
Information-theoretic limits of Bayesian network structure learning

Appendix A Comparison with Markov Random Fields.

While there has been a lot of prior work on determining the information-theoretic limits of structure recovery in
Markov random fields (MRFs), which are undirected graphical models, characterizing the information-theoretic
limits of learning BNs (directed models) is important in its own right for the following reasons. First, unlike
MRFs where the undirected graph corresponding to a dependence structure is uniquely determined, multiple
DAG structures can encode the same dependence structure in BNs. Therefore, one has to reason about Markov
equivalent DAG structures in order to characterize the information-theoretic limits of structure recovery in BNs.
Second, the complexity of learning MRFs is characterized in terms of parameters of the joint distribution over
nodes, which in turn relates to the overall graph structure, while the complexity of learning BNs is characterized
by parameters of local conditional distributions of the nodes. The latter presents a technical challenge, as shown
in the paper, when the marginal or joint distribution of the nodes in a BN do not have a closed form solution.

A recurring theme in the available literature on information-theoretic limits of learning MRFs, is to construct
ensembles of MRFs that are hard to learn and then use the Fano’s inequality to lower bound the estimation
error by treating the inference procedure as a communication channel. Santhanam and Wainwright [13] obtained
necessary and sufficient conditions for learning pairwise binary MRFs. The necessary and sufficient conditions on
the number of samples scaled as O �k2 logm� and O �k3 logm� respectively, where k is the maximum node degree.
Information theoretic limits of learning Gaussian MRFs was studied by Wang et al. [14] and for walk-summable
Gaussian networks, by Anandkumar et al. [17]. In [18], Anandkumar et al. obtain a necessary condition of
⌦(c logm) for structure learning of Erdős-Rényi random Ising models, where c is the average node degree.

Appendix B Proofs of Main Results

Proof of Theorem 1 (Fano’s inequality extension). Let,

E
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X 6= bX
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. Then using the chain rule for entropy we can expand the conditional entropy

H(E,X| bX,W ) as follows:

H(E,X| bX,W ) = H(E|X, bX,W ) +H(X| bX,W ) (15)

= H(X|E, bX,W ) +H(E| bX,W ) (16)

Next, we bound each of the terms in (15) and (16). H(E|X, bX,W ) = 0 because E is a deterministic function of
X and bX. Moreover, since conditioning reduces entropy, we have that H(E| bX,W )  H(E) = H(p

err

). Using
the same arguments we have the following upper bound on H(X|E, bX,W ):

H(X|E, bX,W ) = p
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H(X|E = 1, bX,W ) + (1� p
err

)H(X|E = 0, bX,W )

 p
err

H(X|W ) (17)

Next, we show that I( bX;X|W )  I( bX;Y |W ), which can be thought of as the conditional data processing
inequality. Using the chain rule of mutual information we have that

I(Y, bX;X|W ) = I( bX;X|Y,W ) + I(Y ;X|W )

= I(Y ;X| bX,W ) + I( bX;X|W ).

Since, conditioned on Y , X and bX are independent. We have I( bX;X|Y,W ) = 0.
=) I(Y ;X|W ) = I(Y ;X| bX,W ) + I( bX;X|W )

=) I(Y ;X|W ) � I( bX;X|W ).

Therefore, we can bound H(X| bX,W ) as follows:

H(X| bX,W ) = H(X|W )� I( bX;X|W ) � H(X|W )� I(Y ;X|W ). (18)
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Combining (15),(16),(17) and (18), we get:

H(X|W )� I(Y ;X|W )  H(p
err

) + p
err

H(X|W )

=) H(X|W )� I(Y ;X|W )  log 2 + p
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Now if X and W are independent then H(X|W ) = H(X). Denoting the joint distribution over X,Y,W by
P
X,Y,W

, the conditional distribution of X,Y given W by P
X,Y |W and so on; the final claim follows from bounding

the term I(Y ;X|W ) as follows:

I(Y ;X|W ) = EPX,Y,W
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Proof of Lemma 1. First, we briefly review Steinsky’s method for counting essential DAGs, which in turn is based
upon Robinson’s [19] method for counting labeled DAGs. The main idea behind Steinsky’s method is to split
the set of essential DAGs into overlapping subsets with different terminal vertices — vertices with out-degree 0.
Let A

i

⇢ eG
m

be the set of essential DAGs where the i-th node is a terminal node. Using the inclusion-exclusion
principle, the number of essential DAGs is given as follows:
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Now, consider the term |A
1

\ . . .\A
m�1

|, i.e., number of essential DAGs where nodes [m�1] are terminal nodes.
The number of ways of adding the m-th vertex as a terminal vertex to an arbitrary essential DAG on the nodes
[m� 1] is: 2

m�1 � (m� 1). The term m� 1 needs to be subtracted to account for edges that are not protected.
Therefore, c
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is given by the following recurrence relation:
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where c
0

= 1. Using Bonferroni’s inequalities we can upper bound c
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as follows:
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Using Bonferroni’s inequalities to lower bound c
m

produces recurrence relations that have no closed form solution.
Therefore, we lower bound c

m

in (20) as follows:
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Proof of Lemma 2. In this case, A
i

is the set of essential DAGs where the i-th node is a terminal node and all
nodes have at most k parents. Once again, using the inclusion-exclusion principle, the number of essential DAGs
with at most k parents is given as follows:
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Now, consider the term |A
1

,\ . . .\, A
s

|, i.e. number of essential DAGs where nodes {1, . . . , s} are terminal
nodes. Let G

0

be an arbitrary essential DAG over nodes {s+1, . . . ,m}, where each node has at most k parents.
Let u 2 {1, . . . , s} and v 2 {s + 1, . . . ,m} be arbitrary nodes. Let G
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the following recurrence relation for upper and lower bounds on the number of essential DAGs with at most k
parents:
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where from Lemma 1 we have that 2
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Similarly, we can lower bound c
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as follows:
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Finally, using (28), we lower bound log c
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as follows:
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The second term in the above equation is lower bounded as follows:
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Proof Lemma 3. For layered non-sparse BNs, the number of possible choices for parents of a node in layer i is
2

mi+1 . Therefore, the total number of non-sparse Bayesian networks is given as
Q

l�1

i=1
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mi . Similarly, for
the sparse case, the number of possible choices for parents of a node in layer i is
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Proof of Lemma 4. Let c
def

= |G|, for some ensemble of DAGs G. Denoting the conditional distribution of the
data given a specific instance of the parameters ⇥ by PS|⇥, we have:
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where in KL
�PS|G,⇥
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, ⇥ and G are specific instances and not random variables. For any distribution Q
over S, we can rewrite KL
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where the expectation ES [.] is with respect to the distribution PS|G,⇥

. Now, ES
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where, once again, we emphasize that in KL
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�Q�, ⇥ is a particular instance of the parameters and not a
random variable. Combining (29), (30) and (31), and using the fact that KL
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Proof of Lemma 5 (KL bound for exponential family).
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where for computing the expected sufficient statistic, E
X

[T(x)|⌘
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], we take the expectation with respect to the
distribution parameterized by ⌘
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. Now, from the mean value theorem we have that
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Since the function T is the gradient of the convex function  , it is monotonic. Therefore, the function T (↵⌘
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) takes the maximum value at the end points ↵ = 0 or at ↵ = 1. Assuming T is maximized at ↵ = 0,
the i-th KL divergence term can be upper bound using (34) as:
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Proof of Theorem 2. Setting the measure PG to be the uniform over G, and using the Fano’s inequality from
Theorem 1 and the mutual information bound from Lemma 6, combined with our Assumption 1, we can bound
the estimation error as follows:

p
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� 1� nm�

max

+ log 2

log |G| .

Then by using the lower bounds on the number of DAG structures in each of the ensembles from Lemmas 1, 2
and 3, and setting p

err

to 1/2, we prove our claim.
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Appendix C Proofs of Results for Commonly Used Bayesian Networks

Proof of Lemma 7 (Mutual Information bound for CPT networks). For CPT, the mutual information bound is
representative of the case when we do not have a closed form solution for the marginal and joint distributions;
yet, we can easily bound �(⌘

i

,⌘
0

) through a simple application of the Cauchy-Schwartz inequality, and obtain
tighter bounds than the naive O (mn log v) bound on the mutual information I(S;G|⇥). The sufficient statistics
and the natural parameter for the categorical distribution is given as follows:
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where in the above we used the Cauchy-Schwartz inequality followed by the fact k⇥
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= 1, 8x 2 X .

Proof of Lemma 8 (Mutual Information bound for Gaussian). This exemplifies the case where we have closed
form solutions for the joint and marginal distributions, which in this case is Gaussian, and we can compute the
expected value of �(⌘

i

,⌘
0

). The sufficient statistics and natural parameter for the i-th conditional distribution
are given as follows:

T(X
i

) =

X
i

�/
p
2

, ⌘
i

=

µ
i

�/
p
2

.

Also note that, 8i 2 [m], the marginal expectation E [X
i

]  µ kw
i

k
2

. Therefore, we have that EX⇡i
[�(⌘

i

,⌘
0

)] =

EX⇡i

⇥

2(µi�µ)

2

/�2

⇤

=

2(EX⇡i
[(µi�µ)]

2

+VarX⇡i
[µi])/�2  2(µ

2

(kwik
2

�1)

2

+VarX⇡i
[µi])/�2. Hence, we need to upper bound

VarX⇡i
[µ

i

] in order to upper bound EX⇡i
[�(.)]. Let (i)

G

2 [m] be the i-th node in the topological order defined
by the graph G. We use the shorthand notation (i), when it is clear from context that the i-th node in the
topological ordering is intended. Now, from the properties of the Gaussian distribution we know that if the
conditional distributions are all Gaussian, then the joint distribution over any subset of X is Gaussian as well.
Let ⌃ 2 Rm⇥m be the covariance matrix for the joint distribution over X, and similarly ⌃
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 i�2.

Therefore, we can bound the variance of µ
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as follows:
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Proof of Lemma 9 (Mutual Information bound for Noisy-OR). The expected sufficient statistics and natural pa-
rameter for the Bernoulli distribution is given as:
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Proof of Lemma 10 (MI bound for Logistic regression networks). The expected sufficient statistics and the nat-
ural parameter are given as follows:
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