
Exploration–Exploitation in MDPs with Options

Ronan Fruit Alessandro Lazaric
Inria Lille - SequeL Team Inria Lille - SequeL Team

Abstract

While a large body of empirical results show
that temporally-extended actions and op-
tions may significantly affect the learning per-
formance of an agent, the theoretical under-
standing of how and when options can be
beneficial in online reinforcement learning is
relatively limited. In this paper, we derive
an upper and lower bound on the regret of
a variant of UCRL using options. While we
first analyze the algorithm in the general case
of semi-Markov decision processes (SMDPs),
we show how these results can be translated
to the specific case of MDPs with options and
we illustrate simple scenarios in which the re-
gret of learning with options can be provably
much smaller than the regret suffered when
learning with primitive actions.

1 Introduction

The option framework [Sutton et al., 1999] is a simple
yet powerful model to introduce temporally-extended
actions and hierarchical structures in reinforcement
learning (RL) [Sutton and Barto, 1998]. An important
feature of this framework is that Markov decision pro-
cess (MDP) planning and learning algorithms can be
easily extended to accommodate options, thus obtain-
ing algorithms such as option value iteration and Q-
learning [Sutton et al., 1999], LSTD [Sorg and Singh,
2010], and actor-critic [Bacon and Precup, 2015].
Temporally extended actions are particularly useful
in high dimensional problems that naturally decom-
pose into a hierarchy of subtasks. For instance,
Tessler et al. [2016] recently obtained promising re-
sults by combining options and deep learning for life-
long learning in the challenging domain of Minecraft.
A large body of the literature has then focused on
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how to automatically construct options that are bene-
ficial to the learning process within a single task or
across similar tasks (see e.g., [McGovern and Barto,
2001, Menache et al., 2002, Şimşek and Barto, 2004,
Castro and Precup, 2012, Levy and Shimkin, 2011]).
An alternative approach is to design an initial set of op-
tions and optimize it during the learning process itself
(see e.g., interrupting options Mann et al. 2014 and op-
tions with exceptions Sairamesh and Ravindran 2012).
Despite the empirical evidence of the effectiveness of
most of these methods, it is well known that options
may as well worsen the performance w.r.t. learning
with primitive actions [Jong et al., 2008]. Moreover,
most of the proposed methods are heuristic in nature
and the theoretical understanding of the actual im-
pact of options on the learning performance is still
fairly limited. Notable exceptions are the recent re-
sults of Mann and Mannor [2014] and Brunskill and Li
[2014]. Nonetheless, Mann and Mannor [2014] rather
focus on a batch setting and they derive a sample
complexity analysis of approximate value iteration
with options. Furthermore, the PAC-SMDP analysis
of Brunskill and Li [2014] describes the performance in
SMDPs but it cannot be immediately translated into a
sample complexity of learning with options in MDPs.

In this paper, we consider the case where a fixed set
of options is provided and we study their impact on
the learning performance w.r.t. learning without op-
tions. In particular, we derive the first regret analy-
sis of learning with options. Relying on the fact that
using options in an MDP induces a semi-Markov deci-
sion process (SMDP), we first introduce a variant of
the UCRL algorithm [Jaksch et al., 2010] for SMDPs
and we upper- and lower-bound its regret (sections 3
and 4). While this result is of independent interest
for learning in SMDPs, its most interesting aspect is
that it can be translated into a regret bound for learn-
ing with options in MDPs and it provides a first un-
derstanding on the conditions sufficient for a set of
options to reduce the regret w.r.t. learning with prim-
itive actions (Sect. 5). Finally, we provide an illustra-
tive example where the empirical results support the
theoretical findings (Sect. 6).
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2 Preliminaries

MDPs and options. A finite MDP is a tuple
M =

{
S,A, p, r

}
where S is a finite set of states, A

is a finite set of actions, p(s′|s, a) is the probability of
transitioning from state s to state s′ when action a is
taken, r(s, a, s′) is a distribution over rewards obtained
when action a is taken in state s and the next state
is s′. A stationary deterministic policy π : S → A
maps states to actions. A (Markov) option is a tu-
ple o =

{
Io, βo, πo

}
where Io ⊂ S is the set of states

where the option can be initiated, βo : S → [0, 1] is
the probability distribution that the option ends in a
given state, and πo : S → A is the policy followed until
the option ends. Whenever the set of primitive actions
A is replaced by a set of options O, the resulting deci-
sion process is no longer an MDP but it belongs to the
family of semi-Markov decision processes (SMDP).

Proposition 1. [Sutton et al. 1999] For any MDP M
and a set of options O, the resulting decision process is
an SMDP MO =

{
SO,O, pO, rO, τO

}
, where SO ⊆ S

is the set of states where options can start and end,

SO =
(
∪o∈O Io

)⋃(
∪o∈O {s : βo(s) > 0}

)
,

O is the set of available actions, pO(s, o, s
′) is the prob-

ability of transition from s to s′ by taking the policy πo

associated to option o, i.e.,

pO(s, o, s
′) =

∞∑

k=1

p(sk = s′|s, πo)βo(s
′),

where p(sk = s′|s, πo) is the probability of reach-
ing state s′ after exactly k steps following policy πo,
rO(s, o, s

′) is the distribution of the cumulative reward
obtained by executing option o from state s until inter-
ruption at s′, and τO(s, o, s

′) is the distribution of the
holding time (i.e., number of primitive steps executed
to go from s to s′ by following πo).

Throughout the rest of the paper, we only consider an
“admissible” set of options O such that all options ter-
minate in finite time with probability 1 and in all possi-
ble terminal states there exists at least one option that
can start, i.e., ∪o∈O{s : βo(s) > 0} ⊆ ∪o∈OIo. This
also implies that the resulting SMDP MO is communi-
cating whenever the original MDP M is communicat-
ing. Finally, we notice that a stationary deterministic
policy constructed on a set of options O may result
into a non-stationary policy on the set of actions A.

Learning in SMDPs. Relying on this mapping, we
first study the exploration-exploitation trade-off in a
generic SMDP. A thorough discussion on the impli-
cations of the analysis of learning in SMDPs for the
case of learning with options in MDPs is reported

in Sect. 5. For any SMDP M =
{
S,A, p, r, τ

}
,

we denote by τ(s, a, s′) (resp. r(s, a, s′)) the ex-
pectation of τ(s, a, s′) (resp. r(s, a, s′)) and by
τ (s, a) =

∑
s′∈S

τ(s, a, s′)p(s′|s, a) (resp. r(s, a) =∑
s′∈S

r(s, a, s′)p(s′|s, a)) the expected holding time
(resp. cumulative reward) of action a from state s.
In the next proposition we define the average-reward
performance criterion and we recall the properties of
the optimal policy in SMDPs.

Proposition 2. Denote N(t) = sup
{
n ∈

N,
∑n

i=1 τi ≤ t
}

the number of decision steps that
occurred before time t. For any policy π and s ∈ S:

ρπ(s)
def
= lim sup

t→+∞

E
π

[∑N(t)
i=1 ri
t

∣∣∣∣s0 = s

]

ρπ(s)
def
= lim inf

t→+∞
E
π

[∑N(t)
i=1 ri
t

∣∣∣∣s0 = s

]
.

(1)

If M is communicating and the expected holding times
and reward are finite, there exists a stationary deter-
ministic optimal policy π∗ such that for all states s and
policies π, ρπ

∗

(s) ≥ ρπ(s) and ρπ
∗

(s) = ρπ
∗

(s) = ρ∗.

Finally, we recall the average reward optimality equa-
tion for a communicating SMDP

u∗(s) = max
a∈A

{
r(s, a)− ρ∗τ (s, a) (2)

+
∑

s′∈S

p(s′|s, a)u∗(s′)
}
,

where u∗ and ρ∗ are the bias (up to a constant) and
the gain of the optimal policy π∗.

We are now ready to consider the learning problem.
For any i ∈ N

∗, ai denotes the action taken by the
agent at the i-th decision step1 and si denotes the
state reached after ai is taken, with s0 being the
initial state. We denote by (ri(s, a, s

′))i∈N∗ (resp.
(τi(s, a, s

′))i∈N∗) a sequence of i.i.d. realizations from
distribution r(s, a, s′) (resp. τ(s, a, s′)). When the
learner explores the SMDP, it observes the sequence
(s0, . . . , si, ai+1, ri+1(si, ai+1, si+1), τi+1(si, ai+1, si+1),
. . .). The performance of a learning algorithm is mea-
sured in terms of its cumulative regret.

Definition 1. For any SMDP M , any starting state
s ∈ S, and any number of decision steps n ≥ 1, let
{τi}ni=1 be the random holding times observed along the
trajectory generated by a learning algorithm A. Then
the total regret of A is defined as

∆(M,A, s, n) =

( n∑

i=1

τi

)
ρ∗(M)−

n∑

i=1

ri. (3)

1Notice that decision steps are discrete points in time in
which an action is started, while the (possibly continuous)
holding time is determined by the distribution τ .
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We first notice that this definition reduces to the stan-
dard regret in MDPs for τi = 1 (i.e., primitive actions
always terminate in one step). The regret measures
the difference in cumulative reward obtained by the
optimal policy and the learning algorithm. While the
performance of the optimal policy is measured by its
asymptotic average reward ρ∗, the total duration after
n decision steps may vary depending on the policy. As
a result, when comparing the performance of π∗ after
n decision steps, we multiply it by the length of the tra-
jectory executed by the algorithm A. More formally,
from the definition of ρ∗ (Eq. 1) and Prop. 2 we have2

E
π∗

[N(t)∑

i=1

ri

∣∣∣s0 = s

]
∼

t→+∞
ρ∗t+ o(t).

By introducing the total duration N(t) of A we have

ρ∗t+ o(t) = ρ∗
(N(t)∑

i=1

τi

)
+ ρ∗

(
t−

N(t)∑

i=1

τi

)
+ o(t).

We observe that
(
t − ∑N(t)

i=1 τi
)
= o(t) almost surely

since
(
t−∑N(t)

i=1 τi
)
≤ τN(t)+1 and τN(t)+1 is bounded

by an almost surely finite (a.s.) random variable since
the expected holding time for all state-action pairs is
bounded by assumption. So τN(t)+1/t →

t→+∞
0 a.s. and

E
π∗

[N(t)∑

i=1

ri

∣∣∣s0 = s

]
∼

t→+∞
ρ∗
(N(t)∑

i=1

τi

)
+ o(t),

which justifies the definition of the regret.

3 SMDP-UCRL

In this section we introduce UCRL-SMDP (Fig. 1), a
variant of UCRL [Jaksch et al., 2010]. At each episode
k, the set of plausible SMDPs Mk is defined by the
current estimates of the SMDP parameters and a set of
constraints on the rewards, the holding times and the
transition probabilities derived from the confidence in-
tervals. Given Mk, extended value iteration (EVI)

finds an SMDP M̃k ∈ Mk that maximizes ρ∗(M̃k)
and the corresponding optimal policy π̃∗

k is computed.
To solve this problem, we note that it can be equiv-
alently formulated as finding the optimal policy of
an extended3 SMDP M̃+

k obtained by combining all

SMDPs in Mk: M̃+
k has the same state space and

an extended continuous action space Ã+
k . Choosing

an action a+ ∈ Ã+
k amounts to choosing an action

2In this expectation, N(t) is a r.v. depending on π∗.
3In the MDP literature, the term Bounded Parameter

MDPs (BPMDPs) [Tewari and Bartlett, 2007] is often used
for "extended" MDPs built using confidence intervals on
rewards and transition probabilities.

Input: Confidence δ ∈]0, 1[, S , A, br, σr,
bτ , στ , Rmax, τmax and τmin.
Initialization: Set i = 1, and observe initial state s0.

For episodes k = 1, 2, ... do
Initialize episode k:

1. Set the start step of episode k, ik := i
2. For all (s, a) initialize the counter for episode k,

νk(s, a) := 0 and set counter prior to episode k,

Nk(s, a) = #{ι < ik : sι = s, aι = a}

3. For s, s′, a set the accumulated rewards, duration and
transition counts prior to episode k,

Rk(s, a)=

ik−1∑

ι=1

rι1sι=s,aι=a, Tk(s, a)=

ik−1∑

ι=1

τι1sι=s,aι=a

Pk(s, a, s
′) = #{ι < ik : sι = s, aι = a, sι+1 = s′}

Compute estimates p̂k(s
′ | s, a) := Pk(s,a,s

′)
max{1,Nk(s,a)}

and

τ̂k(s, a) :=
Tk(s,a)
Nk(s,a)

and r̂k(s, a) :=
Rk(s,a)
Nk(s,a)

Compute policy π̃k:
4. Let Mk be the set of all SMDPs with states and actions

as in M , and with transition probabilities p̃, rewards
r̃, and holding time τ̃ such that for any (s, a)

|r̃ − r̂k| ≤ βr
k and Rmaxτmax ≥ r̃(s, a) ≥ 0

|τ̃ − τ̂k| ≤ βτ
k and τmax ≥ τ̃ (s, a) ≥ r̃(s, a)/Rmax, τmin

‖p̃(·)− p̂k(·)‖1 ≤ βp
k and

∑

s′∈S

p̃(s′ | s, a) = 1

5. Use extended value iteration (EVI) to find a policy π̃k

and an optimistic SMDP M̃k ∈ Mk such that:

ρ̃k := min
s

ρ(M̃k, π̃k, s) ≥ max
M′∈Mk,π,s

ρ(M ′, π, s)−Rmax√
ik

Execute policy π̃k:
6. While νk(si, π̃k(si)) < max{1, Nk(si, π̃k(si)} do

(a) Choose action ai = π̃k(si), obtain reward ri, and
observe next state si+1

(b) Update νk(si, ai) := νk(si, ai)+1 and set i = i+1

Figure 1: UCRL-SMDP

a ∈ A, a reward r̃k(s, a), a holding time τ̃k(s, a) and
a transition probability p̃k(· | s, a) in the confidence in-

tervals. When a+ is executed in M̃+
k , the probability,

the expected reward and the expected holding time of
the transition are respectively p̃k(· | s, a), r̃k(s, a) and
τ̃k(s, a). Finally, π̃∗

k is executed until the number of
samples for a state-action pair is doubled. Since the
structure is similar to UCRL’s, we focus on the ele-
ments that need to be rederived for the specific SMDP
case: the confidence intervals construction and the ex-
tended value iteration algorithm.

Confidence intervals. Unlike in MDPs, we consider
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a slightly more general scenario where cumulative re-
wards and holding times are not bounded but are sub-
exponential r.v. (see Lem. 3). As a result, the con-
fidence intervals used at step 4 are defined as follows.
For any state action pair (s, a) and for rewards, tran-
sition probabilities, and holding times we define

βr
k(s, a)=

{
σr

√
14 log(2SAik/δ)
max{1,Nk(s,a)}

, if Nk(s, a)≥ 2b2
r

σ2
r

log
( 240SAi7

k

δ

)

14br
log(2SAik/δ)

max{1,Nk(s,a)}
, otherwise

βp
k(s, a) =

√
14S log(2Aik/δ)

max{1, Nk(s, a)}
,

βτ
k (s, a)=

{
στ

√
14 log(2SAik/δ)
max{1,Nk(s,a)}

, if Nk(s, a)≥ 2b2
τ

σ2
τ

log
( 240SAi7

k

δ

)

14bτ
log(2SAik/δ)

max{1,Nk(s,a)}
, otherwise

where σr, br, στ , br are suitable constants character-
izing the sub-exponential distributions of rewards and
holding times. As a result, the empirical estimates r̂k,
τ̂k, and p̂k are ±βr

k(s, a), β
τ
k (s, a), β

p
k(s, a) away from

the true values.

Extended value iteration (EVI). We rely on a
data-transformation (also called “uniformization”) that
turns an SMDP M into an “equivalent” MDP Meq ={
S,A, peq, req

}
with same state and action spaces and

such that ∀s, s′ ∈ S, ∀a ∈ A:

req(s, a) =
r(s, a)

τ (s, a)

peq(s
′|s, a) = τ

τ (s, a)

(
p(s′|s, a)− δs,s′

)
+ δs,s′

(4)

where δs,s′ = 0 if s 6= s′ and δs,s′ = 1 otherwise, and
τ is an arbitrary non-negative real such that τ < τmin.
Meq enjoys the following equivalence property.

Proposition 3 ([Federgruen et al., 1983], Lemma 2).
If (v∗, g∗) is an optimal pair of bias and gain in Meq

then (τ−1v∗, g∗) is a solution to Eq. 2, i.e., it is an
optimal pair of bias/gain for the original SMDP M .

As a consequence of the equivalence stated in Prop. 3,
computing the optimal policy of an SMDP amounts
to computing the optimal policy of the MDP obtained
after data transformation (see App. A for more de-
tails). Thus, EVI is obtained by applying a value it-

eration scheme to an MDP M̃+
k,eq equivalent to the

extended SMDP M̃+
k . We denote the state values of

the j-th iteration by uj(s). We also use the vector
notation uj = (uj(s))s∈S . Similarly, we denote by
p̃(· | s, a) = (p̃(s′ | s, a))s′∈S the transition probabil-
ity vector of state-action pair (s, a). The optimistic
reward at episode k is fixed through the EVI itera-
tions and it is obtained as r̃j+1(s, a) = min

{
r̂k(s, a) +

βr
k(s, a);Rmaxτmax

}
, i.e., by taking the largest possible

value compatible with the confidence intervals. At iter-
ation j, the optimistic transition model is obtained as

p̃j+1(· | s, a) ∈ Argmaxp(·)∈Pk(s,a) {p⊺uj} and Pk(s, a)
is the set of probability distributions included in the
confidence interval defined by βp

k(s, a). This optimiza-
tion problem can be solved in O(S) operations using
the same algorithm as in UCRL. Finally, the optimistic
holding time depends on uj and the optimistic transi-
tion model p̃j+1 as

τ̃j+1(s, a) = min
{
τmax; max

{
τmin; τ̂k(s, a)

−sgn
[
r̃j+1(s, a)+τ

(
p̃j+1(·|s, a)⊺uj− uj(s)

)]
βτ
k (s, a)

}}
,

The min and max insure that τ̃j+1 ranges between τmin

and τmax. When the term r̃j+1(s, a)+
(
p̃j+1(·|s, a)⊺uj−

uj(s)
)

is positive (resp. negative), τ̃j+1(s, a) is set to
the minimum (resp. largest) possible value compati-
ble with its confidence intervals so as to maximize the
right-hand side of Eq. 5 below. As a result, for any
τ ∈ ]0, τmin[, EVI is applied to an MDP equivalent to

the extended SMDP M̃+
k generated over iterations as

uj+1(s) = max
a∈A

{
r̃j+1(s, a)

τ̃j+1(s, a)
(5)

+
τ

τ̃j+1(s, a)

(
p̃j+1(· | s, a)⊺uj − uj(s)

)}
+ uj(s)

with arbitrary u0. Finally, the stopping condition is

max
s∈S

{ui+1(s)−ui(s)}−min
s∈S

{ui+1(s)−ui(s)} < ǫ. (6)

We prove the following.

Lemma 1. If the stopping condition holds at iteration
i of EVI, then the greedy policy w.r.t. ui is ǫ-optimal
w.r.t. extended SMDP M̃+

k . The stopping condition is
always reached in a finite number of steps.

As a result, we can conclude that running EVI at
each episode k with an accuracy parameter ǫ =
Rmax/

√
ik guarantees that π̃k is Rmax/

√
ik-optimal

w.r.t. maxM ′∈Mk
ρ∗(M ′).

4 Regret Analysis

In this section we report upper and lower bounds on
the regret of UCRL-SMDP. We first extend the notion
of diameter to the case of SMDP as follows.

Definition 2. For any SMDP M , we define the diam-
eter D(M) by

D(M) = max
s,s′∈S

{
min
π

{
E
π
[
T (s′)|s0 = s

]}}
(7)

where T (s′) is the first time in which s′ is encountered,
i.e., T (s′) = inf

{∑n
i=1 τi : n ∈ N, sn = s′

}
.

Note that the diameter of an SMDP corresponds to an
average actual duration and not an average number of
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decision steps. However, if the SMDP is an MDP the
two definitions of diameter coincides. Before reporting
the main theoretical results about UCRL-SMDP, we
introduce a set of technical assumptions.

Assumption 1. For all s ∈ S and a ∈ A, we
assume that τmax ≥ τ (s, a) ≥ τmin > 0 and

maxs∈S,a∈A

{
r(s,a)
τ(s,a)

}
≤ Rmax with τmin, τmax, and

Rmax known to the learning algorithm. Furthermore,
we assume that the random variables (r(s, a, s′))s,a,s′

and (τ(s, a, s′))s,a,s′ are either 1) sub-Exponential
with constants (σr, br) and (στ , bτ ), or 2) bounded in
[0, RmaxTmax] and [Tmin, Tmax], with Tmin > 0. We
also assume that the constants characterizing the dis-
tributions are known to the learning agent.

We are now ready to introduce our main result.

Theorem 1. With probability of at least 1−δ, it holds
that for any initial state s ∈ S and any n > 1, the
regret of UCRL-SMDP ∆(M,A, s, n) is bounded by:

O

((
D
√
S + C(M,n, δ)

)
Rmax

√
SAn log

(n
δ

))
, (8)

where C(M,n, δ) depends on which case of Asm. 1 is
considered 4

1) sub-Exponential

C(M,n, δ) = τmax +
(σr ∨ br

Rmax
+ στ ∨ bτ

)√
log

(n
δ

)
,

2) bounded

C(M,n, δ) = Tmax + (Tmax − Tmin).

Proof. The proof (App. B) follows similar steps as
in [Jaksch et al., 2010]. Apart from adapting the con-
centration inequalities to sub-exponential r.v. and de-
riving the guarantees about EVI applied to the equiv-
alent MDP Meq (Lem. 1), one of the key aspects
of the proof is to show that the learning complex-
ity is actually determined by the diameter D(M) in
Eq. 2. As for the analysis of EVI, we rely on the
data-transformation and we show that the span of uj

(Eq. 5) can be bounded by the diameter of Meq, which
is related to the diameter of the original SMDP as
D(Meq) = D(M)/τ (Lem. 6 in App. B).

The bound. The upper bound is a direct generalization
of the result derived by Jaksch et al. [2010] for UCRL

in MDPs. In fact, whenever the SMDP reduces to an
MDP (i.e., each action takes exactly one step to exe-
cute), then n = T and the regret, the diameter, and
the bounds are the same as for UCRL. If we consider
Rmax = 1 and bounded holding times, the regret scales
as Õ(DS

√
An+Tmax

√
SAn). The most interesting as-

pect of this bound is that the extra cost of having

4We denote max{a, b} = a ∨ b.

actions with random duration is only partially addi-
tive rather than multiplicative (as it happens e.g., with
the per-step reward Rmax). This shows that errors in
estimating the holding times do not get amplified by
the diameter D and number of states S as much as it
happens for errors in reward and dynamics. This is
confirmed in the following lower bound.

Theorem 2. For any algorithm A, any inte-
gers S,A ≥ 10, any reals Tmax ≥ 3Tmin ≥ 3,
Rmax > 0, D > max{20TminlogA(S), 12Tmin}, and for
n ≥ max{D,Tmax}SA, there is an SMDP M with at
most S states, A actions, and diameter D, with holding
times in [Tmin, Tmax] and rewards in

[
0, 12RmaxTmax

]

satisfying ∀s ∈ S, ∀a ∈ As, r(s, a) ≤ Rmaxτ (s, a),
such that for any initial state s ∈ S the expected regret
of A after n decision steps is lower-bounded by:

E [∆(M,A, s, n)] = Ω
((√

D +
√
Tmax

)
Rmax

√
SAn

)

Proof. Similar to the upper bound, the proof (App. C)
is based on [Jaksch et al., 2010] but it requires to per-
turb transition probabilities and rewards at the same
time to create a family of SMDPs with different opti-
mal policies that are difficult to discriminate. The con-
tributions of the two perturbations can be made inde-
pendent. More precisely, the lower bound is obtained
by designing SMDPs where learning to distinguish be-
tween “good” and “bad” transition probabilities and
learning to distinguish between “good” and “bad” re-
wards are two independent problems, leading to two
additive terms

√
D and

√
Tmax in the lower bound.

The bound. Similar to UCRL, this lower bound reveals
a gap of

√
DS on the first term and

√
Tmax. While

closing this gap remains a challenging open question,
it is a problem beyond the scope of this paper.

In the next section, we discuss how these results can
be used to bound the regret of options in MDPs and
what are the conditions that make the regret smaller
than using UCRL on primitive actions.

5 Regret in MDPs with Options

Let M be an MDP and O a set of options and let MO

be the corresponding SMDP obtained from Prop. 1.
We index time steps (i.e., time at primitive action level)
by t and decision steps (i.e., time at option level) by
i. We denote by N(t) the total number of decision
steps that occurred before time t. Given n decision
steps, we denote by Tn =

∑n
i=1 τi the number of time

steps elapsed after the execution of the n first options
so that N(Tn) = n. Any SMDP-learning algorithm
AO applied to MO can be interpreted as a learning
algorithm A on M so that at each time step t, A selects
an action of M based on the policy associated to the
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option started at decision step N(t). We can thus
compare the performance of UCRL and UCRL-SMDP

when learning in M . We first need to relate the notion
of average reward and regret used in the analysis of
UCRL-SMDP to the original counterparts in MDPs.

Lemma 2. Let M be an MDP, O a set of options
and MO the corresponding SMDP. Let πO be any sta-
tionary policy on MO and π the equivalent policy on
M (not necessarily stationary). For any state s ∈ SO,
any learning algorithm A, and any number of decision
steps n we have ρπO (MO, s) = ρπ(M, s) and

∆(M,A, Tn) = ∆(MO,A, n) + Tn (ρ
∗(M)− ρ∗(MO)) .

The linear regret term is due to the fact that the intro-
duction of options amounts to constraining the space
of policies that can be expressed in M . As a result, in
general we have ρ∗(M) ≥ ρ∗(MO) = maxπO

ρπO (MO),
where πO is a stationary deterministic policy on MO.
Thm. 2 also guarantees that the optimal policy com-
puted in the SMDP MO (i.e., the policy maximizing
ρπO (MO, s)) is indeed the best in the subset of policies
that can be expressed in M by using the set of options
O. In order to use the regret analysis of Thm. 1, we
still need to show that Asm. 1 is verified.

Lemma 3. An MDP provided with a set of op-
tions is an SMDP where the holding times and re-
wards τ(s, o, s′) and r(s, o, s′) are distributed as sub-
exponential random variables. Moreover, the holding
time of an option is sub-Gaussian if and only if it is
almost surely bounded.

This result is based on the fact that once an option
is executed, we obtain a Markov chain with absorb-
ing states corresponding to the states with non-zero
termination probability βo(s) and the holding time is
the number of visited states before reaching a termi-
nal state. While in general this corresponds to a sub-
exponential distribution, whenever the option has a
zero probability to reach the same state twice before
terminating (i.e., there is no cycle), then the holding
times become bounded. Finally, we notice that no in-
termediate case between sub-exponential and bounded
distributions is admissible (e.g., sub-Gaussian). Since
these are the two cases considered in Thm. 1, we can
directly apply it and obtain the following corollary.

Corollary 1. For any MDP M = {S,A, p, r} with
r(s, a, s′) ∈ [0, Rmax] and a set of options O, con-
sider the resulting SMDP MO = {SO,AO, pO, rO, τO}.
Then with probability of at least 1− δ, it holds that for
any initial state s ∈ S and any n > 1, the regret of
UCRL-SMDP in the original MDP is bounded as

O
((

DO

√
SO + C(MO, n, δ)

)
RO

max

√
SOOn log

(n
δ

))

+ Tn (ρ
∗(M)− ρ∗(MO)) ,

where O is the number of options.

We can also show that the lower bound holds for MDPs
with options as well. More precisely, it is possible to
create an MDP and a set of options such that the lower
bound is slightly smaller than that of Thm. 2.

Corollary 2. Under the same assumptions as in The-
orem 2, there exists an MDP with options such that
the regret of any algorithm is lower-bounded as

Ω
((√

DO +
√
Tmax − Tmin

)
RO

max

√
SOOn

)

+ Tn (ρ
∗(M)− ρ∗(MO)) .

This shows that MDPs with options are slightly eas-
ier to learn than SMDPs. This is due to the fact
that in SMDPs resulting from MDPs with options re-
wards and holding times are strictly correlated (i.e.,
r(s, o, s′) ≤ Rmaxτ(s, o, s

′) a.s. and not just in expec-
tation for all (s, o, s′)).

We are now ready to proceed with the comparison
of the bounds on the regret of learning with options
and primitive actions. We recall that for UCRL

∆(M,UCRL, s, Tn) = Õ(DSRmax

√
ATn). We first no-

tice that5 RO
max ≤ Rmax and since SO ⊆ S we have

that SO ≤ S. Furthermore, we introduce the following
simplifying conditions: 1) ρ∗(M) = ρ∗(MO) (i.e., the
options do not prevent from learning the optimal pol-
icy), 2) O ≤ A (i.e., the number of options is not larger
than the number of primitive actions), 3) options have
bounded holding time (case 2 in Asm. 1). While in gen-
eral comparing upper bounds is potentially loose, we
notice that both upper-bounds are derived using simi-
lar techniques and thus they would be “similarly” loose
and they both have almost matching worst-case lower
bounds. Let R(M,n, δ) be the ratio between the re-
gret upper bounds of UCRL-SMDP using options O
and UCRL, then we have (up to numerical constants)

R(M,n) ≤
(
DO

√
SO + Tmax

)√
SOOn log(n/δ)

DS
√
ATn log(Tn/δ)

≤ DO

√
S + Tmax

D
√
S

√
n

Tn
,

where we used n ≤ Tn to simplify the logarithmic
terms. Since lim inf

n→+∞

Tn

n ≥ τmin, then the previous ex-

pression gives an (asymptotic) sufficient condition for
reducing the regret when using options, that is

DO

√
S + Tmax

D
√
Sτmin

≤ 1. (9)

In order to have a better grasp on the cases covered
by this condition, let DO = αD, with α ≥ 1. This cor-
responds to the case when navigating through some

5The largest per-step reward in the SMDP is defined as
RO

max ≥ maxs∈S,a∈A

{ r(s,a)
τ(s,a)

}
.
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Figure 2: Navigation problem.

states becomes more difficult with options than with
primitive actions, thus causing an increase in the di-
ameter. If options are such that Tmax ≤ D

√
S and

τmin > (1 + α)2, then it is easy to see that the condi-
tion in Eq. 9 is satisfied. This shows that even when
the introduction of options partially disrupt the struc-
ture of the original MDP (i.e., DO ≥ D), it is enough
to choose options which are long enough (but not too
much) to guarantee an improvement in the regret. No-
tice that while conditions 1) and 2) are indeed in favor
of UCRL-SMDP, SO, O, and Tmax are in general much
smaller than S, A, D

√
S (S and D are large in most of

interesting applications). Furthermore, τmin is a very
loose upper-bound on lim infn→+∞

Tn

n and in practice

the ratio Tn

n can take much larger values if τmax is large
and many options have a high expected holding time.
As a result, the set of MDPs and options on which the
regret comparison is in favor of UCRL-SMDP is much
wider than the one defined in Eq. 9. Nonetheless, as
illustrated in Lem. 3, the case of options with bounded
holding times is quite restrictive since it requires the
absence of self-loops during the execution of an option.
If we reproduce the same comparison in the general
case of sub-exponential holding times, then the ratio
between the regret upper bounds becomes

R(M,n) ≤ DO

√
S + C(M,n, δ)

D
√
S

√
n

Tn
,

where C(M,n, δ) = O(
√

log(n/δ)). As a result, as
n increases, the ratio is always greater than 1, thus
showing that in this case the regret of UCRL-SMDP

is asymptotically worse than UCRL. Whether this is
an artefact of the proof or it is an intrinsic weakness
of options, it remains an open question.

6 Illustrative Experiment

We consider the navigation problem in Fig. 2. In any
of the d2 states of the grid except the target, the four
cardinal actions are available, each of them being suc-
cessful with probability 1. If the agent hits a wall

then it stays in its current position with probability 1.
When the target state is reached, the state is reset to
any other state with uniform probability. The reward
of any transition is 0 except when the agent leaves the
target in which case it equals Rmax. The optimal pol-
icy simply takes the shortest path from any state to the
target state. The diameter of the MDP is the longest
shortest path in the grid, that is D = 2d − 2. Let m
be any non-negative integer smaller than d and in ev-
ery state but the target we define four macro-actions:
LEFT, RIGHT, UP and DOWN (blue arrows in the
figure). When LEFT is taken, primitive action left is
applied up to m times (similar for the other three op-
tions). For any state s′ which is k ≤ m steps on the
left of the starting state s, we set βo(s

′) = 1/(m−k+1)
so that the probability of the option to be interrupted
after any k ≤ m steps is 1/m. If the starting state s is
l steps close to the left border with l < m then we set
βo(s

′) = 1/(l − k + 1) for any state s′ which is k ≤ l
steps on the left. As a result, for all options started m
steps far from any wall, Tmax = m and the expected
duration is τ := τ(s, o) = (m + 1)/2, which reduces
to Tmax = l and τ = (l + 1)/2 for an option started
l < m step from the wall and moving towards it.
More precisely, all options have an expected duration
of τ(s, o) = τ in all but in md states, which is small
compared to the total number of d2 states. The SMDP
formed with this set of options preserves the number
of state-action pairs SO = S = d2 and A′ = A = 4 and
the optimal average reward ρ∗(M) = ρ∗(M ′), while it
slightly perturbs the diameter DO ≤ D+m(m+1) (see
App. F for further details). Thus, the two problems
seem to be as hard to learn. However the (asymptotic)
ratio between the regret upper bounds becomes

lim
n→∞

R(M,n) ≤ (2d− 2 +m2 +m)d+m

(2d− 2)d

(
lim

n→∞

√
n

Tn

)

≤
(
1 + 2

m2

d

)(
lim
n→∞

√
n

Tn

)
,

where we assume m, d ≥ 2. While a rigorous analy-
sis of the ratio between the number of option decision
steps n and number of primitive actions Tn is difficult,
we notice that as d increases w.r.t. m, the chance of ex-
ecuting options close to a wall decreases, since for any
option only md out of d2 states will lead to a duration
smaller than τ and thus we can conclude that n/Tn

tends to 1/τ = 2/(m + 1) as n and d grow. As a re-
sult, the ratio would reduce to (1+2m2/d)

√
2/(m+ 1)

that is smaller than 1 for a wide range of values for m
and d. Finally, the ratio is (asymptotically in d) min-
imized by m ≈

√
d, which gives R(M,n) = O(d−1/4),

thus showing that as d increases there is always an
appropriate choice of m for which learning with op-
tions becomes significantly better than learning with
primitive actions. In Fig. 3a we empirically validate
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Figure 3: (a) Ratio of the regrets with and without options for different values of Tmax; (b) Regret as a function
of Tn for a 20x20 grid; (c) Evolution of Tn/n for a 20x20 grid.

this finding by studying the ratio between the actual
regrets (and not their upper-bounds) as d and m (i.e.,
Tmax) vary, and with a fixed value of Tn that is cho-
sen big enough for every d. As expected, for a fixed
value of d, the ratio R first decreases as m increases,
reaches a minimum and starts increasing to eventually
exceed 1. As d increases, the value of the minimum de-
creases, while the optimal choice of m increases. This
behaviour matches the theory, which suggests that the
optimal choice for m increases as O(

√
d). In Fig. 3b we

report the cumulative regret and we observe that high
values of Tmax worsen the learning performances w.r.t.
learning without options (Tmax = 1, plotted in black).
Finally, Fig. 3c shows that, as n tends to infinity, Tn/n
tends to converge to (m+ 1)/2 when m ≪ d, whereas
it converges to slightly smaller values when m is close
to d because of the truncations operated by walls.

Discussion. Despite its simplicity, the most interest-
ing aspect of this example is that the improvement
on the regret is not obtained by trivially reducing the
number of state-action pairs, but it is intrinsic in the
way options change the dynamics of the exploration
process. The two key elements in designing a success-
ful set of options O is to preserve the average reward
of the optimal policy and the diameter. The former is
often a weaker condition than the latter. In this exam-
ple, we achieved both conditions by designing a set O
where the termination conditions allow any option to
end after only one step. This preserves the diameter of
the original MDP (up to an additive constant), since
the agent can still navigate at the level of granular-
ity of primitive actions. Consider a slightly different
set of options O′, where each option moves exactly
by m steps (no intermediate interruption). The num-
ber of steps to the target remains unchanged from any
state and thus we can achieve the optimal performance.
Nonetheless, having π∗ in the set of policies that can

be represented with O′ does not guarantee that the
UCRL-SMDP would be as efficient in learning the op-
timal policy as UCRL. In fact, the expected number of
steps needed to go from a state s to an adjacent state
s′ may significantly increase. Despite being only one
primitive action apart, there may be no sequence of
options that allows to reach s′ from s without relying
on the random restart triggered by the target state. A
careful analysis of this case shows that the diameter is
as large as DO′ = D(1+m2) and there exists no value
of m that satisfies Eq. 9 (see App. F).

7 Conclusions

We derived upper and lower bounds on the regret of
learning in SMDPs and we showed how these results
apply to learning with options in MDPs. Comparing
the regret bounds of UCRL-SMDP with UCRL, we
provided sufficient conditions on the set of options and
the MDP (i.e., similar diameter and average reward) to
reduce the regret w.r.t. learning with primitive actions.
To the best of our knowledge, this is the first attempt
of explaining when and how options affect the learning
performance. Nonetheless, we believe that this result
leaves space for improvements. In fact, Prop. 1 implies
that the class of SMDPs is a strict superset of MDPs
with options. This suggests that a more effective anal-
ysis could be done by leveraging the specific structure
of MDPs with options rather than moving to the more
general model of SMDPs. This may actually remove
the additional

√
log(n/δ) factor appearing because of

sub-exponential distributions in the UCRL-SMDP re-
gret. An interesting direction of research is to use this
theoretical result to provide a more explicit and quan-
titative objective function for option discovery, in the
line of what is done in [Brunskill and Li, 2014]. Finally,
it would be interesting to extend the current analysis
to more sophisticated hierarchical approaches to RL
such as MAXQ [Dietterich, 2000].
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