 2010].

Using Lemma 8 we get:

m∑

k=1

∑

s,a

νk(s, a)√
max{1, Nk(s, a)}

≤
(√

2 + 1
)∑

s,a

√
N(s, a)

By Jensen’s inequality we thus have:

m∑

k=1

∑

s,a

νk(s, a)√
max{1, Nk(s, a)}

≤
(√

2 + 1
)√

SAn

In conclusion, when M ∈Mk, with probability at least 1− δ
12n5/4 :

m∑

k=1

∆k1M∈Mk
≤ RmaxD

√
5

2
n log

(
8n

δ

)
+RmaxDSA log2

(
8n

SA

)
+ (
√
2 + 1)

[
2Rmaxτmax

+2(cr +Rmaxcτ ) log

(
2SAn

δ

)
+RmaxD

√
14S log

(
2An

δ

)]√
SAn

B.4 Computing the final bound

Gathering all previous inequalities, we have that with probability at least 1− 3δ
12n5/4 = 1− δ

4n5/4 :

∆(M,A, s, n) ≤ (γr + γτRmax) log

(
13n

δ

)√
n+ τmaxRmax

√
n+RmaxD

√
5

2
n log

(
8n

δ

)

+ (
√
2 + 1)

[
2τmax + 2(cr +Rmaxcτ ) log

(
2SAn

δ

)
+RmaxD

√
14S log

(
2An

δ

)]√
SAn

+RmaxDSA log2

(
8n

SA

)
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In [Jaksch et al., 2010] (see Appendix C.4), it is shown that when n > 34A log
(
n
δ

)
:

DSA log2

(
8n

SA

)
<

2

34
DS

√
An log

(n
δ

)
, and log

(
2An

δ

)
≤ 2 log

(n
δ

)

and moreover if n > S log
(
n
δ

)
and A ≥ 2 (if A = 1 the regret is zero):

n2

δ2
≥ nS log

(
n
δ

)

δ
≥ nS

δ
=⇒ n2A2

δ2
≥ 2SAn

δ
=⇒ 4 log

(n
δ

)
≥ 2 log

(
An

δ

)
≥ log

(
2SAn

δ

)

=⇒ ∆(M,A, s, n) = O

((
D
√
S + τmax +

(
Cr

Rmax
+ Cτ

)√
log
(n
δ

))
Rmax

√
SAn log

(n
δ

))

where Cr = max{br, σr} and Cτ = max{bτ , στ}.

Note that if n ≤ 34A log
(
n
δ

)
then we trivially have:

m∑

k=1

∆k ≤ τmaxRmaxn = τmaxRmax(
√
n)2 ≤ 34τmaxRmax

√
An log

(n
δ

)

and if n ≤ S log
(
n
δ

)
:

m∑

k=1

∆k ≤ τmaxRmaxn = τmaxRmax(
√
n)2 ≤ τmaxRmax

√
Sn log

(n
δ

)

and thus the previous bound on the whole regret still holds. Taking a union bound over all possible values of
n ≥ 1 we have that with probability at least 1− δ:

∀n ≥ 1, ∆(M,A, s, n) = O

((
D
√
S + τmax +

(
Cr

Rmax
+ Cτ

)√
log
(n
δ

))
Rmax

√
SAn log

(n
δ

))
.

The derivation for the case of bounded holding times is exactly the same with different concentration inequalities
applied to estimates τ̂ (s, a). Note that all the terms in the upper bound are very similar to those appearing in
the derivation of the upper bound for MDPs, thus the constants in the big O are very close. This justifies the
analysis of the ratio between the two upper bounds in Sect. 5.

C The Lower Bound (Theorem 2)

C.1 Lower Bound for SMDPs

We will derive the lower bound by applying the same techniques as in the proof of the lower bound for MDPs
(section 6 of [Jaksch et al., 2010]). We first consider the two-state SMDP M ′ depicted in Fig. 4. Since by
assumption D

12 > Tmin and Tmax

3 > Tmin, let τ ∈
]
Tmin,min

{
D
12 ,

Tmax

3

}]
. Define p = τ

Tmax
and δ = 4τ

D . By

definition of τ we have: p, δ ≤ 1
3 . There are A′ = ⌊A−1

2 ⌋ actions available in each state of M ′. We assume that
∀(s, a, s′) ∈ S × As × S and ∀i ≥ 0, ri(s, a, s

′) and τi(s, a, s
′) are independent. We also assume that ∀i ≥ 0,

τi(si−1, ai, si) and ri(si−1, ai, si) are independent of the next state si and we write: τi(si−1, ai) and ri(si−1, ai).
For each action a in As0 , r(s0, a) = 0 and τ(s, a) ∼ τ where τ is a r.v. defined in Table 1. Moreover, for all
actions a but a specific action a∗0, p(s1|s0, a) = δ whereas p(s1|s0, a∗0) = δ+ ǫ for some 0 < ǫ < δ specified later in
the proof. For all actions a in As1 , p(s0|s1, a) = δ and τ(s1, a) ∼ τ . Finally, r(s1, a) ∼ r for all actions a except
a∗1 for which r(s1, a

∗
1) ∼ r∗, where r and r∗ are r.v. defined in Table 1 where 0 < η < p will be defined later in

the proof. Note that since η < τ
Tmax

, we have: r ≤ τRmax and r∗ ≤ τRmax which satisfies the definition of Rmax

given in assumption 1. We denote E[·|s] the expectation conditionally on starting in state s.

Let’s define T (s1) = inf{t : st = s1} the first time in which s1 is encountered. ∀d∞ ∈ ΠSD
M ′ such that d(s0) 6= a∗0
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s0 s1

1− δ, τ, 0

δ, τ, r

δ, τ, 0

1− δ, τ, r
δ + ǫ, τ, 0

δ, τ, r∗

1− δ − ǫ, τ, 0

1− δ, τ, r∗

Figure 4: The two-state SMDP M ′ for the lower-bound on SMDPs. The two special actions a∗0 and a∗1 are shown
as dashed lines.

we have:

Ed∞

[T (s1)|s0] = Ed∞




+∞∑

n=1



(

n∑

i=1

τi(si−1, ai, si)

)


n−1∏

j=0

1sj=s0


1sn=s1



∣∣∣∣∣s0




=

+∞∑

n=1

Ed∞



(

n∑

i=1

τi(s0, d(s0))

)


n−1∏

j=0

1sj=s0


1sn=s1

∣∣∣∣∣s0




=

+∞∑

n=1

Ed∞

[
n∑

i=1

τi(s0, d(s0))

∣∣∣∣∣s0
]

Ed∞






n−1∏

j=0

1sj=s0


1sn=s1

∣∣∣∣∣s0




=

+∞∑

n=1

nτ × δ(1− δ)
n−1

=
τ

δ

We used the fact that τi is independent of the next state si and that τ = E[τ ]. We can compute Ed∞

[T (s1)|s0]
with d(s0) = a∗0 and Ed∞

[T (s0)|s1] (for both d(s0) 6= a∗0 and d(s0) = a∗0) similarly. The diameter of SMDP M ′

is thus:

D′ = max

{
min

{
τ

δ
,

τ

δ + ǫ

}
,min

{
τ

δ
,
τ

δ

}}
= max

{
τ

δ + ǫ
,
τ

δ

}
=

τ

δ

Any policy d∞ ∈ ΠSD
M ′ induces a recurrent Markov Chain on M ′. Let’s denote by P ∗

d the limiting matrix of
this Markov Chain. We know (see [Puterman, 1994]) that P ∗

d = eµ⊺

d where µd = (1− pd, pd)
⊺ is the stationary

distribution of the recurrent Markov Chain. The probability pd can take only two different values: pd = 1
2 if and

only if d(s0) 6= a∗0, and pd = δ+ǫ
2δ+ǫ if and only if d(s0) = a∗0. Using criterion 3 of Definition 3, the gain yielded by

d∞ has the form:

ρd =
pdX

(1 − pd)τ + pdτ
=

pdX

τ

where X = r if and only if d(s1) 6= a∗1, and X = r∗ if and only if d(s1) = a∗1. Since r∗ > r, the optimal decision
rule d∗ must satisfy: d∗(s1) = a∗1. Similarly, since δ+ǫ

2δ+ǫ > 1
2 we must have: d∗(s0) = a∗0. The optimal gain is

thus:

ρ∗ =
Rmax

2
× (δ + ǫ) (τ + ηTmax)

(2δ + ǫ) τ

The actual SMDP M that we will use to prove the lower bound is built by considering k = ⌊S2 ⌋ copies of the
two-state SMDP M ′, where only one of the copies has such "good" actions a∗0 and a∗1 (all the other copies
have the exact same number of actions as M ′, but all actions are identical). A′ + 1 additional actions with
deterministic transitions are introduced in every s0-state. The reward for each of those actions is zero and the
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R.v. X Xmin Xmax P(X = Xmin) P(X = Xmax) E[X ]
τ Tmin Tmax > 0 > 0 τ
r 0 1

2RmaxTmax 1− p p 1
2τRmax

r∗ 0 1
2RmaxTmax 1− p− η p+ η 1

2 (τRmax + ηTmaxRmax)

Table 1: Definition of random variables τ , r and r∗.

holding time is Tmin. These actions connect the s0-states of the k copies in a A′-ary tree structure on the s0
states: one action goes toward the root and A′ actions goes toward the leaves (the same structure is described
in section 6 of [Jaksch et al., 2010], see Figure 6 for a representation of the A′-ary tree). The diameter of such
an SMDP M is at most 2

(
D
4 + Tmin⌈logA′ k⌉

)
≤ D. All holding times of M are in [Tmin, Tmax], and all rewards

are in [0, 1
2RmaxTmax]. For all (s, a) ∈ S ×As we have: r(s, a) ≤ τ (s, a)Rmax. Moreover, M has at most S states

and A actions per state.

For the analysis, we will study the simpler-to-learn SMDP M ′′ where all s0-states are merged together as well as
all s1-states. The "merged" s0-state is set to be the initial state. M ′′ is thus equivalent to the two-state SMDP
M ′ with kA′ available actions in both s0 and s1. Let’s assume that the learning algorithm A used is fixed. The
probability distribution of the stochastic process (s0, a0, τ0, r0, s1, ...) is denoted:

• Pa0,a1
when (a0, a1) are the best actions in respectively s0 and s1,

• P∗ when the pair (a0, a1) identifying the best actions is first chosen uniformly at random from {1, ..., kA′}×
{1, ..., kA′} before algorithm A starts,
• Punif0,a1 when the pair a1 is the best action in s1 and ǫ = 0 (no-optimal actions in s0),
• Pa0,unif1 when the pair a0 is the best action in s0 and η = 0 (no-optimal actions in s1).

By construction, it is trivial to see that: E∗[∆(M,A, s, n)] ≥ E∗[∆(M ′′,A, s, n)] (M ′′ is easier to learn). We

will show that E∗[∆(M ′′,A, s0, n)] = Ω
((√

D′ +
√
Tmax

)
Rmax

√
kA′n

)
and the same result can be proved with

initial state s1 using similar arguments. This will necessarily imply that there exists at least one choice of pair

(a0, a1) for which, for all states s we have: Ea0,a1
[∆(M,A, s, n)] = Ω

((√
D +

√
Tmax

)
Rmax

√
SAn

)
.

As already argued by [Jaksch et al., 2010], for the analysis it is sufficient to consider algorithms with deterministic
strategies for choosing actions.

We assume algorithm A is run for n decision steps, which means that n+ 1 states are visited in total (including
the last state in which no action is taken). Let’s denote by N0 and N1 the number of visits in states s0 and s1
respectively, last state excluded. For any (a, a) ∈ As0 ×As1 , let’s denote by Na

0 and Na
1 the respective number

of times actions a and a are taken. Finally, let’s denote by N∗
0 and N∗

1 the respective number of times best
actions in s0 and s1 are taken. The SMDP M ′′ has the same transition probabilities as the MDP considered by
[Jaksch et al., 2010] and we can use their proof to show that for any choice of best actions (a0, a1):

Eunif0,a1
[N1] ≥

n

2
− 1

2δ
=

n

2
− D′

2τ

Ea0,a1
[N1] ≤

n

2
+

Ea0,a1
[N∗

0 ]ǫ

δ
+

1

2δ
=

n

2
+

Ea0,a1
[Na0

0 ]ǫD′

2τ
+

D′

2τ

The regret is defined as:

E∗[∆(M ′′,A, s0, n)] = E∗

[
n∑

i=1

τi(si−1, ai, si)

]
ρ∗ − E∗

[
n∑

i=1

ri(si−1, ai, si)

]

where the total duration is simply:

E∗

[
n∑

i=1

τi(si−1, ai, si)

]
=

n∑

i=1

E∗ [τi(si−1, ai)] = nτ
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and the cumulated reward is given by:

E∗

[
n∑

i=1

ri(si−1, ai, si)

]
=

n∑

i=1

E∗
[
ri(s1, a

∗
1)1si−1=s1,ai=a∗

1
+ ri(s1, ai 6= a∗1)1si−1=s1,ai 6=a∗

1

]

= E∗

[
r∗
(

n−1∑

i=0

1si=s1,ai+1=a∗

1

)
+ r

(
n−1∑

i=0

1si=s1,ai+1 6=a∗

1

)]

= E∗ [r (N1 −N∗
1 ) + r∗N∗

1 ]

= E∗ [rN1 + (r∗ − r)N∗
1 ]

=
Rmax

2
τE∗ [N1] + η

Rmax

2
TmaxE∗[N

∗
1 ]

hence the formula:

E∗[∆(M ′′,A, s0, n)] = τ

(
nρ∗ − Rmax

2
E∗[N1]

)
− η

Rmax

2
TmaxE∗[N

∗
1 ] (23)

Lemma 9. Let f : {s0, s1}n+1 × {Tmin, Tmax}n × {0, 12RmaxTmax}n → [0,M ] be any function defined on
state/reward sequence (sn+1, τn, rn) ∈ {s0, s1}n+1 × {Tmin, Tmax}n × {0, 12RmaxTmax}n observed in the SMDP
M ′′. Then for any n ≥ 1, any 0 ≤ δ ≤ 1

2 , any 0 ≤ ǫ ≤ 1 − 2δ, any 0 ≤ p ≤ 1
2 , any 0 ≤ η ≤ 1 − 2p, and any

(a0, a1) ∈ {1, ..., kA′} × {1, ..., kA′}:
∣∣∣∣Ea0,a1

[
f(sn+1, τn, rn)

]
− Eunif0,a1

[
f(sn+1, τn, rn)

] ∣∣∣∣ ≤
M

2

ǫ√
δ

√
2Eunif0,a1

[Na0

0 ]

∣∣∣∣Ea0,a1

[
f(sn+1, τn, rn)

]
− Ea0,unif1

[
f(sn+1, τn, rn)

] ∣∣∣∣ ≤
M

2

η√
p

√
2Ea0,unif1 [N

a1

1 ]

Proof. We refer the reader to Appendix E of [Jaksch et al., 2010] where a similar Lemma is proved for the MDP-
analogue of SMDP M ′′. In the following, we will only stress the main difference with the proof in [Jaksch et al.,
2010]. We know from information theory that:

∣∣∣∣Ea0,a1

[
f(sn+1, τn, rn)

]
− Eunif0,a1

[
f(sn+1, τn, rn)

] ∣∣∣∣ ≤
M

2

√
2 log(2)KL (Punif0,a1

‖Pa0,a1
)

∣∣∣∣Ea0,a1

[
f(sn+1, τn, rn)

]
− Ea0,unif1

[
f(sn+1, τn, rn)

] ∣∣∣∣ ≤
M

2

√
2 log(2)KL (Pa0,unif1‖Pa0,a1

)

By the chain rule of Kullback–Leibler divergences, it holds that:

KL (Pa0,unif1‖Pa0,a1
) =

n∑

i=1

KL
(
Pa0,unif1(si, τi, ri|si−1, τ i−1, ri−1)‖Pa0,a1

(si, τi, ri|si−1, τ i−1, ri−1)
)

where KL
(
P(si, τi, ri|si−1, τ i−1, ri−1)‖Q(si, τi, ri|si−1, τ i−1, ri−1)

)
=

∑

si∈Si,τ i∈T ,ri∈Ri

P(si, τ i−1, ri) log2

(
P(si, τi, ri|si−1, τ i−1, ri−1)

Q(si, τi, ri|si−1, τ i−1, ri−1)

)

with S = {s0, s1}, T = {Tmin, Tmax} and R = {0, 12RmaxTmax}. The same holds for Punif0,a1
.

Similarly to [Jaksch et al., 2010] and using the independence between si, τi and ri, we obtain:

KL
(
Punif0,a1

(si, τi, ri|si−1, τ i−1, ri−1)‖Pa0,a1
(si, τi, ri|si−1, τ i−1, ri−1)

)

= Punif0,a1
(si−1 = s0, ai = a0)

∑

s′∈S,τ ′∈T ,r′∈R
Punif0,a1

(s′, τ ′, r′|s0, a0) log2
(

Punif0,a1
(s′, τ ′, r′|s0, a0)

Pa0,a1
(s′, τ ′, r′|s0, a0)

)

= Punif0,a1
(si−1 = s0, ai = a0)

∑

s′∈S
Punif0,a1

(s′|s0, a0) log2
(

Punif0,a1
(s′|s0, a0)

Pa0,a1
(s′|s0, a0)

)

= Punif0,a1
(si−1 = s0, ai = a0)

(
δ log2

(
δ

δ + ǫ

)
+ (1 − δ) log2

(
1− δ

1− δ − ǫ

))
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KL
(
Pa0,unif1(si, τi, ri|si−1, τ i−1, ri−1)‖Pa0,a1

(si, τi, ri|si−1, τ i−1, ri−1)
)

= Pa0,unif1(si−1 = s1, ai = a1)
∑

s′∈S,τ ′∈T ,r′∈R
Pa0,unif1(s

′, τ ′, r′|s1, a1) log2
(

Pa0,unif1(s
′, τ ′, r′|s1, a1)

Pa0,a1
(s′, τ ′, r′|s1, a1)

)

= Pa0,unif1(si−1 = s1, ai = a1)
∑

r′∈R
Pa0,unif1(r

′|s1, a1) log2
(

Pa0,unif1(r
′|s1, a1)

Pa0,a1
(r′|s1, a1)

)

= Pa0,unif1(si−1 = s1, ai = a1)

(
p log2

(
p

p+ η

)
+ (1 − p) log2

(
1− p

1− p− η

))

Using Lemma 20 of [Jaksch et al., 2010] we have that under conditions 0 ≤ δ ≤ 1
2 , 0 ≤ ǫ ≤ 1 − 2δ, 0 ≤ p ≤ 1

2 ,
and 0 ≤ η ≤ 1− 2p the following inequalities hold:

δ log2

(
δ

δ + ǫ

)
+ (1 − δ) log2

(
1− δ

1− δ − ǫ

)
≤ ǫ2

δ log(2)

and p log2

(
p

p+ η

)
+ (1− p) log2

(
1− p

1− p− η

)
≤ η2

p log(2)

which concludes the proof.

Note that by assumption: ǫ ≤ δ ≤ 1
3 ≤ 1− 2δ and η ≤ p ≤ 1

3 ≤ 1− 2p.

We can bound E∗ [N1] using Lemma 9 as is done in [Jaksch et al., 2010]. This is because N1 can be written as
a function of (sn+1, τn, rn). Since the computations are rigorously the same except that δ = τ

D′ instead of 1
D′ ,

we give the results without any further details:

E∗ [N1] ≤
n

2
+

D′

2τ
+

ǫnD′

2τkA′ +
ǫD′2

2τ2kA′ +
ǫ2nD′

2τkA′

√
D′kA′n

τ
+

ǫ2nD′2

2τ2kA′

√
kA′

Taking into account the fact that by assumption n ≥ DSA ≥ 16D′kA′ we get:

E∗ [N1] ≤
n

2
+

D′

2τ
+

ǫnD′

τ

(
1

2kA′ +
1

32τk2A′2

)
+

ǫ2nD′

τkA′

√
D′kA′n

τ

(
1

2
+

1

8
√
kA′

)
(24)

Given that δ ≥ ǫ ≥ 0 we have the following inequality:

ρ∗ − Rmax

4
=

Rmax

2
× ǫτ + (δ + ǫ)ηTmax

2(2δ + ǫ)τ
≥ Rmax

2
×
(
ǫD′

6τ
+

ηTmax

6τ

)
(25)

Applying Lemma 9 (N∗
1 is a function of (sn+1, τn, rn)) and Jensen’s inequality we get ∀a0 ∈ {1, ..., kA′}:

E∗ [N
∗
1 ] =

1

kA′

kA′∑

a1=1

Ea0,a1
[Na1

1 ] ≤ Ea0,unif1 [N1]

kA′ +
n

2kA′ η

√
2kA′Tmax

τ
Ea0,unif1 [N1]

We will now derive an upper-bound on Ea0,unif1 [N1].

Lemma 10. Let (un)n∈N
∈ RN be any real sequence satisfying the following arithmetico-geometric recurrence

relation:

∀n ∈ N, un+1 ≥ qun + r where (q, r) ∈ R \ {1} × R

Then we have that:

∀n ∈ N, un ≥
(
u0 −

r

1− q

)
αn +

r

1− q
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Proof. Defining sequence vn = un − r
1−q , we have:

∀n ∈ N, vn+1 = un+1 −
r

1− q
≥ qun + r − r

1− q
= q

(
un −

r

1− q

)
= qvn

By trivial induction we get: ∀n ∈ N, vn ≥ v0q
n. The result follows by replacing vn by un − r

1−q .

By the law of total probability and since Pa0,unif1 (si = s0) + Pa0,unif1 (si = s1) = 1 we have:

∀i ≥ 0, Pa0,unif1 (si+1 = s0) =Pa0,unif1 (si+1 = s0|si = s0)Pa0,unif1 (si = s0)

+ Pa0,unif1 (si+1 = s0|si = s1)Pa0,unif1 (si = s1)

=Pa0,unif1 (si = s0)
(
Pa0,unif1 (si+1 = s0|si = s0)

− Pa0,unif1 (si+1 = s0|si = s1)
)
+ Pa0,unif1 (si+1 = s0|si = s1)

≥Pa0,unif1 (si = s0) (1− 2δ − ǫ) + δ

Since the initial state is s0 and 2δ + ǫ ≤ 3δ we have by Lemma 10:

∀i ≥ 0, Pa0,unif1 (si = s0) ≥
(
1− δ

2δ + ǫ

)
(1− 2δ − ǫ)i +

δ

2δ + ǫ
≥ 1

3

=⇒ Ea0,unif1 [N0] =

n∑

i=0

Pa0,unif1 (si = s0) ≥
n

3

=⇒ Ea0,unif1 [N1] ≤
2n

3

=⇒ E∗ [N
∗
1 ] ≤

2n

3kA′ +
nη

kA′

√
TmaxnkA′

3τ

Hence the bound:

ηTmaxE∗ [N
∗
1 ] ≤

2nηTmax

3kA′ +
nη2Tmax

kA′

√
TmaxnkA′

3τ
(26)

By setting ǫ = c
√

kA′

nD′ and η = κ
√

kA′

nTmax
and incorporating inequalities 24, 25 and 26 into inequality 23 we

obtain:

E∗[∆(M ′′,A, s0, n)] ≥
[
c

6
− c

2kA′ −
c

32k2A′2τ
− c2

2
√
τ
− c2

8
√
kA′τ

− 1

8kA′

]
Rmax

2

√
D′kA′n

+

[
κ

6
− 2κ

3kA′ −
κ2

√
3τ

]
Rmax

2

√
TmaxkA′n

≥
[
c

6
− c

2kA′ −
c

32k2A′2 −
c2

2
− c2

8
√
kA′
− 1

8kA′

]
Rmax

2

√
D′kA′n

+

[
κ

6
− 2κ

3kA′ −
κ2

√
3

]
Rmax

2

√
TmaxkA′n

For the second inequality, we used the fact that τ > Tmin ≥ 1 (by assumption). If c and κ are sufficiently small,
then the conditions of lemma 9 are indeed satisfied and the above polynomials in c and κ are non-negative. For
example, if c = κ = 1

5 :

n ≥ DSA ≥ 16D′kA′ =⇒ ǫ =
1

5

√
kA′

nD′ ≤
δ

20
< δ

n ≥ TmaxSA ≥ 4TmaxkA
′ =⇒ η =

1

5

√
kA′

nTmax
≤ p

10
< p

and E∗[∆(M ′′,A, s0, n)] ≥ 0.0015×
(√

D′ +
√
Tmax

)
Rmax

√
kA′n
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s0 s1

1− δ, τ, 0

δ, τ, r

δ, τ, 0

1− δ, τ, r
δ + ǫ, τ, 0

δ, τ∗, r∗

1− δ − ǫ, τ, 0

1− δ, τ∗, r∗

Figure 5: The two-state SMDP M ′ for the lower-bound on MDPs with options. The two special actions a∗0 and
a∗1 are shown as dashed lines.

C.2 Lower Bound for MDPs with options

We first note that SMDP M ′ depicted in Fig. 4 cannot be converted into an MDP with options. This is due
to the fact that τi(si−1, ai, si) and ri(si−1, ai, si) were assumed to be independent and the fact that P(r∗ =
1
2RmaxTmax) > P(τ = Tmax). However, it is possible to prove a slightly smaller lower bound for a family of
SMDPs that can be transformed into an equivalent MDP with options. We will first present the SMDPs and
the lower bound and then we will describe how to transform them into an MDP with options.

The family of SMDPs is constructed in the same way as previously except that we use a slightly different SMDP
M ′, represented on Fig. 5 with the random variables given in Table 2. We take: p = 1

2(Tmax−Tmin)
and δ = 4τ

D .

By assumption p < 1
3 and δ < 1

2 . As before, we assume that for all i, τi(si−1, ai, si) and ri(si−1, ai, si) are
independent of the next state si. But the main difference with the previous lower bound is that we assume that
ri and τi are strongly correlated, namely: ri(si−1, ai, si) = Rmax1{si−1=s1}τi(si−1, ai). We assume ǫ ≤ δ and
η ≤ 1− 2p. The optimal gain of M ′ is reached when a∗0 and a∗1 are chosen in s0 and s1 respectively and is equal
to:

ρ∗ = Rmax ×
(δ + ǫ) (τ + η(Tmax − Tmin))

(2δ + ǫ) τ + (δ + ǫ) (Tmax − Tmin)

By adapting the proof of the lower bound for general SMDPs, we can obtain the following result:

E∗[∆(M ′′,A, s0, n)] ≥
[
c

6
− c

2kA′ −
c

32k2A′2τ
− c2

2
√
τ
− c2

8
√
kA′τ

− 1

8kA′

]
Rmax

√
D′kA′n

+

[
κ

6
− 2κ

3kA′ −
κ2

√
3/2

]
Rmax

√
(Tmax − Tmin)kA′n

≥
[
c

6
− c

2kA′ −
c

32k2A′2 −
c2

2
− c2

8
√
kA′
− 1

8kA′

]
Rmax

√
D′kA′n

+

[
κ

6
− 2κ

3kA′ −
κ2

√
3/2

]
Rmax

√
(Tmax − Tmin)kA′n

by setting ǫ = c
√

kA′

nD′ and η = κ
√

kA′

n(Tmax−Tmin)
. It is then possible to tune c and κ so that ǫ and η satisfy the

constraints and:

E∗[∆(M ′′,A, s0, n)] = Ω
((√

D′ +
√
Tmax − Tmin

)
Rmax

√
kA′n

)

SMDPs M ′ and M ′′ can be transformed into equivalent MDPs with options. We illustrate this transformation
on Fig. 6 for an action a1 ∈ As1 different than a∗1. The same method can be applied for the other actions. The
idea consists in adding new states (blank states in Fig. 6) and primitive actions between those states. Note
that the states added are just "hidden" states from which no option can be started. Thus, they should not be
counted in the number of states for the lower bound. In our example it is sufficient to consider primitive actions
with constant (i.e., deterministic) reward. On Fig. 6 we give the probabilities of each primitive action when
a1 ∈ As1 \ {a∗1} is executed.
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R.v. X Xmin Xmax P(X = Xmin) P(X = Xmax) E[X ]
τ Tmin Tmax 1− p p τ = Tmin + p(Tmax − Tmin)
τ∗ Tmin Tmax 1− p− η p+ η τ + η(Tmax − Tmin)
r RmaxTmin RmaxTmax 1− p p τRmax

r∗ RmaxTmin RmaxTmax 1− p− η p+ η τRmax + ηRmax (Tmax − Tmin)

Table 2: Definition of random variables τ , τ∗, r and r∗.

s0 s1
(1− p)δ, r = Rmax

p(1− δ), r = Rmax

1, r = Rmax

1, r = Rmax

pδ, r = Rmax

1, r = Rmax

1, r = Rmax

(1− p)(1 − δ), r = Rmax

Figure 6: Decomposition of an action a1 ∈ As1 \ {a∗1} into a set of primitive actions in an MDP. In this example,
Tmax = 3 and Tmin = 1.

D Distribution of the holding time and reward of a finite Markov option (Lem. 3)

We denote by R+ and R+∗ the set of positive and non-negative reals respectively. For the definition of sub-
exponential random variables, we refer to Def. 4, while sub-Gaussian random variables are defined as follows.

Definition 5 (Wainwright [2015]). A random variable X with mean µ < +∞ is said to be sub-Gaussian if and
only if there exists σ ∈ R+ such that:

E[eλ(X−µ)] ≤ e
σ2λ2

2 for all λ ∈ R. (27)

A finite7 Markov option can be seen as an absorbing Markov Chain together with a reward process (i.e., a finite
Markov option can be seen as an absorbing Markov Reward Process). To see this we add a new state s̃ for every
state s for which βo(s) > 0. We then add a transitions from s to s̃ with probability βo(s) > 0 and reward 0,
and we add a self-loop on s̃ with probability 1 and reward 0 (s̃ is an absorbing state). The Markov Reward
Process obtained is indeed absorbing since we assumed the option to be a.s. finite, and it is equivalent to the
original option (same reward and holding time). Let’s denote by P the transition matrix of the Markov Chain.
In canonical form we have:

P =

[
Q R
0 Ir

]

where r is the number of absorbing states, Ir is the identity matrix of dimension r, Q is the transition matrix
between non-absorbing states and R the transition matrix from non-absorbing to absorbing states. If the option
is a.s. finite then Q is necessarily (strictly) sub-stochastic (Qe ≤ e where e = (1, ..., 1)⊺ and ∃j s.t. (Qe)j < 1) and
irreducible (no recurrent class). It is well-known that such a matrix has a spectral radius strictly smaller than 1
(ρ(Q) < 1) and thus I−Q is invertible (where I is the identity matrix). The holding time τ(s, o, s′) of any option
o is defined as the first time absorbing state s′ is reached starting from state s: inf{n ≥ 1 : sn = s′ with s0 = s}
where (sn)n is the sequence of states in the absorbing Markov Chain defined by o. It is well-known in the
literature [Peter Buchholz, 2014] that this type of stopping times have Discrete Phase-Type distributions, with
probability mass function given by:

∀k ∈ N∗, P(τ(s, a, s′) = k) = e⊺sQ
k−1Res′

7Note that if at least one option is not (almost surely) finite, the learning agent can potentially be stuck executing
that option forever and the problem is ill-posed.
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where es = (0, 0, ...0, 1, 0, ..., 0)⊺ is a vector of all zeros except in state s where it equals 1. These distributions
generalize the geometric distribution (defined in dimension 1) to higher dimensions. The Laplace transform can
be computed as follows (we simplify notations and denote: τ ← τ(s, o, s′) and τ ← τ(s, o, s′) = E[τ(s, o, s′)]):

E
[
eλ(τ−τ)

]
=

∞∑

k=1

eλ(k−τ)e⊺sQ
k−1Res′ = eλ(1−τ)e⊺s

[ ∞∑

k=0

(
eλQ

)k
]
Res′

The term
∑∞

k=0

(
eλQ

)k
is finite if and only if eλρ(Q) < 1, in which case we have:

E
[
eλ(τ−τ)

]
= eλ(1−τ)e⊺s

(
I − eλQ

)−1
Res′

and otherwise: E
[
eλ(τ−τ)

]
= +∞. Note that eλρ(Q) < 1 if and only if either λ < − log (ρ(Q)) or ρ(Q) = 0. We

will now analyse the two cases separately:

1. ρ(Q) = 0 if and only if all the eigenvalues of Q in C are 0, if and only if Q is nilpotent (∃n > 0 s.t.
Qn = 0). This is because Q can always be triangularized in C: Q = UTU−1 where T is upper-triangular
with the eigenvalues of Q on the diagonal that is, only zeros if ρ(Q) = 0. This implies that ∃n > 0 s.t.
T n = U−1QnU = 0 =⇒ Qn = 0 hence Q is nilpotent. The reverse is obviously true: if Q is nilpotent then
ρ(Q) = 0, (otherwise there would exist λ 6= 0, v 6= 0 and n > 0 s.t. Qn = 0 and Qv = λv =⇒ Qnv =
λnv = 0, which is absurd). By definition, matrix Q is nilpotent of order n if and only if the Markov Chain
reaches an absorbing state in at most n steps (a.s.). In conclusion, ρ(Q) = 0 if and only if the option is
almost surely bounded. This happens if and only if there is no cycle in the option (with probability 1, every
non-absorbing state is visited at most once).

2. In the case where ρ(Q) > 0: it is clear that E
[
eλ(τ−τ)

]
can not be bounded by a function of the form

λ → e
σ2λ2

2 for λ ≥ − log (ρ(Q)) so τ(s, o, s′) is not sub-Gaussian (Definition 5). However, since ρ(Q) < 1
we can choose 0 < c0 < − log (ρ(Q)) and we have E

[
eλ(τ−τ)

]
< +∞ for all |λ| < c0, which implies that

τ(s, o, s′) is sub-exponential (Definition 4).

In conclusion, either option o contains inner-loops (some states are visited several times with non-zero probability)
in which case the distribution of τ(s, o, s′) is sub-Exponential but not sub-Gaussian, or o has no inner-loop in
which case o is bounded (and thus sub-Gaussian). There is no other alternative.

The distribution of rewards r(s, o, s′) is not as simple: the reward of an option is the sum of all micro-rewards
obtained at every time step before the option ends, and every micro-reward earned at each time step can have
a different distribution. The only constraint is that all micro-rewards should be (a.s.) bounded between 0 and
Rmax. As a result, if τ(s, o, s′) is a.s. bounded (by let’s say Tmax) then r(s, o, s′) is also a.s. bounded (by
RmaxTmax). But if τ(s, o, s′) is unbounded then r(s, o, s′) may still be bounded if for example, all micro-rewards
are 0. If however all micro-rewards are equal to Rmax then r(s, o, s′) has a discrete phase-type distribution
just like τ(s, o, s′). r(s, o, s′) can thus be unbounded (and even not sub-Gaussian). However, we will show that
r(s, o, s′) is always sub-Exponential. Using the law of total expectations and the fact that P (r ≤ Rmaxτ) = 1 we
have:

∀λ > 0, E
[
eλ(r−r)

]
=

∞∑

k=1

E
[
eλ(r−r)

∣∣τ = k
]
P(τ = k) ≤

∞∑

k=1

E
[
eλ(Rmaxτ−r)

∣∣τ = k
]
P(τ = k)

=
∞∑

k=1

E
[
eλ(Rmaxk−r)

∣∣τ = k
]
P(τ = k)

=

∞∑

k=1

eλ(Rmaxk−r)P(τ = k)

= eλ(Rmax−τ)e⊺s

[ ∞∑

k=0

(
eλRmaxQ

)k
]
Res′

We can now conclude as we did for τ(s, o, s′): let 0 < c0 < − log(ρ(Q))
Rmax

, for all 0 < λ < c0 the quantity E
[
eλ(r−r)

]

is finite. Note that for λ ≤ 0: E
[
eλr
]
≤ 1 so E

[
eλ(r−r)

]
< +∞. By Definition 4, r(s, o, s′) is sub-Exponential.
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E Equivalent policies in an MDP with options and the induced SMDP (Lem. 2)

We consider the original MDP M and the SMDP MO induced by the set of options O. By definition of MO,
the reward of an option is equal to the sum of the rewards of all the primitive actions taken until the option

terminates (when the option is executed in M). Therefore
∑n

i=1 r
i
O =

∑N(Tn)
i=1 riO =

∑Tn

t=1 rt and:

∆(M,A, s, Tn) = Tnρ
∗(M)−

Tn∑

t=1

rt

= Tnρ
∗(M ′) + Tn (ρ

∗(M)− ρ∗(MO))−
n∑

i=1

riO

= ∆(MO,A, s, n) + Tn (ρ
∗(M)− ρ∗(MO))

(28)

The second part of Lem. 2 is thus proved. We now define the (finite-time) average reward in the two processes

∀T ∈ N∗, ρπ(M, s, T ) = Eπ
M

[∑T
t=1 rt
T

∣∣∣∣s0 = s

]

∀T ′ ∈ R+∗, ρπO(MO, s, T
′) = EπO

MO

[∑N(T ′)
i=1 riO
T ′

∣∣∣∣s0 = s

]
.

The limit limn→+∞ Tn = +∞ since the sequence (Tn)n∈N∗ is strictly increasing and unbounded (at least one
primitive action is executed before the option ends: ∀n ≥ 1, Tn+1 ≥ Tn + 1). Moreover, limT ′→+∞ ρπO (MO, s, T ′)
exists since πO is stationary and deterministic (see appendix A) and by composition of the limit we have

lim
n→+∞

ρπO(MO, s, Tn) = lim
T ′→+∞

ρπO (MO, s, T
′) = ρπO (MO, s)

The limit limT→+∞ ρπ(M, s, T ) also exists. To see this, we can build an augmented MDP equivalent to M where
the state and actions encountered in two different options are duplicated (see section 3 of [Levy and Shimkin,
2012]). The equivalence between the original and augmented MDPs is in the strong sense: for any optional
policy, the corresponding policy in the augmented MDP yields exactly the same reward for any finite horizon.
In the augmented MDP, policy π is stationary deterministic and we know from MDP theory [Puterman, 1994]
that the corresponding average reward exists. We also have:

∀n ≥ 1, Eπ
M

[∑Tn

t=1 rt
Tn

∣∣∣∣s0 = s

]
= EπO

MO

[∑n
i=1 r

i
O

Tn

∣∣∣∣s0 = s

]

=⇒ ρπO (MO, s) = lim
n→+∞

ρπ(M, s, Tn) = lim
T→+∞

ρπ(M, s, T ) = ρπ(M, s)

The first part of Lem. 2 is thus proved. Finally, we know from the literature [Puterman, 1994] that there exists a
stationary deterministic optimal policy in the augmented MDP and thus there also exists a stationary determin-
istic optional policy (a policy using only options in O) in the original MDP. As a result, ρ∗(MO) is the maximal
average reward achievable in M using only options in O. In conclusion, the linear term Tn (ρ

∗(M)− ρ∗(MO))
in equation 28 is the minimal asymptotic regret incurred if the learning agent decides to only use options. This
linear loss is unavoidable.

F Details of the illustrative experiments

In this section we will detail the experiments described in section 6.

Terminating Condition Let’s denote the current state by s0 and for all k ∈ {1...m}, denote by sk the state
which is k steps on the left to s0. Assume option LEFT is taken in s0. By definition, once sk is reached, the
probability of ending the option is given by βo(sk) = 1/(m − k + 1). Since all transitions in the MDP have
probability 1 (except at the target), the probability of ending in exactly k steps can be computed as follows:
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Figure 7: Upper bound on the diameter of the SMDP used in the experiments.

• If k = 1:

P(τ = 1) = βo(s1) =
1

m

• If k ≥ 1:

P(τ = k) =

(
k−1∏

i=1

(1− βo(si))

)
× βo(sk)

=

(
k−1∏

i=1

(
1− 1

m− i+ 1

))
× 1

m− k + 1

=

(
k−1∏

i=1

(
m− i

m− i+ 1

))
× 1

m− k + 1
=

1

m

By symmetry, the other options (RIGHT, UP and DOWN ) have the same holding time.

Expected Holding Time Based on the previous result, we can easily compute the expected holding time:

E[τ ] =

m∑

k=1

k · P(τ = k) =
1

m

m∑

k=1

k =
m+ 1

2

Diameter Let s and s′ be two distinct states in the grid. With the options defined above, the expected
shortest path from s to s′ is obtained if in each visited state on the way to s′, we choose an option that goes in
the direction of s′. For example, if s is the state located in the top left corner of the grid and s′ is the target, the
expected shortest path is obtained when either RIGHT or DOWN is taken in every state. With this policy, the
expected time to get m-close to s′ both horizontally and vertically is trivially bounded by D (red path on Fig. 7).
Once we are m-close to s′ (green square on Fig. 7, m = 3 on this example), we will potentially start cycling until
we reach s′. On Fig. 8, we give an example (in one dimension) of a possible path before reaching s′ once in
an m-close state (the green arrows represent the successive transitions, and m = 3 on this example). Since all
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Figure 8: Behaviour of the agent in m-close states.

options end after at most m time steps, once we are m-close to s′, we stay m-close with the chosen policy. The
expected time it takes to reach s′ once we are m-close to it is m(m+ 1)/2 both horizontally and vertically. To
prove this, we need to solve a linear system. For all i ∈ {1...m− 1}, denote by τi the time it takes to go from s
to the i-th state to the left (respectively right, up or down) when the option chosen is left (respectively right, up
or down). The value is the same in all directions by symmetry. We can express the τi as follows:

τ1 =
1

m
+

1

m
(2 + τ1) + · · ·+

1

m
(m+ τm−1)

τ2 =
1

m
× 2 +

1

m
(1 + τ1) +

1

m
(3 + τ1) + · · ·+

1

m
(m+ τm−2)

τ3 =
1

m
× 3 +

1

m
(1 + τ2) +

1

m
(2 + τ1) +

1

m
(4 + τ1) + · · ·+

1

m
(m+ τm−3)

. . .

τi =
m+ 1

2
+

1

m

i−1∑

j=1

τj +
1

m

m−i∑

j=1

τj

(29)

With probability 1/m, the next state after executing the option is 1 step to the left of s and the value of τ1 is
then 1 . With probability 1/m the next state is 2 steps to the left of s and so s′ is now located 1 step to the
right of the new state: the value of τ1 is thus 2+ τ1. With probability 1/m the next state is 3 steps to the left of
s and and so s′ is now located 2 steps to the right of the new state: the value of τ1 is thus 3+ τ2. And so on and
so forth. What we used here is basically the law of total expectations where the partition of events is the set of
all possible states reached after executing the option only once. The same thing can be done for τ2 . . . τm−1. It is
trivial to verify that the only solution of the linear system in equation 29 is: τi = m(m+ 1)/2, ∀i ∈ {1...m− 1}.
This results is rather intuitive: m corresponds to the expected number of times the option needs to be executed
to end up in the desired state s′ whereas (m+1)/2 is the expected duration at every decision step. The simplicity
of this result comes from the symmetry of the problem: every time an option is executed, we stay m-close to s′

and the probability to exactly reach s′ is always 1/m. So in this sense, we have i.i.d. Bernoulli trials where the
probability of success is 1/m. The expected time to reach s′ when we start in an m-close state both horizontally
and vertically is thus 2 ×m(m + 1)/2 = m(m + 1). Therefore, the expected time to go from s to s′ is always
bounded by D +m(m+ 1).

On Fig. 9 we illustrate what happens when the options are deterministic i.e., when they terminate after exactly
m time steps. On this example we chose m = 3. If we start from state s0, only the green states can be reached
without resorting to the restart triggered by the target state, whereas if we start from s1 only the blue states
can be reached 8 (and similarly for the white states). Let’s assume that we want to go from a green state to a
blue state. The only way to do so is to go to the target and "hope" to end up in one of the blue states after
the restart (we recall that the restart state is chosen randomly with equi-probability). The shortest path to go
from any state to the target is bounded by D and the probability to restart in a state with the desired colour
is 1/m (1/m2 in dimension 2). We can thus upper bound the diameter of the SMDP MO by the expected time
needed to go from s0 to s1 in the SMDP of Fig. 10, that is: DO ≤ D(1 + m2). This bound is tight (up to a

8Here we slightly simplified the problem. In reality, due to the truncation operated by the walls and if we assume s0
to be the leftmost state, it is possible to go from s1 to s0 in one time step by executing LEFT . But for m ≥ 3 there will
always be pairs of states that cannot be reached from each other without a restart. If s0 is the leftmost state, this is the
case for s1 and the white state adjacent to it on Fig. 9. So the proof remains valid.
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Figure 9: Behaviour of the agent with deterministic options.

s0 Target s1
E[τ ] ≤ D
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E[τ ] ≤ D

p = 1− 1
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Figure 10: Upper bound on the diameter of MO for deterministic options.

constant factor) since the average time to go from any state chosen at random with equi-probability to the target
is exactly D/2 in the 2-dimensional grid.

Optimality Since the target state is located in a corner of the grid, the shortest path to go from any state
to the target is equally long in the original MDP and the MDP with options. As a result, the optimal average
rewards are also equal (i.e., there exists an optimal policy using only options LEFT RIGHT, UP and DOWN
which consists in applying only RIGHT or DOWN ).

Asymptotic behaviour We will now analyse the behaviour of the ratio n
Tn

using results on martingales.

Theorem 3 (Martingale Strong Law of Large Numbers, [Vovk et al., 2005]). Let X1, ..., Xn be a martingale
difference sequence w.r.t. a filtration F0,F1, ...,Fn and let A1, ..., An be an increasing predictable sequence w.r.t.
the same filtration with A1 > 0 and limn→+∞ An = +∞ almost surely. If:

+∞∑

i=1

E[X2
i |Fi−1]

A2
i

< +∞ a.s.

then:

1

An

n∑

i=1

Xi −−−−−→
n→+∞

0 a.s.

Let’s take Xi = τi − τ i (where τ i = τ i(si−1, ai)) and Fi = σ (s0, a1, τ1, r1, ..., si, ai+1). The sequence (Xi)i≤1 is a
martingale difference because E[Xi] < +∞ and E[Xi|Fi−1] = 0. Since (τ(s, a, s′))s,a,s′ are sub-Exponential, all
moments are finite and it is well known from the literature that the variance is bounded by the sub-Exponential
constant σ2

τ hence: E[X2
i |Fi−1] < σ2

τ . If in addition we take Ai = i then the conditions of Theorem 3 are satisfied
and thus:

Tn

n
− Tn

n
−−−−−→
n→+∞

0 a.s.

where Tn = E[Tn]. By definition: τmaxn ≥ Tn ≥ τminn hence: ∀ǫ > 0, ∃Nǫ > 0 s.t. ∀n ≥ Nǫ :

∣∣∣∣
Tn

n
− Tn

n

∣∣∣∣ ≤ ǫ a.s. =⇒ τmin − ǫ ≤ Tn

n
− ǫ ≤ Tn

n
≤ ǫ+

Tn

n
≤ ǫ+ τmax
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and so: lim infn→+∞
Tn

n ≥ τmin and lim supn→+∞
Tn

n ≤ τmax a.s. Finally:

log{nδ }
log{Tn

δ }
=

log{nδ }
log{Tn−Tn

n + Tn

n }+ log{nδ }
≤ log{nδ }

log{Tn−Tn

n + τmin}+ log{nδ }
−−−−−→
n→+∞

1

In the general case of sub-Exponential rewards and holding times our results provide no theoretical evidence of
the advantage of introducing options due to the fact that C(M ′, n, δ) scales as

√
log(n):

lim
n→+∞

R(M,n, δ) = +∞ a.s.

but if the rewards and holding times are bounded we have:

lim sup
n→+∞

R(M,n, δ) ≤ 1√
τmin

(
1 +

Tmax

D
√
S

)
a.s.

Note that τmin is a very loose upper-bound on lim infn→+∞
Tn

n and in practice the ratio Tn

n can take much higher
values if τmax is big and many options have a high expected holding time.

Tightness of the upper bounds On Fig. 11a, we plot the expected theoretical values taken by the ratio
of the regrets according to our upper bounds (formula given in Sect. 6). On Fig. 11b however, we plot the
empirical values of the ratios in our experiments (same graph as on Fig. 3a). We can see that the curves have
similar shapes. In particular, they reach their respective minima for the same value of Tmax and the value of
these minimum is below 1 (meaning that learning with options is more efficient than with primitive actions in
this case). Moreover, the theoretical ratios are upper-bounding the empirical ones for all values of Tmax. We can
conclude that the ratio of the upper bounds is a good proxy for the true ratio in this example.
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Figure 11: (a) Theoretical ratios of the regrets with and without options for different values of Tmax; (b) Empirical
ratios of the regrets with and without options for different values of Tmax.


	Introduction
	Preliminaries
	SMDP-UCRL
	Regret Analysis
	Regret in MDPs with Options
	Illustrative Experiment
	Conclusions
	Optimal average reward in discrete and continuous SMDPs: existence and computation
	Optimality criterion
	Proof of Proposition 2
	Proof of Lemma 1

	Analysis of SMDP-UCRL (proof of Theorem 1)
	Splitting into Episodes
	Dealing with Failing Confidence Regions
	Episodes with M Mk
	Computing the final bound

	The Lower Bound (Theorem 2)
	Lower Bound for SMDPs
	Lower Bound for MDPs with options

	Distribution of the holding time and reward of a finite Markov option (Lem. 3)
	Equivalent policies in an MDP with options and the induced SMDP (Lem. 2)
	Details of the illustrative experiments

