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Abstract

We consider the stochastic optimization prob-
lem where a convex function is minimized ob-
serving recursively the gradients. We intro-
duce SAEW, a new procedure that acceler-
ates exponential weights procedures with the
slow rate 1/

√
T to procedures achieving the

fast rate 1/T . Under the strong convexity
of the risk, we achieve the optimal rate of
convergence for approximating sparse param-
eters in Rd. The acceleration is achieved by
using successive averaging steps in an online
fashion. The procedure also produces sparse
estimators thanks to additional hard thresh-
old steps.

1 Introduction

Stochastic optimization procedures have encountered
more and more success in the past few years. This
common framework includes machine learning meth-
ods minimizing the empirical risk. LeCun and Bottou
(2004) emphasized the utility of Stochastic Gradient
Descent (SGD) procedures compared with batch pro-
cedures; the lack of accuracy in the optimization is bal-
anced by the robustness of the procedure to any ran-
dom environment. Zinkevich (2003) formalized this
robustness property by proving a d/

√
T rate of conver-

gence in any random environment with convex losses
for a d-dimensional parametric bounded space. This
rate is optimal with no additional condition. However,
under strong convexity of the risk, accelerated SGD
procedures achieve the fast rate d/T , that is also op-
timal Agarwal et al. (2012). One of the most popular
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acceleration procedure is obtained by a simple aver-
aging step, see Polyak and Juditsky (1992) and Bach
and Moulines (2013). Other robust and adaptive pro-
cedures using exponential weights have been studied
in the setting of individual sequences by Cesa-Bianchi
and Lugosi (2006). The link with the stochastic opti-
mization problem has been done in Kivinen and War-
muth (1997), providing, in the ℓ1-ball, algorithms with
an optimal logarithmic dependence on the dimension
d but a slow rate 1/

√
T . The fast rate log(T ) on the

regret has been achieved in some strongly convex cases
as in Theorem 3.3 of Cesa-Bianchi and Lugosi (2006).
Thus, the expectation of the risk of their averaging,
studied under the name of progressive mixture rule
by Catoni (2004), also achieves the fast rate log(T )/T .
However, progressive mixture rules do not achieve the
fast rate with high probability, see Audibert (2008)
and their complexity is prohibitive (of order T d). The
aim of this paper is to propose an efficient accelera-
tion of exponential weights procedures that achieves
the fast rate 1/T with high probability.

In parallel, optimal rates of convergence for the risk
were provided by Bunea et al. (2007) in the sparse
setting. When the optimal parameter θ∗ is of dimen-
sion d0 = ∥θ∗∥0 smaller than the dimension of the
parametric space d, the optimal rate of convergence
is d0 log(d)/T . Such fast rates can be achieved for
polynomial time algorithm only up to the multiplica-
tive factor α−1 where α is the strong convexity con-
stant of the risk, see Zhang et al. (2014). For in-
stance, the Lasso procedure achieves this optimal rate
for least square linear regression, see Assumption (A3)
of Bunea et al. (2007). Other more robust optimal
batch procedures such as ℓ0 penalization or exploration
of the parametric space suffer serious complexity draw-
backs and are known to be NP-hard. Most of the
stochastic algorithms do not match this rate, with the
exception of SeqSEW (in expectation only), see Gerchi-
novitz (2013). As the strong convexity constant α does
not appear in the bounds of Gerchinovitz (2013), one
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suspects that the algorithm is NP-hard.

Procedure Setting Rate Polynomial

Lasso (Bunea et al.,
2007)

B d0 log d
αT Yes

Rigollet and Tsy-
bakov (2011)

B d0 log d
T No

SeqSEW (Gerchi-
novitz, 2013)

S d0 log(d/d0)
T No

ℓ1-RDA method
(Xiao, 2010)

S d
T Yes

SAEW S d0 log d
αT Yes

Table 1: Comparison of sequential (S) and batched (B)
sparse optimization procedures.

The aim of this paper is to provide the first acceler-
ation of exponential weights procedures achieving the
optimal rate of convergence d0 log(d)/(αT ) in the iden-
tically and independently distributed (i.i.d.) online op-
timization setting with sparse solution θ∗. The acceler-
ation is obtained by localizing the exponential weights
around their averages in an online fashion. The idea is
that the averaging alone suffers too much from the ex-
ploration of the entire parameter space. The sparsity
is achieved by an additional hard-truncation step, pro-
ducing sparse approximations of the optimal parame-
ter θ∗. The acceleration procedure is not computation-
ally hard as its complexity is O(dT ). We obtain theo-
retical optimal bounds on the risk similar to the Lasso
for random design, see Bunea et al. (2007). We also
obtain optimal bounds on the cumulative risk of the
exploration of the parameter space. Table 1 summa-
rizes the performance of existing algorithms in sparse
regression.

The paper is organized as follows. After some prelimi-
naries in Section 2, we present our acceleration proce-
dure and we prove that it achieves the optimal rate of
convergence in Section 3. We refine the constants for
least square linear regression in Section 4. Finally, we
give some simulations in Section 5.

2 Preliminaries

We consider a sequence ℓt : Rd → R, t ! 1 of i.i.d.
random loss functions. We define the instantaneous
risk as E[ℓt] : θ $→ E[ℓt(θ)]†. We assume that the risk
is (2α)-strongly convex, i.e., for all θ1, θ2 ∈ Rd

†Because the losses are i.i.d, the risk does not depend
on t ! 1. However, we still use the time index in the
notation to emphasize that a quantity indexed by s ! 1
cannot depend on ℓt for any t > s. The notation E[ℓt](θ̂t−1)

denotes E
[
ℓt(θ̂t−1)

∣∣ℓ1, . . . , ℓt−1

]
.

E
[
ℓt(θ1)− ℓt(θ2)

]
" E

[
∇ℓt(θ1)

]⊤
(θ1 − θ2)

− α
∥∥θ1 − θ2

∥∥2
2
. (SC)

The (unique) risk minimizer in Rd is denoted θ∗ and
its effective dimension is ∥θ∗∥0 " d0. We insist on the
fact that the strong convexity is only required on the
risk and not on the loss function. This condition is
satisfied for many non strongly convex loss functions
such as the quantile loss (see Section 5) and necessary
to obtain fast rates of convergence (see Agarwal et al.,
2012).

Online optimization setting For each t ! 1, we
provide two parameters (θ̂t−1, θ̃t−1) ∈ Rd × Rd having
observed the past gradients of the first parameter
∇ℓs(θ̂s−1) ∈ Rd for s " t− 1 only.

Our aim is to provide high-probability upper-bounds
on the cumulative excess risk (also called cumulative
risk for simplicity) of the sequence (θ̂t−1) and on the
instantaneous excess risk of θ̃t−1:

• Cumulative risk: the online exploration vs. ex-
ploitation problem aims at minimizing the cumu-
lative risk of the sequence (θ̂t−1) defined as

Risk1:T (θ̂0:(T−1)) :=
T∑

t=1

Risk(θ̂t−1) , (1)

where Risk(θ) := E[ℓt](θ)−E[ℓt](θ∗) is the instan-
taneous excess risk. This goal is useful in a pre-
dictive scenario when the observation of ∇ℓt(θ̂t−1)
comes at the cost of Risk(θ̂t−1).

• Instantaneous excess risk : simultaneously, at any
time t ! 1, we provide an estimator θ̃t−1 of θ∗

that minimizes the instantaneous risk. This prob-
lem has been widely studied in statistics and the
known solutions are mostly batch algorithms. Un-
der the strong convexity of the risk, a small instan-
taneous risk ensures in particular that θ̃t−1 is close
in ℓ2-norm to the true parameter θ∗ (by Lemma 5,
Appendix B.1).

To make a parallel with the multi-armed bandit set-
ting, minimizing the cumulative risk is related to min-
imizing the cumulative regret. In contrast, the sec-
ond goal is related to simple regret (see Bubeck et al.,
2009): the cost of exploration only comes in terms of
resources (time steps T ) rather than of costs depend-
ing on the exploration.

By convexity of the risk, the averaging θ̄T−1 :=
(1/T )

∑T
t=1 θ̂t−1 has an instantaneous risk upper-

bounded by the cumulative risk

Risk(θ̄T−1) " Risk1:T (θ̂0:(T−1))/T . (2)
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Therefore, upper bounds on the cumulative risk lead
to upper bounds on the instantaneous risk for θ̃T−1 =
θ̄T−1. However, we will provide another solution to
build θ̃T−1 with better guarantees than the one ob-
tained by (2).

On the contrary, since each θ̃t−1 minimizes the instan-
taneous risk at time t, it is tempting to use them in
the exploration vs. exploitation problem. However,
it is impossible in our setting as the parameters (θ̃t)
are constructed upon the observation of the gradients
∇ℓs(θ̂s−1), s < t.

Our main contribution (see Theorems 1 and 2) is to
introduce a new acceleration procedure that simulta-
neously ensures (up to loglog terms) both optimal risk
for θ̃t−1 and optimal cumulative risk for (θ̂t−1). Up to
our knowledge, this is the first polynomial time online
procedure that recovers the minimax rate obtained in
a sparse strongly convex setting. Its instantaneous risk
achieves the optimal rate of convergence

min

{
B2d0 log(d)

αT
,UB

√
log(d)

T

}
, (3)

where B ! supθ:∥θ∥1!2U ∥∇ℓt(θ)∥∞ is an almost sure
bound on the gradients,

∥∥θ∗∥1 " U and
∥∥θ∗∥0 " d0 . (4)

For least square linear regression (see Theorem 3), B2

is replaced in (3) with a term of order σ2 := E[ℓt(θ∗)].
In the batch setting, the Lasso achieves a similar rate
under the slightly weaker Assumption (A3) of Bunea
et al. (2007).

3 Acceleration procedure for known
parameters

We propose SAEW (described in Algorithm 2) that de-
pends on the parameters (d0,α, U,B) and performs an
optimal online optimization in the ℓ1 ball of radius U .
SAEW accelerates a convex optimization subroutine
(see Algorithm 1). If the latter achieves a slow rate of
convergence on its cumulative regret, SAEW achieves
a fast rate of convergence on its cumulative and instan-
taneous risks. We describe first what is expected from
the subroutine.

3.1 Convex optimization in the ℓ1-ball with a
slow rate of convergence

Assume that a generic subroutine (Algorithm 1), de-
noted by S, performs online convex optimization into
the ℓ1-ball B1

(
θcenter, ε

)
:=
{
θ ∈ Rd : ∥θ − θcenter∥1 "

ε
}

of center θcenter ∈ Rd and radius ε > 0. Centers
and radii will be settled online thanks to SAEW.

Algorithm 1: Subroutine S: convex optimization in
ℓ1-ball
Parameters: B > 0, tstart > 0, θcenter ∈ Rd and
ε > 0.

For each t = tstart, tstart + 1, . . . ,

• predict θ̂t−1 ∈ B1(θcenter, ε) (thanks to some
online gradient procedure)

• suffer loss ℓt
(
θ̂t−1

)
∈ R and observe the gradi-

ent ∇ℓt
(
θ̂t−1

)
∈ Rd

We assume that the subroutine S applied on any se-
quence of convex sub-differentiable losses (ℓt)t"tstart

satisfies the following upper-bound on its cumulative
regret: for all tend ! tstart and for all θ ∈ B1

(
θcenter, ε

)

tend∑

t=tstart

ℓt(θ̂t−1)−ℓt(θ) " aε

√√√√
tend∑

tstart

∥∥∇ℓt(θ̂t−1)
∥∥2
∞+bεB ,

(5)
for some non-negative constants a, b that may depend
on the dimension d.

Several online optimization algorithms do satisfy the
regret bound (5) while being totally tuned, see for
instance Gerchinovitz (2011, Corollary 2.1) or Cesa-
Bianchi et al. (2007), Gaillard et al. (2014), and Win-
tenberger (2014). The regret bound is satisfied for
instance with ‡ a # √

log d and b # log d by a well
online-calibrated Exponentiated Gradient (EG) fore-
caster combining the corners of B1

(
θcenter, ε

)
. This log-

arithmic dependence on the dimension is crucial here
and possible because the optimization is performed in
the ℓ1-ball. SGD optimizing in the ℓ2-ball, such as
RDA of Xiao (2010), suffer a linear dependence on d.

The regret bound yields the slow rate of convergence
O
(√

(log d)(tend − tstart)
)

(with respect to the length
of the session) on the cumulative risk. Our acceleration
procedure provides a generic method to also achieve a
fast rate under sparsity.

3.2 The acceleration procedure

Our acceleration procedure (SAEW, described in Al-
gorithm 2) performs the subroutine S on sessions of
adaptive length optimizing in exponentially decreas-
ing ℓ1-balls. The sessions are indexed by i ! 0 and
denoted Si. The algorithm defines in an online fash-
ion a sequence of starting times 1 = t0 < t1 < . . . such
that the instance Si is used to perform predictions be-
tween times tstart = ti and tend = ti+1 − 1. The idea

‡As in the rest of the paper, the sign # denotes an
inequality which is fulfilled up to multiplicative constants.
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Algorithm 2: SAEW
Parameters: d0 ! 1, α > 0, U > 0, B > 0, δ > 0
and a subroutine S that satisfies (5)

Initialization: t0 = t = 1, ε0 = U and θ̄0 = 0

For each i = 0, 1, . . .

• define [θ̄ti−1]d0 by rounding to zero the d− d0
smallest coefficients of θ̄ti−1

• start a new instance Si of the subroutine S
with parameters tstart = ti, θcenter = [θ̄ti−1]d0 ,
ε = U2−i/2 and B,

• for t = ti, ti + 1, . . . and while εt−1 >
U2−(i+1)/2

– forecast θ̂t−1 by using the subroutine Si

– observe ∇ℓt(θ̂t−1)

– update the bound

Errt := a′i

√√√√
t∑

s=ti

∥∥∇ℓs(θ̂s−1)
∥∥2
∞ + b′iB

with a′i and b′i resp. defined in (9)
and (10).

– update the confidence radius

εt := 2

√
2d0U2−i/2

α(t− ti + 1)
Errt

– update the averaged estimator

θ̄t := (t− ti + 1)−1
∑t

s=ti
θ̂s−1

– update the estimator

θ̃t := θ̄argmin0!s!t εs

• stop the instance Si and define ti+1 := t+ 1

is that our accuracy in the estimation of θ∗ increases
over time so that Si can be a localized optimization
subroutine in a small ball B1

(
[θ̄ti−1]d0 , U2−i/2

)
around

the current sparse estimator [θ̄ti−1]d0 of θ∗ at time ti,
see Algorithm 2 for the definition of [θ̄ti−1]d0 .

The cumulative risk suffered during each ses-
sion will remain constant: the increasing rate(∑ti+1−1

ti

∥∥∇ℓt(θ̂t−1)
∥∥2
∞
)1/2 " B

√
ti+1 − ti due to the

length of the session (see Equation (5)) will be shown
to be of order 2i/2. But it will be offset by the decreas-
ing radius ε = U2−i/2.

By using a linear-time subroutine S, the global time
and storage complexities of SAEW are also O(dT ).

θ∗

θ0

θ1

θ2

UU

Figure 1: The acceleration procedure. First, the algo-
rithm perfoms the optimization in the the blue ball of
radius U and centered at the origin. Then, when the
confidence is high enough, at time t1, the algorithm is
restarted to the red ball of radius U/2 and centered at
the current estimator θ1 :=

[
θ̄t1−1

]
d0

. The process is
repeated with θ2 :=

[
θ̄t2−1

]
d0

and U/4 and so forth.

Our main theorem is stated below. It controls the
excess risk of the instantaneous estimators of SAEW.
The proof is deferred to Appendix B.2.
Theorem 1. Under Assumption (SC), SAEW satis-
fies with probability at least 1 − δ, 0 < δ < 1, for all
T ! 1

Risk
(
θ̃T
)
" min

{
UB

(
a′
√

2

T
+

4b′

T

)
+

αU2

8d0T
,

d0B2

α

(
27a′2

T
+

211b′2

T 2

)
+

2αU2

d0T 2

}
,

where a′ = a +
√

6 log(1 + 3 log T )− 2 log δ and b′ =
b+ 1/2 + 3 log(1 + 3 log t)− log δ.
Remark 3.1. Using EG as the subroutines, the main
term of the excess risk becomes of order

Risk
(
θ̃T
)
= OT

(
d0B2

αT
log
(d log T

δ

))
. (6)

Remark 3.2. From the strong convexity assumption,
Theorem 1 also ensures that, with probability 1 − δ,
the estimator θ̃T is close enough to θ∗:

∥∥θ̃T − θ∗
∥∥
2
#

√
d0B

α
√
T

√

a′2 log2 T +
b′2

T
+

αU2

d0T
.

Theorem 2. Under the assumptions and the notation
of Theorem 1, the cumulative risk of SAEW is upper-
bounded with probability at least 1− δ as

Risk1:T (θ̂0:(T−1)) " min

{
4UB(a′

√
T + b′ + 1),

25d0B2

α
a′2 log2 T + 4UB(1 + b′) +

αU2

8d0

}
.

Remark 3.3. Using EG as the subroutines, we get a
cumulative risk of order

Risk1:T (θ̂0:(T−1)) = OT

(
d0B2

αT
log
(d log T

δ

)
log T

)
.
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The averaged cumulative risk bound has an additional
factor log T in comparison to the excess risk of θ̃T .
This logarithmic factor is unavoidable. Indeed, at time
t, the rate stated in Equation (6) is optimal for any
estimator. An optimal rate for the cumulative risk
can thus be obtained by summing this rate of order
O(1/t) over t introducing the log factor.
Remark 3.4. Adapting Corollary 13 of Gerchinovitz
(2013), the boundedness of ∇ℓt can be weakened to un-
known B under the subgaussian condition. The price
of this adaptation is a multiplicative factor of order
log(dT ) in the final bounds.
Remark 3.5. Using the strong convexity property, the
averaging of SAEW has much faster rate (log T/T on
the excess risk) than the averaging of the EG proce-
dure itself (only slow rate 1/

√
T with high probabil-

ity, see Audibert, 2008). But the last averaging θ̃T
achieves the best rate overall. Also note the difference
of the impact of the ℓ1-ball radius U on the rates: for
the overall average θ̄T it is U2/T whereas it is U2/T 2

for the last averaging θ̃T . On the contrary to the over-
all averaging, the last averaging forgets the cost of the
exploration of the initial ℓ1-ball.

4 Square linear regression

Consider the common least square linear regression
setting. Let (Xt, Yt), t ! 1 be i.i.d. random pairs
taking values in Rd × R. For simplicity, we assume
that ∥Xt∥∞ " X and |Yt| " Y almost surely for
some constants X,Y > 0. We aim at estimating
linearly the conditional mean of Yt given Xt, by ap-
proaching θ∗ = argminθ∈Rd E

[
(Yt − X⊤

t θ)2
]
. Notice

that the strong convexity of the risk is equivalent
to the positivity of the covariance matrix of Xt as
α " λmin

(
E
[
XtX⊤

t ]
)
, where λmin is the smallest eigen-

value.

Applying the previous general setting to the square
loss function ℓt : θ $→ (Yt − X⊤

t θ)2 , we get the fol-
lowing Theorem 3. It improves upon Theorem 1 the
factor B2 in the main term into a factor X2σ2, where
σ2 := E

[
(Yt−X⊤

t θ∗)2
]

is the expected loss of the best
linear predictor. This is achieved without the addi-
tional knowledge of σ2. The proof of the theorem is
highly inspired from the one of Theorem 1 and is de-
ferred to Appendix B.6.

Theorem 3. SAEW tuned with B = 2X
(
Y + 2XU

)

satisfies with probability at least 1− δ the bound

Risk(θ̃T ) # min

{
UX

(
σa′√
T

+
(Y +XU)c′

T

)
+

αU2

d0T
,

X2d0
α

(
σ2a′2

T
+

(Y +XU)2c′2

T 2

)
+

αU2

d0T 2

}
,

for all T ! 1, where a′ # a +
√

log(1/δ) + log log T
and b′ # b+ log(1/δ) + log log T .
Remark 4.1. Using a well-calibrated EG for the sub-
routines, the main term of the excess risk is of order

Risk
(
θ̃T
)
= OT

(
d0X2σ2

αT
log
(d log T

δ

))
.

Remark 4.2. Similarly to Remark 3.4, if (Xt, Yt) are
subgaussian only (and not necessary bounded), classi-
cal arguments show that Theorem 3 still holds with X
of order O(log(dT )) and Y = O(log T ).
Remark 4.3. The improvement from Theorem 1 to
Theorem 3 (i.e., replacing B with X2σ2 in the main
term) is less significant if we apply it to the cumula-
tive risk (Theorem 2). This would improve B2 log T
to B2 + X2σ2 log T and thus lead to a bound on the
cumulative risk of order O(d0σ2 log(T )/α).

Calibration of the parameters To achieve the
bound of Theorem 3, SAEW is given the parameters
d0, α, U , and B beforehand. In Appendix A, We pro-
vide how to tune these parameters in order to sequen-
tially get an estimator achieving high rate on its excess
risk. To do so, we use a combination of well-known cal-
ibration techniques: doubling trick, meta-algorithm,
and clipping. The proof is however only done in the
setting of linear regression with square loss.

5 Simulations

In this section, we provide computational experiments
on simulated data. We compare three online aggrega-
tion procedures:

• RDA: a ℓ1-regularized dual averaging method as
proposed by Algorithm 2 of Xiao (2010). The
method was shown to produce sparse estimators.
It obtained good performance on the MNIST data
set of handwritten digits (LeCun et al., 1998). We
optimize the parameters γ, ρ, and λ in hindsight
on the grid E := {10−5, . . . , 103}.

• BOA: the Bernstein Online Aggregation of Win-
tenberger (2014). It proposes an adaptive calibra-
tion of its learning parameters and achieves the
fast rate for the model selection problem (see Ne-
mirovski, 2000). BOA is initially designed to per-
form aggregation in the simplex, for the setting of
prediction with expert advice (see Cesa-Bianchi
and Lugosi, 2006). We use it together with the
method of Kivinen and Warmuth (1997) to extend
it to the optimization in the ℓ1-ball B1(0, ∥θ∗∥1).

• SAEW: the acceleration procedure as detailed in
Algorithm 2. We use BOA for the subroutines
since it satisfies a regret bound of the form (5).
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For the parameters, we use δ = 0.95, U = ∥θ∗∥1
and d0 = ∥θ∗∥0. We calibrate α and B on the
grid E in hindsight.

Our objective here is only to show the potential of the
acceleration of BOA for a well-chosen set of parameters
in the general setting of Section 3.

5.1 Application to square linear regression

We consider the square linear regression setting of Sec-
tion 4. We simulate Xt ∼ N (0, 1) for d = 500 and

Yt = X⊤
t θ∗ + εt with εt ∼ N (0, 0.01) i.i.d. ,

where d0 = ∥θ∗∥0 = 5, ∥θ∗∥1 = 1 with non-zero coordi-
nates independently sampled proportional to N (0, 1).

RDA BOA SAEW

−7
−6

−5
−4

−3

lo
g(
||θ~

−
θ∗
|| 22 )

(a) Square linear regression.
RDA BOA SAEW

−6
.5

−6
−5
.5

−5

(b) Quantile regression.

Figure 2: Boxplot of the logarithm of the ℓ2 errors of
the estimators θ̃T at time T = 2000 with d = 500.

Figure 2a illustrates the results obtained by the differ-
ent procedures after the observation of T = 2000 data
points. It plots the box-plot of the ℓ2 estimation errors
of θ∗, which is also approximatively the instantaneous
risk, over 30 experiments. In contrast to BOA and
SAEW, RDA does not have the knowledge of ∥θ∗∥1 in
advance. This might explain the better performance
obtained by BOA and SAEW. Another likely expla-
nation comes from the theoretical guarantees of RDA,
which is only linear in d (due to the sum of the squared
gradients) though the ℓ1-penalization.

In a batch context, the Lasso (together with cross-
validation) may provide a better estimator for high di-
mensions d (its averaged error would be log θ̃T ≈ −8.8
in Figure 2a). This is mostly due to two facts. First,
because of the online setting, our online procedures are
here allowed to pass only once through the data. If we
allowed multiple passes, their performance would be
much improved. Second, although BOA satisfies theo-
retical guarantees in

√
log d, its performance is deeply

deteriorated when d becomes too large and does not
converge before T being very large. We believe our ac-
celeration procedure should thus be used with sparse
online sub-procedures instead of BOA, but we leave
this for future research.

0 2 4 6

−7
−6

−5
−4

−3
−2

−1

RDA
BOA
SAEW

lo
g(
||θ

t~
−
θ∗
|| 22 )

log(t)

Figure 3: Averaged (over 30 experiments) evolution of
the logarithm of the ℓ2 error.

Figure 3 shows the decrease of the ℓ2-error over time
in log/log scale. The performance is averaged over the
30 experiments. We see that SAEW starts by follow-
ing BOA, until it considers to be accurate enough to
accelerate the process (around log t ≈ 6.2). Note that
shortly after the acceleration start, the performance
is shortly worse than the one of BOA. This can be
explained by the doubling trick: the algorithm start
learning again almost from scratch. The cumulative
risks are displayed in Figure 4. SAEW and BOA seem
to achieve logarithmic cumulative risk, in contrast to
RDA which seems to be of order O(

√
T ).
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Figure 4: Averaged (over 30 runs) cumulative risk suf-
fered by θ̂t for square linear regression.

In reality, the cumulative risk of BOA is of order
O(σ2

√
T log d+log d). In the previous experiment, be-

cause of the small value of the noise σ2 = 0.01, the first
term is negligible in comparison to the second one un-
less T is very large. The behavior in

√
T of BOA is

thus better observed with higher noise and smaller di-
mension d, so that the first term becomes predominant.
To illustrate this fact, we end the application on square
linear regression with a simulation in small dimension
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d0 = d = 2 with higher noise σ = 0.3. Our accelera-
tion procedure can still be useful to obtain fast rates.
Figure 5 shows that despite what seems on Figure 4,
BOA does not achieve fast rate on its cumulative risk.
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Figure 5: Cumulative risk suffered by θ̂t for square
linear regression with d = d0 = 2.

5.2 Application to linear quantile regression

Let α ∈ (0, 1). Here, we aim at estimating the condi-
tional α-quantile of Yt given Xt. A popular approach
introduced by Koenker and Bassett (1978) consists in
estimating the quantiles via the pinball loss defined for
all u ∈ R by ρα(u) = u(α − 1u<0). It can be shown
that the conditional quantile qα(Yt|Xt) is the solution
of the minimization problem

qα(Yt|Xt) ∈ argmin
g

E
[
ρα
(
Yt − g(Xt)

)∣∣Xt

]
.

In linear quantile regression, we assume the condi-
tional quantiles to be well-explained by linear func-
tions of the covariates. Steinwart and Christmann
(2011) proved that under some assumption the risk
is strongly convex. We can thus apply our setting by
using the loss functions ℓt : θ $→ ρα

(
Yt −X⊤

t θ).

We perform the same experiment as for linear regres-
sion (Yt, Xt), but we aim at predicting the α-quantiles
for α = 0.8. To simulate an intercept necessary to pre-
dict the quantiles, we add a covariate 1 to the vector
Xt. Figure 2b shows the improvements obtained by
our accelerating procedure over the basic optimization
algorithms.

In the next figures, to better display the dependence
on T of the procedures, we run them during a longer
time T = 105 with d = 100 only.

Figure 6 depicts the decreasing of the ℓ2-errors of
the different optimization methods (averaged over 30
runs). We see that unexpectedly most methods, al-
though no theoretical properties, do achieve the fast
rate O(1/T ) (which corresponds to a slope -1 on the
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Figure 6: Averaged (over 30 runs) evolution of the
logarithm of the ℓ2-error for quantile regression (d =
100).

log/log scale). This explains why we do not really ob-
serve the acceleration on Figure 6. However, we only
show here the dependence on t and not in d.
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Figure 7: Logarithm of the ℓ2-norm of the averaged es-
timator θ̃t during one run. The dashed lines represent
the high probability ℓ2-bound estimated by SAEW on
θ̄t. The gray vertical lines are the stopping times ti,
i ! 1. The first session is plotted in red, the second
in blue,. . . The dotted and dashed black lines repre-
sent the performance (and the theoretical bound) that
BOA would have obtained without acceleration.

In Figure 7, we show how the slow rate high-
probability bound on BOA (slope −1/2 in log/log
scale) is transformed by SAEW into a fast rate bound
(slope -1). To do so, it regularly restarts the algorithm
to get smaller and smaller slow-rate bounds. Both
BOA (dotted black line) and SAEW do achieve fast
rate here though only SAEW guarantees it. It would
be interesting in the future to prove the fast rate con-
vergence for the averaged estimator produced by BOA
in this context. In order to control the risk of the
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averaged estimator, the standard proof technique (in
online learning) applies Jensen’s inequality to the cu-
mulative risk (see Inequality (2)). Since the later does
not achieve the desired fast rate convergence for BOA
(as observed in Figure 8), Jensen’s inequality fails here
to prove fast convergence for the averaged estimator
and new proof techniques will be needed.
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Figure 8: Averaged (over 30 runs) cumulative risk suf-
fered by θ̂t for quantile regression (d = 100).

References

Agarwal, A., P. L. Bartlett, P. Ravikumar, and M. J.
Wainwright (2012). “Information-Theoretic Lower
Bounds on the Oracle Complexity of Stochastic Con-
vex Optimization.” In: IEEE TRANSACTIONS ON
INFORMATION THEORY 58.5, p. 3235.

Audibert, J.-Y. (2008). “Progressive mixture rules are
deviation suboptimal.” In: Advances in Neural In-
formation Processing Systems, pp. 41–48.

Bach, F. and E. Moulines (2013). “Non-strongly-
convex smooth stochastic approximation with con-
vergence rate O(1/n).” In: Advances in Neural In-
formation Processing Systems, pp. 773–781.

Bubeck, S., R. Munos, and G. Stoltz (2009). “Pure ex-
ploration in multi-armed bandits problems.” In: In-
ternational conference on Algorithmic learning the-
ory. Springer, pp. 23–37.

Bunea, F., A. Tsybakov, and M. Wegkamp (2007). “Ag-
gregation for Gaussian regression.” In: The Annals
of Statistics 35.4, pp. 1674–1697.

Catoni, O. (2004). Statistical Learning Theory and
Stochastic Optimization. Ecole dEté de Probabilités
de Saint-Flour 2001, Lectures Notes in Mathematics
1851.

Cesa-Bianchi, N. and G. Lugosi (2006). Prediction,
Learning, and Games. Cambridge University Press.

Cesa-Bianchi, N., Y. Mansour, and G. Stoltz (2007).
“Improved second-order bounds for prediction

with expert advice.” In: Machine Learning 66.2-3,
pp. 321–352.

Gaillard, P., G. Stoltz, and T. van Erven (2014). “A
Second-order Bound with Excess Losses.” In: Pro-
ceedings of COLT’14. Vol. 35. JMLR: Workshop and
Conference Proceedings, pp. 176–196.

Gerchinovitz, S. (2011). “Prediction of individual se-
quences and prediction in the statistical framework:
some links around sparse regression and aggregation
techniques.” PhD thesis. Orsay: Université Paris-
Sud 11.

– (2013). “Sparsity regret bounds for individual se-
quences in online linear regression.” In: The Journal
of Machine Learning Research 14.1, pp. 729–769.

Kivinen, J. and M. K. Warmuth (1997). “Exponenti-
ated Gradient Versus Gradient Descent for Linear
Predictors.” In: Information and Computation 132.1,
pp. 1–63.

Koenker, R. W. and G. W. Bassett (1978). “Regression
Quantiles.” In: Econometrica 46.1, pp. 33–50.

LeCun, Y. and L. Bottou (2004). “Large scale online
learning.” In: Advances in Neural Information Pro-
cessing Systems 16, p. 217.

LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner
(1998). “Gradient-based learning applied to doc-
ument recognition.” In: Proceedings of the IEEE
86.11, pp. 2278–2324.

Nemirovski, A. (2000). “Topics in non-parametric.” In:
Ecole dEté de Probabilités de Saint-Flour 28, p. 85.

Polyak, B. and A. Juditsky (1992). “Acceleration of
stochastic approximation by averaging.” In: SIAM
Journal on Control and Optimization 30.4, pp. 838–
855.

Rigollet, P. and A. Tsybakov (2011). “Exponential
screening and optimal rates of sparse estimation.”
In: The Annals of Statistics, pp. 731–771.

Steinwart, I. and A. Christmann (2011). “Estimating
conditional quantiles with the help of the pinball
loss.” In: Bernoulli 17.1, pp. 211–225.

Wintenberger, O. (2014). “Optimal learning with Bern-
stein Online Aggregation.” In: Extended version
available at arXiv:1404.1356 [stat. ML].

Xiao, L. (2010). “Dual averaging methods for regular-
ized stochastic learning and online optimization.” In:
Journal of Machine Learning Research 11, pp. 2543–
2596.

Zhang, Y., M. J. Wainwright, and M. I. Jordan (2014).
“Lower bounds on the performance of polynomial-
time algorithms for sparse linear regression.” In:
COLT, pp. 921–948.

Zinkevich, M. (2003). “Online Convex Programming
and Generalized Infinitesimal Gradient Ascent.” In:
Proceedings of the 20th International Conference on
Machine Learning, ICML 2003.


	Introduction
	Preliminaries
	Acceleration procedure for known parameters
	Convex optimization in the 1-ball with a slow rate of convergence
	The acceleration procedure

	Square linear regression
	Simulations
	Application to square linear regression
	Application to linear quantile regression

	Calibration of the parameters
	Proofs
	Lemma 5
	Proof of Theorem 1
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Martingale inequalities
	Poissonian inequality
	From cumulative regret to cumulative risk


