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Abstract

In this paper we obtain sufficient and neces-
sary conditions on the number of samples re-
quired for exact recovery of the pure-strategy
Nash equilibria (PSNE) set of a graphical
game from noisy observations of joint actions.
We consider sparse linear influence games —
a parametric class of graphical games with
linear payoffs, and represented by directed
graphs of n nodes (players) and in-degree of
at most k. We show that one can efficiently
recover the PSNE set of a linear influence
game with O �k2 log n� samples, under very
general observation models. On the other
hand, we show that ⌦ (k log n) samples are
necessary for any procedure to recover the
PSNE set from observations of joint actions.

1 Introduction and Related Work

Non-cooperative game theory is widely considered as
an appropriate mathematical framework for studying
strategic behavior in multi-agent scenarios. In Non-
cooperative game theory, the core solution concept
of Nash equilibrium describes the stable outcome of
the overall behavior of self-interested agents — for
instance people, companies, governments, groups or
autonomous systems — interacting strategically with
each other and in distributed settings.

Over the past few years, considerable progress has
been made in analyzing behavioral data using game-
theoretic tools, e.g. computing Nash equilibria [1, 2, 3],
most influential agents [4], price of anarchy [5] and
related concepts in the context of graphical games.
In political science for instance, Irfan and Ortiz [4]
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identified, from congressional voting records, the most
influential senators in the U.S. congress — a small
set of senators whose collective behavior forces every
other senator to a unique choice of vote. Irfan and
Ortiz [4] also observed that the most influential sena-
tors were strikingly similar to the gang-of-six senators,
formed during the national debt ceiling negotiations of
2011. Further, using graphical games, Honorio and Or-
tiz [6] showed that Obama’s influence on Republicans
increased in the last sessions before candidacy, while
McCain’s influence on Republicans decreased.

The problems in algorithmic game theory described
above, i.e., computing the Nash equilibria, comput-
ing the price of anarchy or finding the most influ-
ential agents, require a known graphical game which
is not available apriori in real-world settings. There-
fore, Honorio and Ortiz [6] proposed learning graphi-
cal games from behavioral data, using maximum likeli-
hood estimation (MLE) and sparsity-promoting meth-
ods. On the other hand, Garg and Jaakkola [7] provide
a discriminative approach to learn a class of graphical
games called potential games. Honorio and Ortiz [6]
and Irfan and Ortiz [4] have also demonstrated the use-
fulness of learning sparse graphical games from behav-
ioral data in real-world settings, through their analysis
of the voting records of the U.S. congress as well as the
U.S. supreme court.

In this paper, we obtain necessary and sufficient condi-
tions for recovering the PSNE set of a graphical game
in polynomial time. We also generalize the observa-
tion model from Ghoshal and Honorio [8], to arbitrary
distributions that satisfy certain mild conditions. Our
polynomial time method for recovering the PSNE set,
which was proposed by Honorio and Ortiz [6], is based
on using logistic regression for learning the neighbor-
hood of each player in the graphical game, indepen-
dently. Honorio and Ortiz [6] showed that the method
of independent logistic regression is likelihood consis-
tent; i.e., in the infinite sample limit, the likelihood
estimate converges to the best achievable likelihood.
In this paper we obtain the stronger guarantee of re-
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covering the true PSNE set exactly.

Finally, we would like to draw the attention of the
reader to the fact that `

1

-regularized logistic regres-
sion has been analyzed by Ravikumar et. al. [9] in
the context of learning sparse Ising models. Apart
from technical differences and differences in proof tech-
niques, our analysis of `

1

-penalized logistic regres-
sion for learning sparse graphical games differs from
Ravikumar et. al. [9] conceptually — in the sense
that we are not interested in recovering the edges of
the true game graph, but only the PSNE set. There-
fore, we are able to avoid some stronger conditions
required by Ravikumar et. al. [9], such as mutual
incoherence.

2 Preliminaries

In this section we provide some background informa-
tion on graphical games introduced by Kearns et. al.
[10].

2.1 Graphical Games

A normal-form game G in classical game theory is de-
fined by the triple G = (V,X ,U) of players, actions and
payoffs. V is the set of players, and is given by the set
V = {1, . . . , n}, if there are n players. X is the set of
actions or pure-strategies and is given by the Cartesian
product X def

= ⇥
i2V

X
i

, where X
i

is the set of pure-
strategies of the i-th player. Finally, U def

= {u
i

}n
i=1

, is
the set of payoffs, where u

i

: X
i

⇥
j2V \i Xj

! R spec-
ifies the payoff for the i-th player given its action and
the joint actions of the all the remaining players.

An important solution concept in the theory of non-
cooperative games is that of Nash equilibrium. For a
non-cooperative game, a joint action x⇤ 2 X is a pure-
strategy Nash equilibrium (PSNE) if, for each player
i, x⇤

i

2 argmax

x

i

2X
i

u
i

(x
i

,x⇤
�i

), where x⇤
�i

= {x⇤
j

|j 6=
i}. In other words, x⇤ constitutes the mutual best-
response for all players and no player has any incentive
to unilaterally deviate from their optimal action x⇤

i

given the joint actions of the remaining players x⇤
�i

.
The set of all pure-strategy Nash equilibrium (PSNE)
for a game G is defined as follows:

NE(G) =
⇢

x⇤�
�

(8i 2 V ) x⇤
i

2 argmax

x

i

2X
i

u
i

(x
i

,x⇤
�i

)

�

.

(1)

Graphical games, introduced by Kearns et al. [10],
are game-theoretic analogues of graphical models. A
graphical game G is defined by the directed graph, G =

(V,E), of vertices and directed edges (arcs), where ver-
tices correspond to players and arcs encode “influence”

among players, i.e., the payoff of the i-th player only
depends on the actions of its (incoming) neighbors.

2.2 Linear Influence Games

Irfan and Ortiz [4] and Honorio and Ortiz [6], intro-
duced a specific form of graphical games, called Linear
Influential Games, characterized by binary actions, or
pure strategies, and linear payoff functions. We as-
sume, without loss of generality, that the joint ac-
tion space X = {�1,+1}n. A linear influence game
between n players, G(n) = (W,b), is characterized
by (i) a matrix of weights W 2 Rn⇥n, where the
entry w

ij

indicates the amount of influence (signed)
that the j-th player has on the i-th player and (ii)
a bias vector b 2 Rn, where b

i

captures the prior
preference of the i-th player for a particular action
x
i

2 {�1,+1}. The payoff of the i-th player is a lin-
ear function of the actions of the remaining players:
u
i

(x
i

,x�i

) = x
i

(wT

�i

x�i

� b
i

), and the PSNE set is
defined as follows:

NE(G(n)) = �x|(8i) x
i

(wT

�i

x�i

� b
i

) � 0

 

, (2)

where w�i

denotes the i-th row of W without the i-
th entry, i.e. w�i

= {w
ij

|j 6= i}. Note that we have
diag(W) = 0. Thus, for linear influence games, the
weight matrix W and the bias vector b, completely
specify the game and the PSNE set induced by the
game. Finally, let G(n, k) denote a sparse game over
n players where the in-degree of any vertex is at most
k.

3 Problem Formulation

Now we turn our attention to the problem of learn-
ing graphical games from observations of joint actions
only. Let NE⇤ def

= NE(G⇤
(n, k)). We assume that

there exists a game G⇤
(n, k) = (W⇤,b⇤

) from which
a “noisy” data set D = {x(l)}m

l=1

of m observations is
generated, where each observation x(l) is sampled in-
dependently and identically from some distribution P.
We will use two specific distributions P

g

and P
l

, which
we refer to as the global and local noise model, to pro-
vide further intuition behind our results. In the global
noise model, we assume that a joint action is observed
from the PSNE set with probability q

g

2 (

|NE⇤|/2n, 1),
i.e.

P
g

(x) =
q
g

1 [x 2 NE⇤
]

|NE⇤| +

(1� q
g

)1 [x /2 NE⇤
]

2

n � |NE⇤| . (3)

In the above distribution, q
g

can be thought of as the
“signal” level in the data set, while 1 � q

g

can be
thought of as the “noise” level in the data set. In
the local noise model we assume that the joint ac-
tions are drawn from the PSNE set with the action of
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each player corrupted independently by some Bernoulli
noise. Then in the local noise model the distribution
over joint actions is given as follows:

P
l

(x) =
1

|NE⇤|
X

y2NE⇤

n

Y

i=1

q
1[x

i

=y

i

]

i

(1� q
i

)

1[x

i

6=y

i

],

(4)

where q
i

> 0.5. While these noise models were in-
troduced in [6], we obtain our results with respect to
very general observation models, satisfying only some
mild conditions. A natural question to ask then is
that: “Given only the data set D and no other in-
formation, is it possible to recover the game graph?”
Honorio and Ortiz [6] showed that it is in general im-
possible to learn the true game G⇤

(n, k) from obser-
vations of joint actions only because multiple weight
matrices W and bias vectors b can induce the same
PSNE set and therefore have the same likelihood un-
der the global noise model (3) — an issue known as
non-identifiablity in the statistics literature. It is also
easy to see that the same holds true for the local noise
model. It is, however, possible to learn the equivalence
class of games that induce the same PSNE set. We de-
fine the equivalence of two games G⇤

(n, k) and bG(n, k)
simply as :

G⇤
(n, k) ⌘ bG(n, k) iff NE(G⇤

(n, k)) = NE(bG(n, k)).
Therefore, our goal in this paper is efficient and consis-
tent recovery of the pure-strategy Nash equilibria set
(PSNE) from observations of joint actions only; i.e.,
given a data set D, drawn from some game G⇤

(n, k) ac-
cording to the distribution P, we infer a game bG(n, k)
from D such that bG(n, k) ⌘ G⇤

(n, k).

4 Method and Results

In order to efficiently learn games, we make a few as-
sumptions on the probability distribution from which
samples are drawn and also on the underlying game.

4.1 Assumptions

The following assumption ensures that the distribution
P assigns non-zero mass to all joint actions in X and
that the signal level in the data set is more than the
noise level.
Assumption 1. There exists constants p̃

min

, p̃
max

and
p
max

such that the data distribution P satisfies the fol-
lowing:

0 <
p̃
min

2

n � |NE⇤|  P(x)  p̃
max

2

n � |NE⇤| , 8x 2 X \ NE⇤,

p̃
max

2

n � |NE⇤| < P(x)  p
max

 1, 8x 2 NE⇤.

To get some intuition for the above assumption, con-
sider the global noise model. In this case we have that
p̃
min

= p̃
max

= (1 � q
g

), p
max

=

q

g/|NE⇤|, and 8x 2
NE⇤, P(x) = p

max

. For the local noise model, con-
sider, for simplicity, the case when there are only two
joint actions in the PSNE set: NE⇤

= {x1,x2}, such
that x1

1

= +1, x2

1

= �1 and x1

i

= x2

i

= +1 for all i 6= 1.
Then, p̃

min

= 0.5⇥ (1� q
2

)⇥ . . .⇥ (1� q
n

)⇥ (2

n � 2),
p̃
max

= 0.5 ⇥ (1 � q
j

)(

Q

i/2{j,1} qi) ⇥ (2

n � 2), where
q
j

= min{q
2

, . . . , q
n

}, and p
max

= 0.5⇥ q
2

⇥ . . . q
n

.

Our next assumption concerns with the minimum pay-
off in the PSNE set.
Assumption 2. The minimum payoff in the PSNE
set, ⇢

min

, is strictly positive, specifically:

x
i

(w⇤
�i

Tx�i

� b
i

) � ⇢
min

> 5C

min/D
max

(8 x 2 NE⇤
),

where C
min

> 0 and D
max

are the minimum and max-
imum eigenvalue of the expected Hessian and scatter
matrices respectively.

Note that as long as the minimum payoff is strictly
positive, we can scale the parameters (W⇤,b⇤

) by the
constant 5C

min/D
max

to satisfy the condition: ⇢
min

>
5C

min/D
max

, without changing the PSNE set. Indeed
the assumption that the minimum payoff is strictly
positive is is unavoidable for exact recovery of the
PSNE set in a noisy setting such as ours, because oth-
erwise this is akin to exactly recovering the parameters
v for each player i. For example, if x 2 NE⇤ is such
that v⇤Tx = 0, then it can be shown that even if
kv⇤ � bvk1 = ", for any " arbitrarily close to 0, then
bvTx < 0 and therefore NE(W⇤,b⇤

) 6= NE(cW, bb).

4.2 Method

Our main method for learning the structure of a sparse
LIG, G⇤

(n, k), is based on using `
1

-regularized logistic
regression, to learn the parameters (w�i

, b
i

) for each
player i independently. We denote by v

i

(W,b) =

(w�i

,�b
i

) the parameter vector for the i-th player,
which characterizes its payoff; by z

i

(x) = (x
i

x�i

, x
i

)

the “feature” vector. In the rest of the paper we use v
i

and z
i

instead of v
i

(W,b) and z
i

(x) respectively, to
simplify notation. Then, we learn the parameters for
the i-th player as follows:

bv
i

= argmin

v

i

`(v
i

,D) + � kv
i

k
1

(5)

`(v
i

,D) =

1

m

m

X

l=1

log(1 + exp(�vT

i

z
(l)

i

)). (6)

We then set bw�i

= [

bv
i

]

1:(n�1)

and bb
i

= �[

bv
i

]

n

, where
the notation [.]

i:j

denotes indices i to j of the vector.
We take a moment to introduce the expressions of the
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gradient and the Hessian of the loss function (6), which
will be useful later. The gradient and Hessian of the
loss function for any vector v and the data set D is
given as follows:

r`(v,D) =

1

m

m

X

l=1

⇢ �z(l)

1 + exp(vT z(l))

�

(7)

r2`(v,D) =

1

m

m

X

l=1

⌘(vT z(l))z(l)z(l)
T

, (8)

where ⌘(x) = 1/(ex/2

+e

�x/2

)

2. Finally, Hm

i

denotes the
sample Hessian matrix with respect to the i-th player
and the true parameter v⇤

i

, and H⇤
i

denotes its ex-
pected value, i.e. H⇤

i

def

= ED [Hm

i

] = ED
⇥r2`(v⇤

i

,D)

⇤

.
In subsequent sections we drop the notational depen-
dence of H⇤

i

and z
i

on i to simplify notation.

We show that, under the aforementioned assumptions
on the true game G⇤

(n, k) = (W⇤,b⇤
), the parameters

cW and bb obtained using (6) induce the same PSNE
set as the true game, i.e., NE(W⇤,b⇤

) = NE(cW, bb).

4.3 Sufficient Conditions

In this section, we derive sufficient conditions on the
number of samples for efficiently recovering the PSNE
set of graphical games with linear payoffs. To start
with, we make the following observation regarding the
number of Nash equilibria of the game satisfying As-
sumption 2. The proof of the following proposition, as
well as other missing proofs can be found in Appendix
A.
Proposition 1. The number of Nash equilibria of a
non-trivial game (|NE⇤| 2 [1, 2n � 1]) satisfying As-
sumption 2 is at most 2n�1.

We will denote the fraction of joint actions that are
in the PSNE set by fNE⇤

def

=

|NE⇤|/2n�1. By proposi-
tion 1, fNE⇤ 2 (0, 1]. Then, our main strategy for ob-
taining sufficient conditions for exact PSNE recovery
guarantees is to first show that under any data dis-
tribution P that satisfies Assumption 1, the expected
loss is smooth and strongly convex, i.e., the population
Hessian matrix is positive definite and the population
scatter matrix has eigenvalues bounded by a constant.
Then using tools from random matrix theory, we show
that the sample Hessian and scatter matrices are “well
behaved”, i.e., are positive definite and have bounded
eigenvalues respectively, with high probability. Then,
we exploit the convexity properties of the logistic loss
function to show that the weight vectors learned us-
ing penalized logistic regression are “close” to the true
weight vectors. By our assumption that the minimum
payoff in the PSNE set is strictly greater than zero,
we show that the weight vectors inferred from a finite

sample of joint actions induce the same PSNE set as
the true weight vectors.

The following lemma shows that the expected Hessian
matrices for each player is positive definite and the
maximum eigenvalues of the expected scatter matrices
are bounded from above by a constant.

Lemma 1. Let S be the support of the vector v, i.e.,
S

def

= {i| |v
i

| > 0}. There exists constant C
min

�
⌘(kv⇤k

1

)2

n

p̃

min

2

n�|NE⇤| > 0 and D
max

 2

np
max

, such that
we have �

min

(H⇤
SS

) = C
min

and �
max

(E
x

⇥

z
S

zT
S

⇤

) =

D
max

.

Proof.

�
min

(H⇤
SS

) = �
min

⇣

E
x

h

⌘(v⇤T z)z
S

zT
S

i⌘

= ⌘(kv⇤k
1

)�
min

(E
x

⇥

z
S

zT
S

⇤

).

Let Z
def

= {z
S

|x 2 X} and P
def

= Diag((P(x))
x2X ),

where z
S

denotes the feature vector for the i-th player
constrained to the support set S for some i. Note that
Z 2 {�1, 1}2n⇥|S|; P 2 R2

n⇥2

n

and is positive defi-
nite by our assumption that the minimum probability

p̃

min

2

n�|NE⇤| > 0. Further note that the columns of Z

are orthogonal and ZTZ = 2

nI|S|, where I|S| is the
|S|⇥ |S| identity matrix. Then we have that

�
min

(E
x

⇥

z
S

zT
S

⇤

) = min

{y2R|S||kyk
2

=1}
yTZTPZy

= min

{y02R2

n |y0
=

Zy
/

p
2

n^y2R|S|^kyk
2

=1}
2

n

(y0
)

TPy0

� min

{y02R2

n |ky0k
2

=1}
2

n

(y0
)

TPy0

= 2

n�
min

(P) =

2

np̃
min

2

n � |NE⇤|

Therefore, the minimum eigenvalue of H⇤
SS

is lower
bounded as follows:

�
min

(H⇤
SS

) = C
min

� ⌘(kv⇤k
1

)2

np
min

2

n � |NE⇤| > 0.

Similarly, the maximum eigenvalue of E
x

⇥

z
S

zT
S

⇤

can
be bounded as �

max

(E
x

⇥

z
S

zT
S

⇤

) = �
max

(ZTPZ) 
2

np
max

.

4.3.1 Minimum and Maximum Eigenvalues
of Finite Sample Hessian and Scatter
Matrices

The following technical lemma shows that the eigen-
values conditions of the expected Hessian and scatter
matrices, hold with high probability in the finite sam-
ple case.
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Lemma 2. If �
min

(H⇤
SS

) � C
min

, �
max

(E
x

⇥

z
S

zT
S

⇤

) 
D

max

, then we have that

�
min

(Hm

SS

) � C
min

2

, �
max

 

m

X

l=1

z
(l)

S

z
(l)

S

T

!

 2D
max

with probability at least

1� |S| exp
✓�mC

min

2 |S|
◆

and 1� |S| exp
✓

�mp̃
min

4 |S|
◆

respectively.

Proof. Let

µ
min

def

= �
min

(H⇤
SS

) and µ
max

def

= �
max

(E
x

⇥

z
S

zT
S

⇤

).

First note that for all z 2 {�1,+1}n:

�
max

(⌘(v⇤
S

T z
S

)z
S

zT
S

)  |S|
4

def

= R

�
max

(z
S

zT
S

)  |S| def= R0.

Using the Matrix Chernoff bounds from Tropp [11], we
have that

Pr {�
min

(Hm

SS

)  (1� �)µ
min

}  |S|
✓

e��

(1� �)1��

◆

mµ

min

R

.

Setting � = 1/2 we get that

Pr {�
min

(Hm

SS

)  µ

min/2}  |S|
"

r

2

e

#

4mµ

min

|S|

 |S| exp
✓�mC

min

2 |S|
◆

.

Therefore, we have

Pr {�
min

(Hm

SS

) > C

min/2} > 1� |S| exp
✓�mC

min

2 |S|
◆

.

Next, we have that

µ
max

= �
max

(E
x

⇥

z
S

zT
S

⇤

)

� �
min

(E
x

⇥

z
S

zT
S

⇤

) � 2

np̃
min

2

n � |NE⇤|
Once again invoking Theorem 1.1 from [11] and setting
� = 1 we have that

Pr {�
max

� (1 + �)µ
max

}  |S|


e�

(1 + �)1+�

�(mµ

max

)

/R

0

Pr {�
max

� 2µ
max

}  |S| ⇥ e
4

⇤

(mµ

max

)

/|S|

 |S| exp
⇣

�mµ

max

4|S|

⌘

 |S| exp
⇣

� m2

n�2

p̃

min

|S|(2n�|NE⇤|)

⌘

 |S| exp
⇣

�mp̃

min

4|S|

⌘

Therefore, we have that

Pr {�
max

< 2D
max

} > 1� |S| exp
✓

�mp̃
min

4 |S|
◆

.

4.3.2 Recovering the Pure Strategy Nash
Equilibria (PSNE) Set

Before presenting our main result on the exact recov-
ery of the PSNE set from noisy observations of joint
actions, we first present a few technical lemmas that
would be helpful in proving the main result. The fol-
lowing lemma bounds the gradient of the loss function
(6) at the true vector v⇤, for all players.
Lemma 3. With probability at least 1�� for � 2 (0, 1),
we have that

kr`(v⇤,D)k1 < ⌫ +

r

2

m
log

2n

�
,

where  =

1/(1+exp(⇢

min

)), ⇢
min

� 0 is the minimum
payoff in the PSNE set, fNE⇤

=

|NE⇤|/2n�1, and

⌫
def

= 
X

x2NE⇤

P(x) +
(p̃

max

� p̃
min

)

2� fNE⇤
+

fNE⇤ p̃
min

2� fNE⇤
(9)

Proof. Consider the i-th player. Let um

def

= r`(v⇤
i

,D)

and um

j

denote the j-th index of um. For any subset
S 0 ⇢ X such that |S 0| = 2

n�1 define the function g(S 0
)

as follows:

g(S 0
)

def

=

X

x2S0

P(x)f(x)�
X

x2S0c

P(x)f(x),

where S 0c denotes the complement of the set S 0 and
f(x) =

1/1+exp(v

⇤
i

T

z

i

(x)). For x 2 NE⇤, f(x)  ,
while for x /2 NE⇤ we have 1/2  f(x)  1. Lastly, let
S
ij

= {x 2 X|x
i

x
j

= +1} and S
i

= {x 2 X|x
i

= +1}.
From (7) we have that, for j 6= n,

�

�E
⇥

um

j

⇤

�

�

= |g(S
ij

)|,
while for j = n

�

�E
⇥

um

j

⇤

�

�

= |g(S
i

)|. Thus we get

kumk1  max

S0⇢X||S0|=2

n�1

g(S 0
) (10)

Let S be the set that maximizes (10), A def

= S \NE⇤

and B
def

= Sc \NE⇤. Continuing from above,

|g(S)| =
�

�

�

X

x2S\A

P(x)f(x) +
X

x2A

P(x)f(x)

�
X

x2Sc\B

P(x)f(x)�
X

x2B

P(x)f(x)
�

�

�

 
X

x2NE⇤

P(x) +
�

�

�

X

x2S\A

P(x)f(x)�
X

x2Sc\B

P(x)f(x)
�

�

�
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Assume that the first term inside the absolute value
above dominates the second term, if not then we can
proceed by reversing the two terms.

|g(S)|  
X

x2NE⇤

P(x) +
2

n�1p̃
max

� (2

n�1 � |NE⇤|)p̃
min

2

n � |NE⇤|

= 
X

x2NE⇤

P(x) +
(p̃

max

� p̃
min

) + fNE⇤ p̃
min

2� fNE⇤
= ⌫

Also note that
�

�um

j

�

�  ⌫  1. Finally, from Hoeffding’s
inequality [12] and using a union bound argument over
all players, we have that:

Pr

⇢

n

max

j=1

�

�um

j

� E
⇥

um

j

⇤

�

� < t

�

> 1� 2ne
�mt

2

/2

=) Pr {kum � E [um

]k1 < t} > 1� 2ne
�mt

2

/2

=) Pr {kumk1 � kE [um

]k1 < t} > 1� 2ne
�mt

2

/2

=) Pr {kumk1 < ⌫ + t} > 1� 2ne
�mt

2

/2.

Setting 2n exp(

�mt

2

/2) = �, we prove our claim.

To get some intuition for the lemma above, consider
the constant ⌫ as given in (9). First, note that   1/2.
Also, as the minimum payoff ⇢

min

increases,  decays
to 0 exponentially. Similarly, if the probability mea-
sure on the non-Nash equilibria set is close to uniform,
meaning p̃

max

� p̃
min

⇡ 0, then the second term in (9)
vanishes. Finally, if the fraction of actions that are in
the PSNE set (fNE⇤) is small, then the third term in
(9) is small. Therefore, if the minimum payoff is high,
the noise distribution, i.e., the distribution of the non-
Nash equilibria joint actions, is close to uniform, and
the fraction of joint actions that are in the PSNE set
is small, then the expected gradient vanishes. In the
following technical lemma we show that the optimal
vector bv for the logistic regression problem is close to
the true vector v⇤ in the support set S of v⇤. Next,
in Lemma 5, we bound the difference between the true
vector v⇤ and the optimal vector bv in the non-support
set. The lemmas together show that the optimal vec-
tor is close to the true vector.
Lemma 4. If the regularization parameter � satisfies
the following condition:

�  5C2

min

16 |S|D
max

� ⌫ �
r

2

m
log

2n

�
,

then

kv⇤
S

� bv
S

k
2

 5C
min

4

p|S|D
max

,

with probability at least 1�(�+ |S| exp((�mC

min

)/2|S|)+
|S| exp(�mp̃

min/4|S|)).

Proof. The proof of this lemma follows the general
proof structure of Lemma 3 in [9]. First, we repa-
rameterize the `

1

-regularized loss function

f(v
S

) = `(v
S

) + � kv
S

k
1

as the loss function ef , which gives the loss at a point
that is �

S

distance away from the true parameter v⇤
S

as : ef(�
S

) = `(v⇤
S

+�

S

) � `(v⇤
S

) + �(kv⇤
S

+�

S

k
1

�
kv⇤

S

k
1

), where �

S

= v
S

� v⇤
S

. Also note that the loss
function ef is shifted such that the loss at the true pa-
rameter v⇤

S

is 0, i.e., ef(0) = 0. Further, note that the
function ef is convex and is minimized at b�

S

=

bv
S

�v⇤
S

,
since bv

S

minimizes f . Therefore, clearly ef(b�
S

)  0.
Thus, if we can show that the function ef is strictly
positive on the surface of a ball of radius b, then the
point b�

S

lies inside the ball i.e., kbv
S

� v⇤
S

k
2

 b. Us-
ing the Taylor’s theorem we expand the first term of
ef to get the following:

ef(�
S

) = r`(v⇤
S

)

T

�

S

+�

T

S

r2`(v⇤
S

+ ✓�
S

)�

S

+ �(kv⇤
S

+�

S

k
1

� kv⇤
S

k
1

), (11)

for some ✓ 2 [0, 1]. Next, we lower bound each of the
terms in (11). Using the Cauchy-Schwartz inequality,
the first term in (11) is bounded as follows:

r`(v⇤
S

)

T

�

S

� �kr`(v⇤
S

)k1 k�
S

k
1

� �kr`(v⇤
S

)k1
p

|S| k�
S

k
2

� �b
p

|S|
 

⌫ +

r

2

m
log

2n

�

!

, (12)

with probability at least 1 � � for � 2 [0, 1]. It is
also easy to upper bound the last term in equation 11,
using the reverse triangle inequality as follows:

� |kv⇤
S

+�

S

k
1

� kv⇤
S

k
1

|  � k�
S

k
1

.

Which then implies the following lower bound:

�(kv⇤
S

+�

S

k
1

� kv⇤
S

k
1

) � �� k�
S

k
1

� ��
p

|S| k�
S

k
2

= ��
p

|S|b. (13)

Now we turn our attention to computing a lower bound
of the second term of (11), which is a bit more in-
volved.

�

T

S

r2`(v⇤
S

+ ✓�
S

)�

S

� min

k�
S

k
2

=b

�

T

S

r2`(v⇤
S

+ ✓�
S

)�

S

= b2�
min

(r2`(v⇤
S

+ ✓�
S

)).

Now,

�
min

(r2`(v⇤
S

+ ✓�
S

))

� min

✓2[0,1]

�
min

�r2`(v⇤
S

+ ✓�
S

)

�

= min

✓2[0,1]

�
min

⇣

1

m

m

X

l=1

⌘((v⇤
S

+ ✓�
S

)

T z
(l)

S

)z
(l)

S

(z
(l)

S

)

T

⌘
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Again, using the Taylor’s theorem to expand the func-
tion ⌘ we get

⌘((v⇤
S

+ ✓�
S

)

T z
(l)

S

)

= ⌘((v⇤
S

)

T z
(l)

S

) + ⌘0((v⇤
S

+

¯✓�
S

)

T z
(l)

S

)(✓�
S

)

T z
(l)

S

, where ¯✓ 2 [0, ✓]. Finally, from Lemma 2 we have,
with probability at least 1� |S| exp((�mC

min

)/2|S|):

�
min

�r2`(v⇤
S

+ ✓�
S

)

�

� min

✓2[0,1]

�
min

⇣

1

m

m

X

l=1

⌘((v⇤
S

)

T z
(l)

S

)z
(l)

S

(z
(l)

S

)

T

+

1

m

m

X

l=1

⌘0((v⇤
S

+

¯✓�
S

)

T z
(l)

S

)((✓�
S

)

T z
(l)

S

)z
(l)

S

(z
(l)

S

)

T

⌘

� �
min

(Hm

SS

)� max

✓2[0,1]

|||A(✓)|||
2

� C
min

2

� max

✓2[0,1]

|||A(✓)|||
2

,

where we have defined

A(✓)
def

=

1

m

m

X

l=1

⌘0((v⇤
S

+ ✓�
S

)

T z
(l)

S

)⇥

(✓�
S

)

T z
(l)

S

z
(l)

S

(z
(l)

S

)

T .

Next, the spectral norm of A(✓) can be bounded as
follows:

|||A(✓)|||
2

 max

kyk
2

=1

(

1

m

m

X

l=1

�

�

�

⌘0((v⇤
S

+ ✓�
S

)

T z
(l)

S

)

�

�

�

�

�

�

((✓�
S

)

T z
(l)

S

)

�

�

�

⇥ yT

(z
(l)

S

(z
(l)

S

)

T

)y

)

< max

kyk
2

=1

1

(10m)

m

X

l=1

k(✓�
S

)k
1

�

�

�

z
(l)

S

�

�

�

1
yT

(z
(l)

S

(z
(l)

S

)

T

)y

 ✓ max

kyk
2

=1

(

1

10m

m

X

l=1

p

|S| k�
S

k
2

yT

(z
(l)

S

(z
(l)

S

)

T

)y

)

= ✓b
p

|S|
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1

10m

m

X

l=1

z
(l)

S

(z
(l)

S

)

T

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

 (b
p|S|D

max

)

5

 C
min

4

,

where in the second line we used the fact that ⌘0(.) <
1/10 and in the last line we assumed that (b

p
|S|D

max

)

5


C

min/4 — an assumption that we verify momentarily.
Having upper bounded the spectral norm of A(✓), we
have

�
min

�r2`(v⇤
S

+ ✓�
S

)

� � C
min

4

. (14)

Plugging back the bounds given by (12), (13) and (14)
in (11) and equating to zero we get

�b
p

|S|
 

⌫ +

r

2

m
log

2n

�

!

+

b2C
min

4

� �
p

|S|b = 0

=) b =
4

p|S|
C

min

 

�+ ⌫ +

r

2

m
log

2n

�

!

.

Finally, coming back to our prior assumption we have

b =
4

p|S|
C

min

 

�+ ⌫ +

r

2

m
log

2n

�

!

 5C
min

4

p|S|D
max

.

The above assumption holds if the regularization pa-
rameter � is bounded as follows:

�  5C2

min

16 |S|D
max

�
r

2

m
log

2n

�
� ⌫.

Lemma 5. If the regularization parameter � satisfies
the following condition:

� � ⌫ +

r

2

m
log

2n

�
,

then we have that

kbv � v⇤k
1

 5C
min

D
max

with probability at least 1�(�+ |S| exp((�mC

min

)/2|S|)+
|S| exp(�mp̃

min/4|S|)).

Now we are ready to present our main result on recov-
ering the true PSNE set.
Theorem 1. If for all i, |S

i

|  k, the minimum pay-
off ⇢

min

� 5C

min/D
max

, and the regularization param-
eter and the number of samples satisfy the following
conditions:

⌫ +

r

2

m
log

6n2

�
 �  2K + ⌫ �

r

2

m
log

6n2

�
(15)

m � max

(

2

K2

log

✓

6n2

�

◆

,
2k

C
min

log

✓

3kn

�

◆

,

4k

p̃
min

log

✓

3kn

�

◆

)

, (16)

where K
def

=

5C

2

min/32kD
max

� ⌫, then with probability at
least 1 � �, for � 2 (0, 1), we recover the true PSNE
set, i.e., NE(cW, bb) = NE(W⇤,b⇤

).

Proof. From Cauchy-Schwartz inequality and Lemma
5 we have

�

�

(

bv
i

� v⇤
i

)

T z
i

�

�  kbv
i

� v⇤
i

k
1

kz
i

k1  5C
min

D
max

.
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Therefore, we have that

(v⇤
i

)

T z
i

� 5C
min

D
max

 bvT

i

z
i

 (v⇤
i

)

T z
i

+

5C
min

D
max

.

Now, if 8 x 2 NE⇤, (v⇤
i

)

T z
i

� 5C

min/D
max

, then bvT

i

z
i

�
0. Using an union bound argument over all players i,
we can show that the above holds with probability at
least

1� n(� + k exp((�mC

min

)/2k) + k exp((�mp̃

min

)/4k)
(17)

for all players. Therefore, we have that NE(cW, bb) =
NE⇤ with high probability. Finally, setting � =

�

0
/3n,

for some �0 2 [0, 1], and ensuring that the last two
terms in (17) are at most �

0
/3n each, we prove our

claim.

To better understand the implications of the theorem
above, we instantiate it for the global and local noise
model.
Remark 1 (Sample complexity under global noise
model). Recall that D

max

 min(k, 2np
max

), and for
the global noise model given by (3) p

max

=

q

g/|NE⇤|. If
q
g

is constant, then D
max

= k. Then K = ⌦ (

1/k2

),
and the sample complexity of learning sparse linear
games grows as O �k4 log n�. However, if q

g

is small
enough, i.e., q

g

= O (

|NE⇤|/2n), then D
max

is no longer
a function of k and K = ⌦ (

1/k). Hence, the sample
complexity scales as O �k2 log n� for exact PSNE re-
covery.

Next, we consider the implications of Theorem 1 under
the local noise model given by (4). we consider the
regime where the parameter q scales with the number
of players n.
Remark 2 (Sample complexity under local noise). In
the local noise model if the number of Nash-equilibria
is constant, then p

max

= O (exp(�n)), and once again
D

max

becomes independent of k, which results in a
sample complexity of O �k2 log n�.

Also, observe the dependence of the sample complex-
ity on the minimum noise level p̃

min

. The number of
samples required to recover the PSNE set increases as
p̃
min

decreases. From the aforementioned remarks we
see that if the noise level is too low, i.e., p̃

min

! 0,
then number of samples needed goes to infinity; This
seems counter-intuitive — with reduced noise level, a
learning problem should become easier and not harder.
To understand this seemingly counter-intuitive behav-
ior, first observe that the constant D

max/C
min

can be
thought of as the “condition number” of the loss func-
tion given by (6). Then, the sample complexity as
given by Theorem 1 can be written as O

⇣

k

2

D

2

max

C

2

min

log n
⌘

.

Hence, we have that as the noise level gets too low, the
Hessian of the loss becomes ill-conditioned, since the
data set now comprises of many repetitions of the few
joint-actions that are in the PSNE set; thereby increas-
ing the dependency (D

max

) between actions of players
in the sample data set.

4.4 Necessary Conditions

In this section we derive necessary conditions on the
number of samples required to learn graphical games.
Our approach for doing so is information-theoretic:
we treat the inference procedure as a communication
channel and then use the Fano’s inequality to lower
bound the estimation error. Such techniques have been
widely used to obtain necessary conditions for model
selection in graphical models, see e.g. [13, 14], spar-
sity recovery in linear regression [15], and many other
problems.

Consider an ensemble G
n

of n-player games with the
in-degree of each player being at most k. Nature picks
a true game G⇤ 2 G, and then generates a data set
D of m joint actions. A decoder is any function  :

Xm ! G
n

that maps a data set D to a game,  (D), in
G

n

. The minimum estimation error over all decoders
 , for the ensemble G

n

, is then given as follows:

p
err

def

= min

 

max

G⇤2G
n

Pr {NE( (D)) 6= NE(G⇤
)} , (18)

where the probability is computed over the data dis-
tribution. Our objective here is to compute the num-
ber of samples below which PSNE recovery fails with
probability greater than 1/2.
Theorem 2. The number of samples required to learn
graphical games over n players and in-degree of at most
k, is ⌦ (k log n).

Remark 3. From the above theorem and from Theo-
rem 1 we observe that the method of l

1

-regularized lo-
gistic regression for learning graphical games, operates
close to the fundamental limit of ⌦ (k log n).

Results from simulation experiments for both global
and local noise model can be found in Appendix B.

Concluding Remarks. An interesting direction for
future work would be to consider structured actions
— for instance permutations, directed spanning trees,
directed acyclic graphs among others — thereby ex-
tending the formalism of linear influence games to the
structured prediction setting. Other ideas that might
be worth pursuing are: considering mixed strategies,
correlated equilibria and epsilon Nash equilibria, and
incorporating latent or unobserved actions and vari-
ables in the model.
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