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Abstract

In recent years, stochastic gradient Markov Chain
Monte Carlo (SG-MCMC) methods have been
raised to process large-scale dataset by iterative
learning from small minibatches. However, the
high variance caused by naive subsampling usu-
ally slows down the convergence to the desired
posterior distribution. In this paper, we propose an
effective subsampling strategy to reduce the vari-
ance based on a failed attempt to do importance
sampling. In particular, before sampling, we parti-
tion the dataset with k-means clustering algorithm
in a preprocessing step and use the fixed clustering
throughout the entire MCMC simulation. Then
during simulation, we approximate the gradient of
log-posterior via summing the estimated gradient
of each cluster. The resulting procedure is surpris-
ingly simple without enhancing the complexity
of the original algorithm during the sampling pro-
cedure. We apply our Clustering-based Prepro-
cessing strategy on stochastic gradient Langevin
dynamics, stochastic gradient Hamilton Monte
Carlo and stochastic gradient Riemann Langevin
dynamics. Empirically, we provide thorough nu-
merical results to back up the effectiveness and
efficiency of our approach.

1 Introduction

In recent years, scalable inference methods have been in-
creasingly popular in the context of Bayesian learning.
However, each iteration of typical Markov Chain Monte
Carlo (MCMC) algorithms requires computations over the
whole dataset in question. The computational complexity
is prohibitively large in big data era. To address this is-
sue, Stochastic Gradient MCMC (SG-MCMC) was first
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proposed in Welling and Teh [2011], based on Langevin
dynamics [Rossky et al., 1978, Roberts and Stramer, 2002].
The general idea is to randomly choose a minibatch of
data samples from the large-scale dataset, and then esti-
mate the true gradient of the negative log-posterior from the
minibatch instead of the entire data samples. In addition,
Metropolis-Hastings (MH) correction step is thrown away.
Subsequently, a great number of SG-MCMC methods were
raised [Ahn et al., 2012, Patterson and Teh, 2013, Chen et al.,
2014, Ding et al., 2014, Ahn et al., 2014, Teh et al., 2014,
Chen et al., 2015a, Yi-An Ma, 2015, Chen et al., 2015b,
Li et al., 2016a,b,c, Simsekli et al., 2016, Liu et al., 2016,
Chen et al., 2016, Durmus et al., 2016]. This framework
is popular thanks to its scalability in processing large scale
datasets. However, most of these existing work in the frame-
work stick to naive subsampling (also known as uniform
sampling). The corresponding gradient estimator exhibits
high variance, leading poor mixing rate.

In this paper, we focus on reducing variance of the stochas-
tic gradient estimator, an orthogonal direction compared
with prior works that insist on naive subsampling. As a first
cut, we might resort to typical importance sampling strategy.
Unfortunately, it is shown to be infeasible in large scale
setting. We instead devise a novel scheme that partitions the
dataset with k-means algorithm in a preprocessing step and
use the fixed clustering throughout the entire MCMC simu-
lation. During MCMC simulation, each time approximating
the gradient of the negative log-posterior, we estimate the
gradient of each cluster independently and sum them up.
It is worth mentioning that the overhead of this scheme
is negligible, validated empirically. We call it Clustering-
based Preprocessing (CP) strategy. The empirical evaluation
demonstrates both effectiveness and efficiency of the idea.
The remainder of the paper is organized as follows: Sec-
tion 2 briefly introduces stochastic gradient MCMC sampler.
In Section 3, CP-SG-MCMC is derived based on a failed
attempt to do importance sampling. Section 4 demonstrates
the empirical results and Section 5 is devoted to the conclu-
sion. Proof of theoretical results, additional empirical results
and some backgrounds are provided in the supplementary
materials.
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2 Preliminaries

Suppose that N independent observations x =
{x1, . . . , xN} are given, let θ ∈ Rd be the parame-
ter vector of interest and p(θ) be the prior distribution.
Likelihood function is denoted as p(x|θ). The posterior
distribution p(θ|x) satisfies the Bayes rule as

p(θ|x) =
p(θ)p(x|θ)
p(x)

∝ p(θ)p(x|θ) = p(θ)

N∏
i=1

p(xi|θ),

(1)
where p(x) =

∫
θ
p(θ)p(x|θ)dθ, independent of θ, is called

normalizing constant. It is well-known that MCMC has been
the main workhorse of Bayesian computation since 1990s.
Recently, among various MCMC samplers, Langevin and
Hamiltonian Monte Carlo [Roberts and Stramer, 2002, Neal,
2011], also known as diffusion based sampling methods,
have become increasingly popular for efficient exploration
of the state space. They are based on Itô diffusions as

dzt = F (zt)dt+ σ(zt)dWt, (2)

where z ∈ Rn denotes model states, t the time index, Wt

represents Brownian motion, function F : Rn −→ Rn and
σ : Rn −→ Rn×m (m not necessarily equal to n) are as-
sumed to satisfy the usual Lipschitz continuity condition.
In Bayesian inference, appropriate function F and σ are
devised so that the marginal distribution of ρ(z) (the sta-
tionary distribution the Itô diffusions) is equal to the pos-
terior distribution we are interested in. For instance, in
1st-order Langevin dynamics (LD), z = θ, F = −∇θU
and σ =

√
2Id, with Id denoting the d× d identity matrix.

2nd-order Langevin dynamics correspond to z = (θ, p),

F =

(
p

−Dp−∇θU

)
and σ =

√
2D

(
0 0
0 Id

)
for some

D > 0. Here U , referred to as the potential energy,
is the unnormalized negative log-posterior satisfying that
U(θ) = − log p(θ|x) = − log p(θ)−

∑N
i=1 log p(xi|θ)+C,

where C = log p(x) is a constant. p ∈ Rd is known
as the momentum variable [Neal, 2011]. For ease of ex-
position, we take Metropolis-adjusted Langevin algorithm
(MALA) [Rossky et al., 1978, Roberts and Stramer, 2002]
as an example, which is based on Langevin dynamics. In
MALA, the update of parameter can be described as

θt =θt−1 +
ε

2

[
∇ log p(θt−1) +

N∑
i=1

∇ log p(xi|θt−1)
]

+ ηt, where ηt ∼ N (0, εId),
(3)

along with an MH correction. Here ε represents the step-size,
and we write ∇ log p(x|θ) , ∇θ log p(x|θ) for notational
convenience. In addition, each sampling requires travers-
ing the entire dataset due to the computation of both the
gradient of log-posterior and acceptance probability in MH
correction step. Hence it is computationally expensive in

the context of large-scale inference. To tackle this prob-
lem, stochastic gradient Langevin dynamics (SGLD) was
raised [Welling and Teh, 2011]. SGLD simply approximates
the true gradient of the negative log-posterior over the whole
dataset using the gradient computed on a subset of the en-
tire data and throw away the MH correction step. Then the
parameter is updated as

θt =θt−1 +
εt
2

[
∇ log p(θt−1) +

N

n

n∑
i=1

∇ log p(xti |θt−1)
]

+ ηt, where ηt ∼ N (0, εtId),
(4)

without MH correction. In the t-th iteration, a subset of n
(n � N ) data samples {xt1 , xt2 , . . . , xtn} are randomly
drawn from the whole dataset. To ensure the convergence to
the desired distribution without an MH correction procedure,
the sequence of step-size {ε1, ε2, . . .} is required to satisfy
the following property

∞∑
i=1

εt =∞,
∞∑
i=1

ε2t <∞. (5)

It can be proved that over multiple iterations the noise
caused by the naive subsampling can be averaged out under
certain assumptions [Teh et al., 2014, Chen et al., 2015a,
Vollmer et al., 2015]. In recent years, numerous extensions
of SGLD have been developed [Ahn et al., 2012, Patterson
and Teh, 2013, Chen et al., 2014, Ding et al., 2014, Ahn
et al., 2014, Teh et al., 2014, Chen et al., 2015a, Yi-An Ma,
2015, Chen et al., 2015b, Li et al., 2016a,b,c, Simsekli et al.,
2016, Liu et al., 2016, Chen et al., 2016, Durmus et al.,
2016], which are coined under the term Stochastic Gradient
MCMC (SG-MCMC). However, they are based on naive
subsampling, thus suffer from poor mixing rates when the
variance of the gradient estimator is high. To handle the
issue, we focus on reducing this variance.

3 Methodology

In naive subsampling, each data sample is treated equally
and assigned the same sampling probability. First, we con-
sider to employ importance sampling to cut down the vari-
ance. Unfortunately, we find that importance sampling strat-
egy does not work here owing to the computational cost. To
alleviate the computational burden of importance sampling,
we are inspired by stratified sampling [Liu, 2008, Zhao
and Zhang, 2014a] and explore the possibility of marrying
it with SG-MCMC. Accordingly, the proposed method is
referred to as Clustering-based Preprocessing Stochastic
Gradient MCMC (CPSG-MCMC) approach. In particular,
clustering precedure is performed to the data samples only
once before simulation. During the sampling procedure, it
is surprisingly easy to compute the new gradient estimator
(simply merging the estimated gradient of each cluster) and
would not bring extra overhead. Moreover, it is compati-
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ble with almost all the existing stochastic gradient MCMC
samplers. We also investigate its convergence properties.

3.1 Importance Sampling

In both Monte Carlo literature [Liu, 2008, Robert
and Casella, 2013] and stochastic optimization commu-
nity [Wang et al., 2013, Zhao and Zhang, 2014b, Loshchilov
and Hutter, 2015, Bouchard et al., 2015], variance reduc-
tion is a hot topic. Among all the variance reduction tech-
niques [Liu, 2008], importance sampling (IS) is a popular
choice. In particular, we restrict our attention to the mini-
batch with size 1. It is simple to generalize this case into
any mini-batch size n (n ≤ N ). Given the i-th data sample
with a sampling probability pi ( the corresponding weight is
1
pi

), we have
∑N
i=1 pi = 1 because the mini-batch size is 1.

The estimated noisy gradient of the negative log-posterior
can be represented as

∇Û(θ) = −(pi)
−1∇ log p(xi|θ)−∇ log p(θ), (6)

where i is the index of the selected data sample. Now we
demonstrate that this is an unbiased estimator of the true
gradient of the negative log-posterior .

Lemma 3.1. The expectation of estimated gradient
∇Û(θ) governed in Equation (6) is equal to ∇U(θ) =

−
∑N
i=1∇ log p(xi|θ) − ∇ log p(θ), the true gradient of

negative log-posterior at θ for any θ. That is, E(∇Û(θ)) =
∇U(θ).

This result can be easily generalized into any mini-batch
size n ≤ N . In Equation (6), ∇ log p(θ), the gradient of
log-prior, is deterministic. Hence the variance reduction
(minimization) problem is formulated as

arg min

∀i∈{1,2,...,N}, pi∈(0,1);
N∑

i=1
pi=1

V((pi)
−1∇ log p(xi|θ)),

(7)
where V(·) represents the variance in this paper. The fol-
lowing lemma provides the optimal solution to the variance
minimization problem.

Lemma 3.2. The optimum of Problem (7) is

pi =
‖∇ log p(xi|θ)‖
N∑
j=1

‖∇ log p(xj |θ)‖
, for i = 1, 2, . . . , N,

(8)

where ‖ · ‖ represents the `2 norm for vector in this paper.

Though the optimum of Problem (7) can be found, the re-
sulting algorithm is not practical because the sampling prob-
abilities {pi}Ni=1 depend on θ, which means that in each
iteration, we need to calculate {pi}Ni=1. From Equation (8),
we know that calculating {pi}Ni=1 requires traversal over all
the data samples and for each data sample xi the gradient of
log-likelihood ∇ log p(xi|θ) needs to be evaluated, which

goes back to the original point (the complexity is equal to
the Metropolis-adjusted Langevin algorithm described in
Equation (3)). Thus, importance sampling is impractical in
this scenario and we resort to an approximate solution to the
variance reduction problem.

3.2 Clustering-based Preprocessing SG-MCMC

Though causing high variance, uniform sampling (naive
sub-sampling) is the most efficient sampling method since
it doesn’t bring any extra overhead in computation. In con-
trast, importance sampling strategy, though computationally
intensive, can significantly cut down the variance. The phi-
losophy is: there is no free lunch. Naturally, we seek a
tradeoff between these two schemes.

Comparing these two strategies more carefully, we observe
that when the sampling probability of each sample is equal
to 1

N , the importance sampling reduces to uniform sam-
pling. That is to say, uniform sampling assigns all samples
the same weight, while importance sampling assigns each
samples a specific weight.

Can we make a compromise here? We give a positive answer.
Borrowing the idea from stratified sampling [Liu, 2008,
Zhao and Zhang, 2014a], a natural proposal is to assign the
same weight to “similar” points. The whole dataset can be
divided into weighted groups via certain clustering method.
Within a group the samples are drawn randomly. Both
uniform and importance sampling can be seen as special
cases of this method.

Formally speaking, we separate 1, . . . , N into k clusters
C1, C2, . . . , Ck (e.g., l ∈ Ci means xl in the i-th cluster
Ci). The cardinality of Ci is denoted by ni. That is, for
∀ i, j ∈ {1, 2, . . . , k}, we have

Ci ⊂ {1, 2, . . . , N}, ∪ki=1Ci = {1, 2, . . . , N},
|Ci| = ni, Ci ∩ Cj = ∅ for ∀ i 6= j.

(9)

Given these k clusters, we will independently sample k
subsets B1, . . . , Bk with fixed sizes from C1, . . . , Ck, re-
spectively. We denote the cardinality of Bi as bi, which can
be seen as the weight for the cluster Ci. The noisy gradient
can be represented as

∇Ū(θ) = −
k∑
i=1

ni
bi

∑
j∈Bi,
|Bi|=bi

∇ log p(xj |θ)−∇ log p(θ).

(10)
Now we show that this is an unbiased estimator for the true
gradient∇U(θ) for any C1, . . . , Ck satisfying the condition
described in Equation (9).

Lemma 3.3. The stochastic gradient described in Equa-
tion (10) is equal to the true gradient of negative log-
posterior ∇U(θ) in expectation for any θ. That is,
E[∇Ū(θ)] = ∇U(θ).
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Now we want to minimize the variance of ∇Ū(θ) via
choosing proper clusters C1, . . . , Ck and the correspond-
ing weights b1, . . . , bk, which is reduced to the following
optimization problem:

arg min
C1,...,Ck;b1,...,bk

V(∇Ū(θ)|C1, C2, . . . , Ck, b1, b2, . . . , bk),

(11)
where C1, . . . , Ck are defined in Equation (9), b1, . . . , bk ∈
N+, satisfy that

∑k
i=1 bi = b. The mini-batch size b and the

number of clusters k are prespecified.
Lemma 3.4. The variance of estimated gradient at θ, de-
noted V(∇Ū(θ)|C1, C2, . . . , Ck, b1, b2, . . . , bk), can be fur-
ther simplified to

k∑
i=1

ni
bi

∑
j∈Ci

V[(∇ log p(xj |θ))]

=
k∑
i=1

ni
bi

∑
j∈Ci

|Ci|=ni

‖∇ log p(xj |θ)−
1

ni

∑
l∈Ci

∇ log p(xl|θ)‖2.

The simplified formulation is similar to a dynamically
weighted k-means problem, where the weights of gradi-
ents in a cluster are the same and optimized with the clusters
simultaneously. However, this clustering method is still
based on the calculation of the gradient over the whole
dataset and still θ-dependent. That means in each iteration,
clustering procedure is required to be performed, which is
computationally costly. To tackle this issue, we attempt
to reformulate this problem. First, we state the following
assumption.
Assumption 3.1. The gradient of log-likelihood function,
∇ log p(x|θ), is L-Lipschitz in x for fixed θ, where L > 0.
That is, if for all θ and all x1, x2 ∈ Rd, we have

‖∇ log p(x1|θ)−∇ log p(x2|θ)‖ ≤ L‖x1 − x2‖,

where ‖ · ‖ represents the `2 norm for vector.

For canonical sampling, it is a mild assumption. Under this
assumption, we try to obtain a surrogate function, which is
an upper bound to the objective function in Problem (11)
and easy to minimize.
Theorem 3.1. Suppose Assumption 3.1 holds. Then the
variance of estimated gradient can be upper-bounded as

V(∇Ū(θ)|C1, C2, . . . , Ck, b1, b2, . . . , bk)

=

k∑
i=1

ni
bi

∑
j∈Ci,|Ci|=ni

V(∇ log p(xj |θ))

≤ L2
k∑
i=1

ni
bi

∑
j∈Ci,|Ci|=ni

‖xj − µi‖2,

(12)

where µi =
∑

j∈Ci,|Ci|=ni

xj/ni represents the center of the

cluster Ci, the first equality follows from the conclusion of
Lemma 3.4.

Strikingly, the resulting upper bound in RHS of Equa-
tion (12) is θ-independent, which allows us to solve it once
and for all. Therefore, instead of solving Problem (11)
directly, we take its upper bound as a surrogation. By mini-
mizing the surrogation, we have an approximate solution to
Problem (11). The minimization of the surrogate derived in
Equation (12) lead to the following optimization problem:

arg min
C1,C2,...,Ck,b1,b2,...,bk

k∑
i=1

ni
bi

∑
j∈Ci,|Ci|=ni

‖xj − µi‖2,

(13)
where µi is defined in Theorem 3.1. The clusters
C1, . . . , Ck are obtained by standard k-means algorithm.
Then the weights b1, . . . , bk can be obtained as follows.

Theorem 3.2. For optimization problem described in Equa-
tion (13), given the clusters C1, . . . , Ck, the solutions to the
weights b1, . . . , bk are

bi =
bni
√
vi

k∑
j=1

nj
√
vj

,
(14)

where vi = 1
ni

∑
j∈Ci

‖xj − 1
ni

∑
l∈Ci

xl‖2 = V(Ci). b is the

size of the mini-batch satisfying that b =
k∑
i=1

bi. Note that

bi represents the number of samples drawn from the cluster
Ci and is usually fine-tuned to integer in practice. Both b
and k are prespecified.

To conclude, we take the upper bound of the original vari-
ance (Problem (11)) as a surrogate. Then based on the
minimization of the surrogate, we have an approximate
solution to it. The detailed algorithm is presented in Algo-
rithm 1. Clustering-based preprocessing step is performed
once before MCMC simulation. Then during iterations,
each time estimating gradient of the negative log-posterior,
we approximate the gradient for each cluster in parallel
(independently) and simply sum them up, as described in
Equation (10). SGLD is taken as an instance here and CP
strategy can be easily applied to all the stochastic gradient
MCMC algorithms, say, stochastic gradient Hamiltonian
Monte Carlo (SGHMC) [Chen et al., 2014], stochastic gra-
dient Nose-Hoover thermostat (SGNHT) [Ding et al., 2014].
Furthermore, we only consider the fixed stepsize in this pa-
per rather than annealed stepsize described in Equation (5),
in both theoretical analysis and empirical evaluation.

3.3 K-means Algorithm and its scalability

Now we discuss more about k-means algorithm. Given a set
of observations x1, . . . , xN , where each observation is a d-
dimensional real vector, k-means clustering aims to partition
theN observations into k (≤ N ) sets C = {C1, . . . , Ck} so
as to minimize the Within-Cluster Sum of Squares (WCSS),
i.e., sum of distance functions of each point in the cluster
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Algorithm 1 CP-SGLD

Input: Minibatch size b, Cluster number k, sequence of
step size {εt}, number of burn-in period p, initial value
of parameter θ0.

Output: θp+1, θp+2, . . .,
1: Employ k-means algorithm to clustering the data sam-

ples into C1, C2, . . . , Ck, and compute corresponding
weights b1, . . . , bk via Equation (14).

2: for t = 1, 2, . . . do
3: Bj = φ for all j ∈ {1, . . . , k}.
4: for j = 1 : k do
5: for r = 1 : bj do
6: Draw ir ∈ Cj without repetition, add into Bj .
7: end for
8: Compute the gradient for cluster j.
9: end for

10: Estimate∇Ū(θt−1) using Equation (10).
11: Draw the t-th sample using θt = θt−1 −

εt
2 ∇Ū(θt−1) + ηt, where ηt ∼ N (0, εtId).

12: end for

to the k center. Planar k-means is proved to be an NP-hard
problem [Mahajan et al., 2009]. Additionally, the algorithm
scales badly in dimension of features and data number. To
address these issues, in recent years, many variants have
been developed to scale up k-means, say, parallel computa-
tion utilized in Balcan et al. [2013], random projection used
in Boutsidis et al. [2010], Cohen et al. [2015]. Moreover, in
Section 4.1, we conduct a series of experiment to show that
the objective function will be significantly reduced within
few iterations. Accordingly, we design a early termination
strategy. The effectiveness of this strategy is validated em-
pirically in Section 4.1.

3.4 Convergence Analysis

In this section, we provide the theoretical analysis of the
proposed CP-SG-MCMC algorithm, which are based on the
framework of Teh et al. [2014], Chen et al. [2015a]. For
ease of exposition, we first define some notations and make
some mild assumptions, following Chen et al. [2015a]. In
Bayesian inference, the posterior average that we are inter-
ested in is defined as: φ̄ ,

∫
θ
φ(θ)p(θ|x)dθ for certain test

function φ(θ) of interest, which is assumed to be smooth.
This integration is computationally intractable in general
cases. Thus, it is common to approximate it using the sam-
ple average φ̂T = 1

T

∑T
l=1 φ(θl), where {θ1, . . . , θT } are

samples generated by certain sampling method like MCMC.
The precision of the true posterior average and its approxi-
mation is characterized by the expected difference between
φ̄ and φ̂T . As shown in Chen et al. [2015a], we require
certain assumptions on φ. To show these assumptions, we
define a functional ψ that solves the following Poission

equation:
Lψ(θl) = φ(θl)− φ̄, (15)

where L is the generator of the diffusion (2), defined for
any compactly supported twice differentiable function f :
Rn −→ R, such that,

Lf(zt) , lim
h−→0+

E[f(zt+h)]− f(zt)

h

= (F (zt) · ∇+
1

2
(σ(zt)σ(zt)

T ) : ∇∇T )f(zt)

(16)
where z · y = zT y, X : Y , trace(XTY ), h −→ 0+ rep-
resents h approaches to zero along the positive real axis.
Correspondingly, we denote the corresponding generators
with stochastic gradient ∇Ū(θl) in the l-th iteration as L̃l.
Summing over l = 1, . . . , T on Equation (15), this is equiv-
alent to 1

T

∑T
l=1 Lψ(θl) = φ̂T − φ̄. The solution functional

ψ(θl) characterizes the difference between φ(θl) and the
posterior average φ̄ for every θl. We assume that

• the corresponding SDE1 of CP-SG-MCMC to be either
elliptic or hypoelliptic. The ellipticity/hypoellipticity
describes whether the Brownian motion is able to
spread over the whole parameter space.

• ψ and its up to 3rd-order derivatives,Dkψ, are bounded
by a function V , i.e., ‖Dkψ‖ ≤ CkVpk for k =
(0, 1, 2, 3), Ck, pk > 0. Furthermore, the expectation
of V on {θl} is bounded: supl EVp(θl) < ∞, and V
is smooth such that sups∈(0,1) Vp(sX + (1− s)Y ) ≤
C(Vp(X)+Vp(Y )),∀X,Y, p ≤ max{2pk} for some
C > 0.

Regarding to the numerical integrator, we focus on the 1-
st order integrator, like forward-Euler integrator, which is
commonly used, e.g., in Equation (3). Furthermore, the step-
size, denoted h, is fixed during iterative learning. Now we
investigate the convergence properties for CP-SG-MCMC
algorithm in terms of the bias and mean square error (MSE).

Theorem 3.3. Under the above assumptions, after T it-
erations, the bias of SG-MCMC algorithm is bounded as:

|Eφ̂T − φ̄| = O(
1

Th
+

∑
l ‖E∆Vl‖
T

+ h)

= O(
1

Th
+ h),

(17)

where ∆Vl , L − L̃l. The second equality follows from
the fact that the gradient estimator used in CP-SG-MCMC
algorithm is unbiased, as described in Lemma 3.3.

Remark. This results can be seen as a corollary of Theo-
rem 2 in Chen et al. [2015a].

1stochastic differential equation
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dataset class training/testing size feature dim
usps 10 7,291/2,007 256

pendigits 10 7,494/3,498 16
covtype.binary 2 523,124/57,888 54

mnist 10 60,000/10,000 784
cifar 10 50,000/10,000 1024

Table 1: Bayesian Logistic Regression and Bayesian Neural
Network: the datasets

Theorem 3.4. Under the above assumptions, the MSE of
CP-SG-MCMC after T iteration is bounded, for some con-
stant D1 > 0 independent of {T, h}, as:

E(φ̂T − φ̄)2 ≤ D1(
1

Th
+

∑
l E‖∆Vl‖2

T 2
+ h2). (18)

.

Remark. Theorem 3.4 shares a similar form as Theorem
3 in Chen et al. [2015a], but ∆Vl has different meanings.
E‖∆Vl‖2 is approximately proportional to the variance of
noisy gradient [Chen et al., 2015a]. If it is furtherly assumed
that the variance is bounded, we have that

∑
l E‖∆Vl‖2
T 2 =

O( 1
T ). Compared with conventional SG-MCMC, E‖∆Vl‖2,

is reduced owing to CP strategy and it would accelerate the
convergence. Additionally, in the case where the variance
is large enough and dominate the other terms in RHS of
Equation (18), it will improved the constant and enjoys the
same convergence rate (O( 1

T )) with SG-MCMC algorithm
in terms of MSE.

4 Applications and Evaluations

In this section, we conduct applications of our CP strat-
egy with empirical evaluations. In particular, we apply
our CP strategy to stochastic gradient Langevin dynamics
(SGLD) [Welling and Teh, 2011], stochastic gradient Hamil-
ton Monte Carlo (SGHMC) [Chen et al., 2014] and stochas-
tic gradient Riemann Langevin dynamics (SGRLD) [Patter-
son and Teh, 2013], and evaluate them on Bayesian logistic
regression, Bayesian neural network and online latent dirich-
let allocation, respectively. The original approaches (SGLD,
SGHMC and SGRLD) are regarded as baseline methods,
which are based on uniform sampling.

In this paper, as suggested by Chen et al. [2015a], Mandt
et al. [2016], we adopt fixed learning rate for all CP-SG-
MCMC and SG-MCMC algorithms instead of annealed
stepsizes described in Equation (5) . It seems clear that the
learning rate interacts in a nontrivial way with the variance
of the gradient estimates. Thus we optimize the learning
rate for each method. Moreover, for each task, we conduct
5 independent trials and report the average results (includ-
ing figures). Before describing the empirical effect of our
algorithm, we briefly introduce some evaluating metrics
first:
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Figure 1: Bayesian logistic regression. Results on MNIST
and covtype are reported in Appendix. Note that when
k = 1, CP-SGLD reduces to SGLD.

(1) Autocorrelation is the correlation of sample sequence
with itself at different points in time. Informally, it is the
similarity between observations as a function of the time lag
between them. ρk denotes the autocorrelation at lag k.

(2) Effective sample size (ESS) is the common measure-
ment, which summaries the amount of autocorrelation
across different lags over all dimensions, defined as ESS =

n
1+2

∑m
k=1 ρk

, where n is number of samples generated by
sampling method.

4.1 Bayesian Logistic Regression: Applying to
stochastic gradient Langevin dynamics

We apply our CP strategy to SGLD [Welling and Teh, 2011]
and evaluate it on the Bayesian multiclass logistic regres-
sion model. The experiments are conducted on a num-
ber of benchmark datasets. All of these datasets can be
downloaded from the LIBSVM website2. Details about
these datasets can be found in Table 1. They are chosen
to cover various sizes of datasets. Let x ∈ Rd be a vec-
tor of feature values and y = [y1, . . . , yK ]T ∈ RK be a
K-dimensional 0/1 valued vector, where K is the num-
ber of classes. There exists a k ∈ {1, . . . ,K} such that
yk = 1 and other coordinates are 0. Multiclass logistic
regression is a conditional probability model of the form
p(yk = 1|x,B) =

exp(βT
k x)∑K

j=1 exp(βT
j x)

parametrized by the ma-

trix B = [β1, β2, . . . , βK ] ∈ Rd×K . Each column of B
corresponds to one class. The Gaussian prior is used, en-
couraging all the elements of B near 0. In the following
experiment, for fair comparison, the size of minibatch is set
to 100, fixed for each dataset.

2http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/
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dataset method k-means/burn-in time total runtime
∑∞

i=1 |ρk| ESS ESS per second test error

usps SGLD -/9.53 45.98 5.2 351.40 7.63 0.2112
CP-SGLD 0.97/4.53 47.0 3.5 562.50 11.96 0.2038

pendigits SGLD -/3.53 14.3 4.8 216.86 15.16 0.2287
CP-SGLD 0.12/1.87 14.5 3.2 312.5 21.51 0.2196

covtype.binary SGLD -/18.9 115 5.7 305.6 2.65 0.2801
CP-SGLD 9.7/12.3 124 4.7 353.6 2.84 0.2726

mnist SGLD -/25.4 153 6.9 256.0 1.67 0.2403
CP-SGLD 15.7/16.4 168 6.6 316.4 1.94 0.2153

Table 2: Performance of Bayesian logistic regression. All the results have been averaged out after 5 different runs.
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Figure 2: Bayesian logistic regression. Results on mnist
and covtype are reported in Appendix. It is shown that
early termination strategy in k-means procedure would not
degrade the performance. In this paper, the units of wall-
clock time are all second.
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Figure 3: Bayesian Neural Network

empirical effect of number of clusters

Obviously, the number of clusters k plays a key role in
effect of our CP based algorithm. Here, we investigate
the relationship between performance of CP-SG-MCMC
algorithm and number of clusters. To do this, we run CP-
SGLD algorithm with different number of clusters. The
other settings, like mini-batch size, are all fixed. Both log-
posterior3 and testing error as a function of wall-clock time
are recorded in Figure 1 for different number of clusters.
We find that it would be better to increase the number of
clusters k. Naturally, too large k is not feasible owing to the
limitation of minibatch size. It is easy to find a reasonable
k. We set k to 10 for following experiment.

k-means algorithm: terminate before convergence

Then we study the efficiency of k-means algorithm. Vanilla
k-means algorithm need quite a few iterations to converge
to the optimum. However, as shown in (a), (d) of Figure 2
and some literature about k-means [Cohen et al., 2015], we
know that the result is close to the optimum with only a
few iterations. Then, we attempt to terminate before conver-
gence of k-means algorithm. That is, we use the clustering
result after a small number of iterations of k-means algo-
rithm for our gradient estimator and sampling procedure.
We name this strategy “early termination”.

To validate the effectiveness of this idea, for a given k-
means procedure, we use the clustering result in different
epochs (early, middle and late) to perform the sampling
procedure. The results are shown in Figure 2. We find that
the gap of results is negligible and the effect is desirable
after performing k-means algorithm with a small number
of iterations. Thus the preprocessing time will not bring
too heavy computational burden as expected. This strategy
is used throughout the experiment. From the above two
parts, we find that k-means algorithm is robust and efficient.
Then we provide an elaborate comparison of SGLD and
CP-SGLD (using early termination and a reasonable k) in
Table 2. We observe that CP-SGLD converges faster and
achieves a significantly smaller and stable test error than
SGLD on almost all datasets. Worth to note that thanks

3Here, log-posterior corresponds to the log of the unnormalized
posterior, i.e., log p(θ, x) = log p(θ) + log p(x|θ).
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Figure 4: Online LDA

to the early termination of k-means algorithms, the time
cost by k-means is negligible compared with cost of the
sampling procedure.

4.2 Bayesian Neural Network: Applying to stochastic
gradient Hamilton Monte Carlo

Then we adapt our CP strategy to SGHMC [Chen et al.,
2014] and then compare CP-SGHMC and SGHMC on
Bayesian neural network model. The datasets we use are
MNIST and CIFAR-104, both of which are standard datasets
for deep neural network studies and described in Table 1.
We train the neural network with one fully-connected hidden
layer and 10 softmax output nodes. Sigmoid activation is
used. We choose a zero-mean Gaussian prior for weight pa-
rameter of neural network. The numbers of nodes in hidden
layer are 100 and 300 for MNIST and CIFAR-10, respec-
tively. The sizes of minibatch and numbers of clusters are
set to 200 and 20 respectively for both MNIST and CIFAR-
10. Note that for fair comparison, SGHMC and CP-SGHMC
adopt the same mini-batch size. Additionally, we perform
5-fold cross validation to select the best hyperparameter.
In both SGHMC and CP-SGHMC, the MH correction step
is ignored, following Chen et al. [2014]. Since our CP
strategy does not cause additional overhead in computation
and the weight parameter lies in high dimension space, the
main computational bottleneck is the gradient evaluation,
shared by both methods. Thus the two methods have almost
the same computational complexity per iteration. For both
methods, the test errors of different methods as a function of
running time are provided in Figure 3, from which we can
see that under the same setting, CP-SGHMC outperforms
SGHMC in efficiency, effectiveness and stability owing to
the reduction in variance.

4.3 Online Latent Dirichlet Allocation: Applying to
stochastic gradient Riemann Langevin dynamics

Finally, we apply CP strategy to SGRLD [Patterson and
Teh, 2013] and verify the effectiveness of the resulting
CP-SGRLD on online Latent Dirichlet Allocation [Hoff-
man et al., 2010, Blei et al., 2003] tasks on a bunch of
corpus. The datasets contain the ICML corpus, NIPS cor-
pus, and Wikipedia corpus. Concretely, NIPS corpus is

4https://www.cs.toronto.edu/ kriz/cifar.html

composed of a collection of NIPS papers from 2006-2015
and include 3073 documents while ICML corpus contains a
collection of ICML papers from 2009-2015 and 1594 docu-
ments. Wikipedia corpus is much larger, contains 150, 000
documents from Wikipedia. More details about online LDA
is described in Appendix. Naturally, the baseline method
is SGRLD [Patterson and Teh, 2013], employing uniform
sampling when approximating the gradient of log-posterior.
The size of mini-batch is set to 50, 50 and 100 for ICML,
NIPS, Wikipedia corpus, respectively. For CP-SGRLD, the
number of clusters k is set to 5 for ICML and NIPS cor-
pus and 15 for Wikipedia corpus. The other settings follow
along Patterson and Teh [2013]. The metric used here is per-
plexity, the exponentiated cross entropy between the trained
model probability distribution and the empirical distribution
of the test data. For both approaches, we report average
results of 5 random runs. The average runtime for the dif-
ferent methods are almost similar since the computation of
stochastic gradient dominates in the computational time and
CP strategy don’t cause extra overhead. For both SGRLD
and CP-SGRLD, the perplexities as a function of iteration
number are reported in Figure 4, demonstrating that our
CP-SGRLD is superior to SGRLD on this task.

Remark Since the learning rate is optimized for each
methods, we always find that the hand-tuning optimized
learning rates of CP-SG-MCMC methods are usually larger
than that of vanilla SG-MCMC algorithms. Thus we would
learn something from this: perhaps the variance reduction
allows larger learning rates!

5 Conclusion

In this paper, we focus on reducing the variance of gra-
dient estimator in SG-MCMC, an orthogonal direction of
stochastic gradient MCMC samplers with previous works.
Inspired by both importance sampling and stratified sam-
pling, we have devised a novel algorithm referred to as
clustering-based preprocessing stochastic gradient MCMC
(CPSG-MCMC) method. It only requires precalculating
the cluster of the observation instances before sampling,
so no extra overhead is taken during sampling procedure.
Moreover, it is compatible with all stochastic MCMC sam-
plers and parallel computation. Experiments on several real
datasets have been conducted to verify the effectiveness and
stability of our approach.
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Appendix

Additional Empirical Results

5.1 Details about online LDA

In LDA, each topic is associated with a distribution over
words, with βkw the probability of word w under topic k.
Every document is related to a mixture of topic, with π(d)

k

the probability of topic k of document d. Documents are
generated by first selecting a topic z(d)

j ∼ π(d) for the j-th
word and then drawing the specific word from the topic as
x

(d)
j ∼ βzdj , where π(d) and βk are given Dirichlet priors.

Background

In this section, we will introduce related background, in-
cluding importance sampling and stratified sampling.

Variance reduction is commonly used in Monte Carlo com-
putationsLiu [2008], Robert and Casella [2013] and contains
a bunch of classical methods. In this paper, we restrict our
attention on two highly-related variance reduction meth-
ods, importance sampling and stratified sampling. These
two methods can also be applied in stochastic optimization
problemZhao and Zhang [2014a,b].

Importance Sampling

Importance sampling are derived from the Monte Carlo
computation [Liu, 2008]. Suppose we are interested in the
quantity as follows:

Q =

∫
X

h(x)π(x)dx = Eπ[h(x)] (19)

where π(x) is a probability distribution. The vanilla Monte
Carlo is to draw m random samples from π(x) and simply
compute the average h(x). However, when the π(x) is
difficult to sample, a trial distribution g(x) is defined, which
is easy to sample. The importance weight is defined as
w(x) = π(x)

g(x) . Then draw from g(x), compute the weighted
average w(x)h(x). It is easy to verify that the estimated
quantity equal to the desired quantity in expectation.

In this paper, the space X contain N points, and the π(x)
equals to uniform distribution [ 1

N , . . . ,
1
N ]. Other quantity

can also be extended into discrete case similarly.

Stratified Sampling

Stratified sampling [Liu, 2008] can be viewed as a spe-
cial importance sampling method with its trial density g(x)
constructed as a piecewise constant function. Suppose we
wish to evaluate the quantity

∫
X
f(x)dx. If possible, we

want to break the region X into the union of k disjoint
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Figure 5: Performance on Bayesian logistic regression on
MNIST and covtype. Note that when k = 1, CP-SGLD
reduces to SGLD.

subregions, D1, . . . , Dk, so that within each subregion, the
function f(x) is relatively homegeneous(close to be a con-
stant). Then we perform random sampling in each subregion
Di and obtain the estimation of each subregional integral∫
Di
f(x)dx with a small variance. The integral over X can

be approximated by the sum of these subregional integration.
It can be easily proved that the new estimator is an unbiased
estimator as well as lower variance.

In this paper, each subregion represents a cluster in discrete
scenario. Stratified sampling provides an approximation
for the optimal trial distribution π(x), reduces the total
variance by cluster similar x in a subregion. Among the
three methods—importance sampling, stratified sampling
and uniform sampling, Importance sampling provides esti-
mator with least variance while uniform sampling largest.
In contrast, uniform sampling is most efficient while impor-
tance sampling most cumbersome. The moral is this: there
is no free lunch. And this philosophy will be used in this
paper. The details will be shown in the next section.

Proof

In this section, we provide elaborate proof for all the theoret-
ical work. First we describe the celebrated Cauchy-Schwarz
Inequality, which is frequently used in proof.

Lemma 5.1. The Cauchy–Schwarz inequality states that
for all n-dimensional real vectors u,v ∈ Rn, of an inner
product space it is true that

|〈u,v〉|2 ≤ 〈u,u〉 · 〈v,v〉,
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Figure 6: Performance if Bayesian logistic regression on
MNIST and covtype. It is shown that early termination
would not degrade the performance.

or equivalently,

(

n∑
i=1

uivi)
2 ≤ (

n∑
i=1

u2
i )

2(

n∑
i=1

v2
i )2.

Furthermore, the equality holds only when either u or v is
a multiple of the other.

Proof of Lemma 3.1

Proof. According to the definition of estimated gradient
E(∇Û(θ)), we have that

E(∇Û(θ))

=−
∑N

i=1
(pi)[(pi)

−1∇ log p(xi|θ)]−∇ log p(θ)

=∇U(θ).

This completes the proof.

Proof of Lemma 3.2

Proof. Owing to the fact that V(X) = E(X2)− (E(X))2

and the expectation of Û(θt) equal to the true gradient and
can be seen as a constant, Equation (7)

arg min

∀i∈{1,2,...,N}, pi∈(0,1);
N∑

i=1
pi=1

V((pi)
−1∇ log p(xi|θ)),

is equivalent into the following form:

arg min

∀i∈{1,2,...,N}, pi∈(0,1);
N∑

i=1
pi=1

N∑
i=1

((pi)
−1‖∇ log p(xi|θt)‖2)

(20)
For notational convenience, here, we use ‖ · ‖ to represent
the l2-norm for vector.

Then using Cauchy-Schwarz inequality to solve the opti-
mization problem in Equation (20), as follows:

N∑
i=1

((pi)
−1‖∇ log p(xi|θt)‖2)

=(

N∑
i=1

(pi)
−1‖∇ log p(xi|θt)‖2)(

N∑
i=1

pi)

≥(

N∑
i=1

√
(pi)−1‖∇ log p(xi|θt)‖2pi)2

=(

N∑
i=1

√
‖∇ log p(xi|θt)‖2)2

=(

N∑
i=1

‖∇ log p(xi|θt)‖)2

(21)
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The equality is obtained only when there exists a constant c
such that (p1)−1‖∇ log p(x1|θt)‖2

...
(pN )−1‖∇ log p(xN |θt)‖2

 = c

 p1

...
pN

 , (22)

which is equivalent to

(p1)−2‖∇ log p(x1|θt)‖2 = . . .

= (pN )−2‖∇ log p(xN |θt)‖2.
(23)

Under such case, the variance is minimized, so the optimal
strategy is to choose pi satisfy that

pi =
‖∇ log p(xi|θt)‖
N∑
j=1

‖∇ log p(xj |θt)‖
,

(24)

for ∀ i ∈ {1, 2, . . . , N}.

This completes the proof.

Proof of Lemma 3.3

Proof. According to Equation (10), we directly expand
∇Û(θt) and have that

E[∇Û(θt)]

=− E[

k∑
i=1

ni
bi

∑
j∈Bi

|Bi|=bi

∇ log p(xj |θt)]−∇ log p(θ)

= −
k∑
i=1

ni
bi
E[
∑
j∈Bi

|Bi|=bi

∇ log p(xj |θt)]−∇ log p(θ)

= −
k∑
i=1

ni
bi

∑
j∈Bi

|Bi|=bi

E[∇ log p(xj |θt)]−∇ log p(θ)

= −
k∑
i=1

ni
bi

∑
j∈Ci

|Ci|=ni

[
bi
ni
∇ log p(xj |θt)]−∇ log p(θ)

=

N∑
i=1

∇ log p(xi|θt)−∇ log p(θ)

= ∇U(θt)
(25)

where the fourth equality follows from the fact that within
each cluster Ci, each data sample is selected with equal
probability at bi/ni. The fifth equality follows from the
properties of clusters C1, . . . , Ck described in Equation (9).

Proof of Lemma 3.4

Proof. V(∇Ū(θt)|C1, C2, . . . , Ck, b1, b2, . . . , bk), the new
variance, can be represented as the sum of weighted within-
clustering variance, as following:

V(∇Ū(θt)|C1, C2, . . . , Ck, b1, b2, . . . , bk)

=V[

k∑
i=1

ni
bi

∑
j∈Bi

|Bi|=bi

(∇ log p(xj |θt))]

=

k∑
i=1

(
ni
bi

)2V[
∑

j∈Bi|Bi|=bi

∇ log p(xj |θt)]

=

k∑
i=1

(
ni
bi

)2
∑
j∈Ci

|Ci|=ni

bi
ni
‖∇ log p(xj |θt)−

1

ni

∑
l∈Ci

∇ log p(xl|θt)‖2

=

k∑
i=1

(
ni
bi

)2
∑
j∈Ci

|Ci|=ni

bi
ni
‖∇ log p(xj |θt)− µCi

‖2

=

k∑
i=1

ni
bi

∑
j∈Ci

|Ci|=ni

‖∇ log p(xj |θt)−
1

ni

∑
l∈Ci

∇ log p(xl|θt)‖2,

=

k∑
i=1

ni
bi

∑
j∈Ci

|Ci|=ni

V[(∇ log p(xj |θt))],

(26)
where µCi

, 1
ni

∑
j∈Ci

|Ci|=ni

∇ log p(xj |θt), represents the

mean gradient of cluster Ci. The second equality (the
third line of the above equation) follows from the fact that
B1, . . . , Bk are independent with each other, without any
overlapping. The third equality (the fourth line) follows
from the fact that for cluster Ci, mini-batch with size of bi
is randomly drawn. Thus the variance regarding cluster Bi
is related to the variance of cluster Ci.
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Proof of Theorem 3.1

Proof. We expand V(∇Ū(θt)|C1, C2, . . . , Ck, b1, b2, . . . , bk)
according to the definition of variance, and have

V(∇Ū(θt)|C1, C2, . . . , Ck, b1, b2, . . . , bk)

=

k∑
i=1

ni
bi

∑
j∈Ci,
|Ci|=ni

V(∇ log p(xj |θt))

=

k∑
i=1

ni
bi

∑
j∈Ci,
|Ci|=ni

‖∇ log p(xj |θt)−
1

ni

∑
l

∇ log p(xl|θt)‖2

≤
k∑
i=1

ni
bi

∑
j∈Ci,
|Ci|=ni

‖∇ log p(xj |θt)−∇ log p(
1

ni

∑
l∈Ci,
|Ci|=ni

xl|θt)‖2

=

k∑
i=1

ni
bi

∑
j∈Ci,
|Ci|=ni

‖∇ log p(xj |θt)−∇ log p(µi|θt)‖2

≤L2
k∑
i=1

ni
bi

∑
j∈Ci,
|Ci|=ni

‖xj − µi‖2

(27)
where µi =

∑
j∈Ci,
|Ci|=ni

xj/ni. The first equality follows from

the results of Lemma 3.4. The first inequality (the fourth
line) follows from the fact that given x1, . . . , xn ∈ Rd, we
have

1

n

n∑
i=1

xi = arg miny

n∑
i=1

‖xi − y‖22. (28)

Equivalently,

‖xi −
1

n

n∑
i=1

xi‖22 ≤
n∑
i=1

‖xi − y‖22 for ∀y. (29)

Hence, we can take the summation into the log-probability
and have that

‖∇ log p(xj |θt)−
1

ni

∑
l∈Ci

∇ log p(xl|θt)‖2

≤‖∇ log p(xj |θt)−∇ log p(
1

ni

∑
l∈Ci

xl|θt)‖2.
(30)

Furthermore, the last inequality holds due to the definition
of L-Lipschitz.

Proof of Theorem 3.2

First, we restate the Theorem 3.2.

Theorem 5.1. For optimization problem described in Equa-
tion (13) as

arg min
C1,C2,...,Ck,b1,b2,...,bk

k∑
i=1

ni
bi

∑
j∈Ci,|Ci|=ni

‖xj − µi‖2,

where µi =
∑

j∈Ci,|Ci|=ni

xj/ni represents the center of

the cluster Ci, defined in Theorem 3.1. Given the clusters
C1, . . . , Ck, the solutions to the weights b1, . . . , bk are

bi =
bni
√
vi

k∑
j=1

nj
√
vj

,

where vi =
1

ni

∑
j∈Ci

‖xj −
1

ni

∑
l∈Ci

xl‖2 = V(Ci).

V(Ci) corresponds to the variance of data samples in clus-
ter Ci and b is the size of the mini-batch satisfying that

b =
k∑
i=1

bi. Note that bi represents the number of samples

drawn from the cluster Ci and is usually fine-tuned to inte-
ger in practice. Both b and k are prespecified.

Proof. Since the clusters C1, . . . , Ck are given, we refor-
mulate the optimization as

arg min
b1,b2,...,bk

k∑
i=1

n2
i

bi
vi. (31)

Furthermore, the size of minibatch b is given and we have
that

k∑
i=1

bi = b. (32)

Thus, we have that

k∑
i=1

n2
i

bi
vi

=
1

b
(

k∑
i=1

n2
i

bi
vi)(

k∑
i=1

bi)

≥1

b
(

√
n2
i

bi
vibi)

2

=
1

b
(

k∑
i=1

√
n2
i vi)

2

=
1

b
(

k∑
i=1

ni
√
vi)

2,

(33)

where the inequality follows from the Cauchy-Schwarz In-
equality. The equality holds only when there exists a con-
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stant c such that 
n2
1

b1
v1

...
n2
N

bN
vk

 = c

b1...
bk

 , (34)

which is equivalent to

n2
1

b21
v1 =

n2
2

b22
v2 = · · · = n2

k

b2k
vk. (35)

Under such case, the optimum is reached, so the optimal
strategy is to choose bi satisfying that

bi ∝ ni
√
vi (36)

for ∀ i ∈ {1, 2, . . . , N}. Combining the constaint that

k∑
i=1

bi = b, (37)

we have that

bi =
ni
√
vi∑k

j=1 nj
√
vj
. (38)

Furthermore, in practice, bi is usually finetuned to integrator
for convenience.

This completes the proof.
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