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Appendix

Experimental Simulation of Example 1

Here we experimentally simulate Example 1 to illus-
trate that logistic regression classifier has large l1 error.
We use Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), the state of the art generative model for docu-
ments, to generate datasets. The detailed experiment
settings are listed below:

• The dataset consists of 20000 documents, the
number of topics is 20, the dictionary size is 1000,
and the average number of words in each docu-
ment is 200.

• We use the non-informative Dirichlet prior α =
(1, 1, . . . , 1) over topics. The word distribution in
each topic follows power law with a random order
among words.

• For each document, we randomly sample with re-
placement 10 topic labels from the topic distribu-
tion.

Table 1 reports the mean experiment results and the
standard deviation across five runs. For reference we
also include the relative frequency of labels, and the
l1 error achieved by the trivial classifier that always
output the global relative frequency of labels as con-
ditional probability.

Average l1 Error Empirical Calibration
0.1270± 0.0008 0.0083± 0.0003
Trivial l1 Error Frequency of Labels
0.2022± 0.0001 0.3448± 0.0001

Table 1: L1 error and empirical calibration

As we can see from Table 1, the logistic regression
only achieves 0.13 average l1 error, while even the triv-
ial classifier can achieve 0.2. This implies that logis-
tic regression performed very badly in this example.
However, as we can see from Table 1, the empirical
calibration measure of logistic regression classifier is
relatively low (0.01), indicating that the classifier is
almost calibrated.

Proof of Theorem 1

Proof. The proof relies on the following lemma:

Lemma 1. Let P be a distribution over X ×Y. Let D
be a size n i.i.d. sample set from P. Let V be a verifier
of P given D (i.e., V is a function from {X × Y}n to
{0, 1}), such that

1. With probability at least 1 − δ1, a dataset D with
n i.i.d. samples from P will pass V :

PrD(V (D) = 1) ≥ 1 − δ1

2. With probability at least 1 − δ2, a dataset D with
n i.i.d. samples from P satisfies:

Pr(∀i �= j,Xi �= Xj) ≥ 1 − δ2

Then there exists another probability distribution P �

such that:

1. With probability at least 1−δ1−δ2, a data D� with
n i.i.d. samples from P � will also pass V .

PrD�(V (D�) = 1) ≥ 1 − δ1 − δ2

2.
∀X ∈ X ,

�

Y ∈Y
P(X,Y ) =

�

Y ∈Y
P �(X,Y )

3.
∀X ∈ X ,P �(Y = 1|X) = 0 or 1

Proof. First we construct the following distribution
over all possible P � satisfying the last two conditions:

Pr(P �) =
�

X∈X
Q(P �(Y = 1|X), P (Y = 1|X))

where Q(p�, p) is defined as:

Q(p�, p) =

�
p p� = 1
1 − p p� = 0

Now it is sufficient to show that if we sample P � ac-
cording to the above distribution and then sample D�

from P �, then with probability at least 1− δ1 − δ2, D�

will pass V . Assuming this is true, then at least one
distribution P � have to satisfy the first condition, and
thereby proved the existence of P �.

To compute the probability that D� would pass
V , denote DX = {X1, X2, . . . , Xn} and DY =
{Y1, Y2, . . . , Yn}. Note that all P � has the same
marginal distribution over X , therefore:

PrP�,D�(V (D�) = 1) =
�

P�

Pr(P �)
�

D�

Pr(D�|P �)V (D�)

=
�

D�
X

Pr(D�
X)

�

P�

Pr(P �)
�

D�
Y

Pr(D�
Y |P �, D�

X)V (D�)

We only consider all those D�
X with distinct Xi values.

Based on the assumption, such D�
X accounts for at

least 1−δ2 of the probability mass. Now the important
observation is that for every fixed D�

X with distinct
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X values, the marginal distribution of D�
Y given D�

X

(i.e. marginalize over P �) is exactly P(D�
Y |D�

X), the
distribution that we sample labels independently from
P(Y |X) for each X �

i in D�
X :

�

D�
X

Pr(D�
X)

�

P�

Pr(P �)
�

D�
Y

Pr(D�
Y |P �, D�

X)V (D�)

≥
�

D�
X

Pr(D�
X)1∀i �=j,X�

i �=X�
j

�

D�
Y

Pr(D�
Y |P , D�

X)V (D�)

The latter probability is actually the probability that
D� will pass V and have distinct X values at the same
time. Based on the assumptions in the lemma, it oc-
curs with probability at least 1 − δ1 − δ2.

Now given this lemma, the proof of Theorem 1 is easy:
We show that if any prover Af satisfies the two con-
ditions in the theorem, it can be used as the verifier
V in the lemma such that no P � can satisfy all three
conditions.

Let δ1 = 1
3 , then the first assumption in the lemma is

satisfied, also since ∀x ∈ X ,Q(x) < 1
10n2 , we have:

∀i �= j,Pr(Xi = Xj) =
�

x

Q(x)2 ≤ 1

10n2

By a union bound, we have:

Pr(∀i �= j,Xi �= Xj) ≥ 9

10

Therefore we can set δ2 = 0.1. By the above lemma,
there exists another P � such that

PrD�∼P�(Af (D�)) ≥ 1 − 1

3
− 1

10

and

∀X ∈ X , Y ∈ Y,P �(X,Y ) = 0 or 1

On the other hand, note that the l1 distance between
P � and P is at least B, then by the properties of Af ,
D� cannot pass Af with probability greater than 1

3 .
This contradicts our earlier result. Therefore no such
Af can exist.

Proof of Claim 1

Proof. The expected loss is

aP(g(f(X)) = 1, Y = −1)+bP(g(f(X)) = −1, Y = 1)

Define S = {f(X) : X ∈ X}, then we have:

aP(g(f(X)) = 1, Y = −1) + bP(g(f(X)) = −1, Y = 1)

=
�

p∈S

�

X:f(X)=p

[a1g(p)=1P(Y = −1, X)+

b1g(p)=−1P(Y = 1, X)]

=
�

p∈S

[a1g(p)=1

�

X:f(X)=p

P(Y = −1, X)+

b1g(p)=−1

�

X:f(X)=p

P(Y = 1, X)]

Therefore, the optimal g∗ has g∗(p) = 1 if and only if:

a
�

X:f(X)=p

P(Y = −1, X) ≤ b
�

X:f(X)=p

P(Y = 1, X)

Which is equivalent as:

aP(Y = −1|f(X) = p) ≤ bP(Y = 1|f(X) = p)

Since f is calibrated, P(Y = 1|f(X) = p) = p, there-
fore g∗(p) = 1 if and only if p ≥ a

a+b .

Proof of Theorem 2

Proof. We will use the following uniform convergence
result (Shalev-Shwartz and Ben-David, 2014):

Theorem 3. Let D be i.i.d. samples of (X × Y,P),
then with probability at least 1 − δ,

supg∈G | 1n
�n

i=1 g(xi, yi) − Eg(X,Y )|

≤ 2EDRD(G) +
�

2 ln(4/δ)
n (1)

In the following we sometimes allow G to be a collec-
tion of functions from X to [0, 1] in the above results.
When used in this sense, we assume that the function
will not use y label: g(x, y) = g(x).

Define FD,p1,p2(f) to be the relative frequency of event
{p1 < f(x) ≤ p2, y = 1}:

FD,p1,p2(f) =
1

n

n�

i=1

1p1<f(xi)≤p2,yi=1

Define FP,p1,p2(f) to be the probability of the same
event:

FP,p1,p2(f) = P(p1 < f(X) ≤ p2, Y = 1)

Define ED,p1,p2
(f) as the empirical expectation of

f(x)1p1<f(x)≤p2
:

ED,p1,p2
(f) =

1

n

n�

i=1

f(xi)1p1<f(xi)≤p2



Yihan Gao, Aditya Parameswaran, Jian Peng

Define EP,p1,p2(f) as the expectation of the same func-
tion:

EP,p1,p2
(f) = E[f(X)1p1<f(X)≤p2

]

When the context is clear, subscripts p1 and p2 can be
dropped. Using these notations, we can rewrite c(f)
and cemp(f,D) as follows:

c(f) = sup
p1,p2

|FP(f) − EP(f)|

cemp(f) = sup
p1,p2

|FD(f) − ED(f)|

Note that:

| sup
p1,p2

|FD(f) − ED(f)| − sup
p1,p2

|FS(f) − ES(f)||

≤ sup
p1,p2

||FD(f) − ED(f)| − |FS(f) − ES(f)||

≤ sup
p1,p2

|FD(f) − ED(f) −FS(f) + ES(f)|

≤ sup
p1,p2

(|FD(f) −FS(f)| + |ED(f) − ES(f)|)

≤ sup
p1,p2

|FD(f) −FS(f)| + sup
p1,p2

|ED(f) − ES(f)|

Therefore it suffices to show that

P( sup
f,p1,p2

|FD(f) −FS(f)|+

sup
f,p1,p2

|ED(f) − ES(f)| > �) < δ

Define

H1 = {1p1<f(x)≤p2,y=1 : p1, p2 ∈ R, f ∈ F}
H2 = {f(x)1p1<f(x)≤p2

: p1, p2 ∈ R, f ∈ F}

Then we have the following lemma:

Lemma 2. Let H1,H2 as defined above, then:

RD(H1) ≤ RD(H) RD(H2) ≤ RD(H)

Proof. For RD(H1), we have:

RD(H1)

=
1

n
Eσ∼{±1}n [ sup

p1,p2,f

n�

i=1

σi1p1<f(xi)≤p2,yi=1]

=
1

n
Eσ∼{±1}n [ sup

p1,p2,f

n�

i=1

σi1p1<f(xi)≤p2
Ezi∈{±1} max(zi, yi)]

≤ 1

n
Eσ,z∼{±1}n [ sup

p1,p2,f

n�

i=1

1p1<f(xi)≤p2
σi max(zi, yi)]

=
1

n
Et∼{±1}n [ sup

p1,p2,f

n�

i=1

ti1p1<f(xi)≤p2
]

=RD(H)

where the last step is because ti = σi max(zi, yi) is
uniformly distributed over {±1} independent of the
value of yi.

For RD(H2), we have:

RSn(H2)

=
1

n
Eσ∼{±1}n [ sup

p1,p2,f

n�

i=1

σif(xi)1p1<f(xi)≤p2
]

=
1

n
Eσ∼{±1}n [ sup

p1,p2,f

� 1

0

n�

i=1

σi1t<f(xi)1p1<f(xi)≤p2
dt]

≤ 1

n
Eσ∼{±1}n

� 1

0

[ sup
p1,p2,f

n�

i=1

σi1max(p1,t)<f(xi)≤p2
]dt

=
1

n
Eσ∼{±1}n

� 1

0

[ sup
p�
1≥t,p2,f

n�

i=1

σi1p�
1<f(xi)≤p2

]dt

≤ 1

n
Eσ∼{±1}n

� 1

0

[ sup
p�
1,p2,f

n�

i=1

σi1p�
1<f(xi)≤p2

]dt

=
1

n
Eσ∼{±1}n [ sup

p1,p2,f

n�

i=1

σi1p�
1<f(xi)≤p2

]

=RD(H)

where the second step is due to f(x) =
� 1

0
1t<f(x)dt,

and the forth step is just substituting max(p1, t) with
p�1. Since there is no constraint on p1, the p�1 can take
any value greater than or equal to t.

Combining this lemma with the assumptions in the
theorem:

EDRD(H1) +

�
2 ln(8/δ)

n
<

�

2

EDRD(H2) +

�
2 ln(8/δ)

n
<

�

2

By Equation (1):

P( sup
f,p1,p2

|FD(f) −FS(f)| > �

2
) <

δ

2

P( sup
f,p1,p2

|ED(f) − ES(f)| > �

2
) <

δ

2

Proof of Claim 2

Proof. For any σ ∈ {±1}n, we can find a vector w
such that for every Xi, we have wTXi = σi (this is
always possible since the number of equations n is less
than the dimensionality d). Let w∗ = Bw

||w||2 so that

||w∗||2 = B, and let a = λ||w||2/B and b = 0. Then
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1. For i = 0, . . . , n, Compute
Pi = (i, Si =

�
j≤i 1yj=1)

2. Let cv(P ) be the convex hull of the set of points
Pi

3. For i = 0, . . . , n, Let Zi = intersection of cv(P )
and the line x = i

4. Compute zi = Zi − Zi−1

5. Let g(f0(xi)) = zi, extrapolate these points to
get continuous nondecreasing function g.

Algorithm 1: Isotonic Regression Calibration Algo-
rithm (PAV Algorithm)

we have:

f(Xi) =
1

1 + exp(a(w∗)Tx + b)
=

1

1 + eλσi

Let λ → −∞, then
�n

i=1 σif(Xi) →
�n

i=1 1σi=1, and
the conclusion of the claim follows easily.

The Hypothesis Class H

In Theorem 2, H is the collection of binary classi-
fiers obtained by thresholding the output of a fuzzy
classifier in F . For many hypothesis classes F ,
the Rademacher Complexity of H can be naturally
bounded. For instance, if F is the d-dimensional gen-
eralized linear classifiers with monotone link function,
then EDRD(H) can be bounded by O(

�
d log n/n).

We remark that H is different from the hypothesis class
Hp1,p2

, where the thresholds are fixed in advance:

Hp1,p2
= {1p1<f(X)≤p2

: f ∈ H}
In general, the gap between the Rademacher Complex-
ities of H0 and Hp1,p2

can be arbitrarily large. The
following example illustrates this point.

Example 2. Let X = {1, . . . , n}, and A1, A2, . . . , A2n

be a sequence of sets containing all subsets of X . Let
H be the following hypothesis space:

F = {fi(x) =
i

2n
− 1

2n+1
1x∈Ai

: i ∈ {1, 2, . . . , 2n}}

Intuitively, F contains 2n classifiers, the ith classifier
produces a output of either i

2n or i
2n − 1

2n+1 depending
on whether x ∈ Ai. One can easily verify that for any
p1, p2, the VC-dimension (Vapnik and Chervonenkis,
1971) of Hp1,p2

is at most 2, but the VC-dimension of
H is n.

However, if for any x ∈ X , f ∈ F , we have f(x) ∈ P ∗

with |P ∗| < ∞, then RD(H) can be bounded using the
maximum VC-dimension of Hp1,p2

and log |P ∗|:

Claim 4. If for any f ∈ F , x ∈ X , we have f(x) ∈ P ∗

where P ∗ is a finite set, and for all p1, p2 ∈ R, the VC-
dimension of hypothesis space Hp1,p2

is at most d, then
for any sample D of size n with n > d + 1 we have:

RD(H) ≤
�

2d(ln n
d + 1) + 4 ln(|P ∗| + 1)

n

Proof. By Massart Lemma (Shalev-Shwartz and Ben-
David, 2014), we have:

RD(H) ≤
�

2 ln |H(D)|
n

where H(D) is the restriction of H to D. It suffices to
show that

|H(D)| ≤ (|P ∗| + 1)2(en/d)d

Note that
H(D) = ∪p1,p2

Hp1,p2
(D)

Since f(x) only takes finite possible values, we only
need to consider values of p1, p2 in P ∗∪{−∞}. There-
fore by union bound we have

|H(Sn)| ≤
�

p1,p2∈P∗∪{−∞}
|Hp1,p2

(Sn)|

Since each Hp1,p2
has VC-dimension at most d,

by Sauer’s Lemma (Shalev-Shwartz and Ben-David,
2014):

∀p1, p2, |Hp1,p2(Sn)| ≤ (en/d)d

Combining the last two inequalities, we get the desired
result.

Proof of Claim 3

Proof. For reference, the pseudo-code of the PAV al-
gorithm for isotonic regression (Niculescu-Mizil and
Caruana, 2005) can be found in Algorithm 1.

Let zi = g(f0(xi)), then we can rewrite the objective
function as:

max
a,b

|
�

a<i≤b

(1yi=1 − zi)|

To prove Algorithm 1 also minimizes this objective
function, we first state the minimization problem as a
linear programming:

min ξ1 + ξ2 s.t. ξ1, ξ2 ≥ 0

0 ≤ z1 ≤ z2 ≤ . . . ≤ zn ≤ 1

∀1 ≤ k ≤ n,
�

i≤k

zi ≥
�

i≤k

1yi=1 − nξ1

∀1 ≤ k ≤ n,
�

i≤k

zi ≤
�

i≤k

1yi=1 + nξ2
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Define Sk =
�

i≤k 1yi=1 and Zk =
�

i≤k zi. Then we
have the following constraints:

∀1 ≤ k ≤ n− 1, Zk − Zk−1 ≤ Zk+1 − Zk

∀1 ≤ k ≤ n, Sk − nξ1 ≤ Zk ≤ Sk + nξ2

Let Z∗
i be the solution produced by Algorithm 1, it

should be obvious that Z∗
i ≤ Si for all i. Therefore,

ξ∗2 =
1

n
min

i
(Si − Z∗

i ) = 0 ξ∗1 =
1

n
max

i
(Si − Z∗

i )

We need to prove that ξ∗1 ≤ ξ1 + ξ2 for every feasible
solution (Zi, ξi). Suppose ξ∗1 = 1

n (Sk−Z∗
i ), and Z∗

i lies
on the line segment {(j, Sj), (k, Sk)}. Then we have:

Si − nξ∗1 = Z∗
i =

i− j

k − j
Sk +

k − i

k − j
Sj

Because of the convexity constraint of Z, it must sat-
isfy the following inequality:

Zi ≤
i− j

k − j
Zk +

k − i

k − j
Zj

Computing the difference between these two, we get

Zi − Si + nξ∗1 ≤ i− j

k − j
(Zk − Sk) +

k − i

k − j
(Zj − Sj)

Substituting in

Zi − Si ≥ −nξ1 Zk − Sk ≤ nξ2 Zj − Sj ≤ nξ2

We get
nξ∗1 ≤ nξ1 + nξ2

which proves the optimality of Z∗.

Properties of Isotonic Regression

We can prove several interesting properties of isotonic
regression using Theorem 2.

Claim 5. Let g∗ be the calibrating function produced
by Algorithm 1, then:

1. The empirical calibration measure cemp(g∗◦f0, D)
of the calibrated classifier is always 0.

2. For any asymmetric loss (1−p, p) (i.e., each false
negative incurs 1 − p cost and each false positive
incurs p cost), the empirical loss of the calibrated
classifier is always no greater than the original
classifier (both using the optimal decision thresh-
old p):

n�

i=1

[(1 − p)1g∗(f0(xi))≤p,yi=1 + p1g∗(f0(xi))>p,yi=0]

≤
n�

i=1

[(1 − p)1f0(xi)≤p,yi=1 + p1f0(xi)>p,yi=0]

In particular, when p = 0.5, the empirical accu-
racy of the calibrated classifier is always greater
than or equal to the empirical accuracy of the orig-
inal classifier.

Proof. Throughout the proof, let C be the convex hull
computed in Algorithm 1:

C = {(i0 = 0, 0), (i1, Si1), . . . , (im−1, Sim−1
), (im = n, Sn)}

We will use the following notations:

zi = g∗(f0(xi)) Zk =

k�

i=1

zi Sk =

k�

i=1

1yi=1

1. For any p1, p2, let l, r be such that:

l = max
k≤n,zk≤p1

k r = max
k≤n,zk≤p2

k

If no such k exists, let l, r be 0 respectively. By
Algorithm 1, we have

∀ij < k ≤ ij+1, zk =
Sij+1

− Sij

ij+1 − ij

Thus we have (l, Sl), (r, Sr) ∈ C, Zl = Sl, Zr =
Sr, and therefore

n�

i=1

1p1<zi≤p2,yi=1 −
n�

i=1

1p1<zi≤p2zi

=(Zr − Zl) − (Sr − Sl) = 0

which implies that cemp(g∗ ◦ f0) = 0

2. Let a = max{i : f0(xi) ≤ p}, b = max{i : zi ≤ p},
then we need to show that

(1 − p)
b�

i=1

1yi=1 + p

n�

i=b+1

1yi=0

≤ (1 − p)

a�

i=1

1yi=1 + p

n�

i=a+1

1yi=0

We consider two separate cases:

(a) a ≤ b, in this case we only need to show that

b�

i=a+1

[p1yi=0 − (1 − p)1yi=1] ≥ 0

or equivalently,

p[(b− a) − (Sb − Sa)] − (1 − p)(Sb − Sa) ≥ 0

Rearrange terms, it suffices to show

p(b− a) − (Sb − Sa) ≥ 0

Since Sb = Zb, Sa ≥ Za

Sb − Sa ≤ Zb − Za ≤ zb(b− a) ≤ p(b− a)
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(b) a > b, in this case we only need to show

a�

i=b+1

[p1yi=0 − (1 − p)1yi=1] ≤ 0

or equivalently,

p[(a− b) − (Sa − Sb)] − (1 − p)(Sa − Sb) ≤ 0

Rearrange terms, it suffices to show

p(a− b) − (Sa − Sb) ≤ 0

Since Sb = Zb, Sa ≥ Za

Sa − Sb ≥ Za − Zb ≥ zb+1(a− b) ≥ p(a− b)

We can also use Theorem 2 to derive the following
non-asymptotic convergence result of Algorithm 1.

Claim 6. Let F (t) = P(f0(X) ≤ t) be the distribution
function of f0(X), and define G(t) as:

G(t) = P(f0(X) ≤ t, Y = 1)

Let cv : [0, 1] → [0, 1] be the convex hull of all points
(F (t), G(t)) for all t ∈ [0, 1]. Define Ge as:

Ge(t) = E[1f0(X)≤tg
∗(f0(X))]

Then under the same condition in Theorem 2,

P(sup
t

|Ge(t) − cv(F (t))| > 2�) < 5δ

In particular, if P(Y = 1|f0(X)) is monotonically in-
creasing, then

P(sup
t

|Ge(t) −G(t)| > 2�) < 5δ

Let us explain the intuition behind this claim: F (t)
is the percentage of data points satisfying f0(X) ≤ t,
and G(t) is F (t) times the conditional probability of
Y = 1 in the region {f0(X) ≤ t}. Now consider points
Pi = (i, Si) in Algorithm 1, it is not hard to show
that as n → ∞, the limit of points Pi are the curve
(F (t), G(t)), t ∈ [0, 1] (after proper scaling). Similarly,
Ge(t) is F (t) times the expected value of g∗(f0(X))
in the region {f0(X) ≤ t}, and it is not hard to show
that (F (t), Ge(t)) is the limit of (i, Zi) (after proper
scaling). Now the claim states that in the PAV algo-
rithm, (F (t), Ge(t)) converge uniformly to the convex
hull of (F (t), G(t)), which should not be surprising,
since we explicitly computed the convex hull of {Pi}
in Algorithm 1.

When P(Y = 1|f0(X)) is monotonically increasing
w.r.t. f0(X), (F (t), G(t)) is convex, and Claim 6 im-
mediately implies that Ge(t) will converge uniformly
to G(t). In this case, the PAV algorithm will even-
tually recover the “true” link function g∗(f0(X)) =
P(Y = 1|f0(X)) given sufficient training samples, and
Claim 6 provides a rough estimate of the number of
samples required to achieve the desired precision.

Proof. Throughout the proof, let C be the convex hull
computed in Algorithm 1:

C = {(i0 = 0, 0), (i1, Si1), . . . , (im−1, Sim−1
), (im = n, Sn)}

We will use the following notations:

zi = g∗(f0(xi)) Zk =

k�

i=1

zi Sk =

k�

i=1

1yi=1

We will use the following facts in the proof of Theo-
rem 2:

P( sup
g,p1,p2

|FD(g ◦ f0) −FP(g ◦ f0)| > �

2
) <

δ

2

P( sup
g,p1,p2

|ED(g ◦ f0) − EP(g ◦ f0)| > �

2
) <

δ

2

For any t ∈ [0, 1], let g� be any continuous increasing
function from [0, 1] to [0, 1]. Let k = max{i : f0(xi) ≤
t}, p1 = −∞, p2 = g�(t) in the above inequalities, then
we have:

P(| 1
n
Sk −G(t)| > �

2
) <

δ

2
(2)

P(| 1
n

k�

i=1

g�(f0(xi)) − E[1f0(X)≤tg
�(f0(X))]| > �

2
) <

δ

2

Let g� be such that ||g� − g∗||∞ < λ, where λ > 0
can be arbitrarily small. Let λ ↓ 0, then the second
inequality implies

P(| 1
n
Zk −Ge(t)| > �

2
) <

δ

2
(3)

Let g� be such that |g�(x)−1| < λ for any x. Let λ ↓ 0,
then the second inequality implies

P(| 1
n
k − F (t)| > �

2
) <

δ

2
(4)

For any t ∈ [0, 1], let k = max{i : f0(xi) ≤ t}. Let
[ij−1 = l, ij = r] be the segment of C with l < k ≤ r.
Then we have

zl+1 = . . . = zk = . . . = zr
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Sl = Zl = Zk − (k − l)zk

Sr = Zr = Zk + (r − k)zk

On the other hand, by (2), with probability at least
1 − δ:

1

n
Sl ≥ G(f0(xl)) −

�

2

1

n
Sr ≥ G(f0(xr)) − �

2

Since cv is the convex hull of (F (t), G(t)), we have

qG(f0(xl)) + (1 − q)G(f0(xr)) ≥ cv(F (t))

where q = F (f0(xr))−F (t)
F (f0(xr))−F (f0(xl))

. Combining all, with

probability at least 1 − δ:

1

n
Zk +

1

n
[ql + (1 − q)r − k]zk +

�

2
≥ cv(F (t))

By (4), with probability at least 1 − 3
2δ:

1

n
l ≤ F (f0(xl)) +

�

2

1

n
r ≤ F (f0(xr)) +

�

2

1

n
k ≥ F (t) − �

2

Therefore, we have with probability at least 1 − 5
2δ,

1

n
Zk +

3�

2
≥ cv(F (t))

Then by (3), with probability at least 1 − 3δ,

Ge(t) + 2� ≥ cv(F (t))

Conversely, suppose (F (t), cv(F (t))) is on the line seg-
ment between (F (a), G(a)) and (F (b), G(b)), then

G(a) = cv(F (t)) − w(F (t) − F (a))

G(b) = cv(F (t)) + w(F (b) − F (t))

where w = G(b)−G(a)
F (b)−F (a) (if F (a) = F (b) then just let

w = 1).

By (2) and (3) and the fact that Sk ≥ Zk, with prob-
ability at least 1 − 2δ:

G(a) + � ≥ Ge(a) G(b) + � ≥ Ge(b)

Also since (F (t), Ge(t)) is convex, we have:

qGe(a) + (1 − q)Ge(b) ≥ Ge(t)

where q = F (b)−F (t)
F (b)−F (a) . Combining all above, with prob-

ability at least 1 − 2δ:

cv(F (t)) + � ≥ Ge(t)

Combining two directions, the proof is complete.

Discussion on Kakade’s Algorithm (2011)

Kakade’s algorithm minimizes the following squared
loss objective function:

L(u,w) =

n�

i=1

(yi − u(w · xi))

where u is a non-decreasing 1-Lipschitz function and
w satisfies ||w|| ≤ W . In each iteration, the algorithm
first fix u and search for the optimal w that minimizes
the squared loss, then fix w and run a slightly modified
version of the PAV algorithm (Algorithm 1) to find the
optimal u.

In Claim 5, we proved that the PAV algorithm always
produce a calibrated classifier, therefore Kakade’s al-
gorithm can be viewed as alternating between the fol-
lowing two steps:

1. Search for the parameter w that minimizes the
squared loss L(u,w).

2. Find the link function u such that u(w · x) is em-
pirically calibrated.

In other words, each iteration of Kakade’s algorithm
can be viewed as first optimizing the objective func-
tion L(u,w), then projecting u(w ·x) onto the space of
empirically calibrated classifiers. An interesting ques-
tion here is whether the algorithm would still work if
we replace the squared loss function with any other
loss function in the first step.


