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1 Proof of Lemma 2

Proof. To prove the result, we use brackets of the type [ fp—
€g/2, fo + €g/2] for 0 that ranging over a suitably chosen
subset of © and these brackets have L;-size e|g||;. If |01 —
02| < €/2, then by the Lipschitz condition that

o, (€) = fo. ()] < g(&)1|61 — b2]], (1)
we have fp, —eg/2 < fo, < fo, + €g/2. Therefore, the
brackets cover F if § ranges over a grid of meshwidth ¢/, /p
over ©. This grid has at most (,/pDe/€)? grid points.
Therefore the bracketing number Ny (e||g||;, F, L1) can be

bounded by (y/pDe/€)". O

2 Proof of Lemma 3

Proof. Consider the function class F = {f(-,x) | x € P}
as defined in (SP1), that is f(i,x) = f;(x). Since f;(-)
each is assumed to be Lipschitz continuous with Lipschitz
constant L;, we must have |f;(x) — f;(y)| < Lr|x =y,
where Lrp = max{Ly,...,L,}. Moreover, the index
set P € RP for the function class F is assume to be
bounded. Therefore all conditions for Lemma 2 are satis-
fied and hence the number of brackets of the type [f(-,x) —
eLp, f(-,x) + eLp] satisfies

D
Ny(eLp, F, L1) < Kp(—)?,

€

forevery 0 < € < D, where D = sup{||x—y| | x,y € P}
and Kp = (/p)?. Let I' C P denote the set of indices of
the centers of these brackets and &1, ... &, be the i.i.d.
samples drawn at the k-th iteration of the algorithm. Since
the brackets centered at I' cover F, we must have

m(F)
Z f(&i,x

m(F)

Zf&,

—Ef(&,x)|

sup I~

< max{|
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—Ef(&,y)| |y €T} + 2¢Lp.
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Consequently, for every 6 > 0 and € < min{é/(2Lr), D},

mk)

]P{sup |— (k) Z f(&,x) = Ef(&,x)| = 6}

m(k)

1
< P{max{| > fy) —Ef(&,y)l |y €T}
i=1
+ 2e¢Lp > 5}
m
er
Y (union bound)
k) 2
< ZQeXp{—Qm( Y liI;Fe) }

yel
(Hoeftding inequality)
m*)(§ — 2L pe)? )

D 2
< 2K’P(?)p exp{— (up — Ip)?
(7] < Kp(

Dyry

’UL(k)
— 2oiey f(&,x) and
= Ef(&;,x), the desired result follows. O]

Since by definition, F*)(x) =
F(x)

3 Proof of Corollary 1

Proof. First note that both F(¥)(.) and F(-) are bounded by
Ir and up; hence, sup,cp |FF)(x) — F(x)| < 2(|lur| +
|lr]). Then for every 6 > 0, we have

E sup |[F®)(x) —
xEP

F(x)]

< 2(|up| + [1r)P{sup |[F¥) (x) — F(x)| > 5}
xeP
+ 6 P{sup |F¥ (x) — F(x)| < 0}
xeP
D 2m(¥)(§ — 2L pe)?
—_\p _
(lup| + llp) Kp ()" exp{ (wr — 1) b+

2m*)(§ — 2L pe)?
(up —IF)?

4(|UF| + |lF|)K7>Dp exp{—

)

1
+ plog E} + 0.
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GV (i)
I;IITW o= Vm® V2 $C T LV m
cn
Esup |[F®) (x) — F(x)|

xeP

<|uF|+|zF|>KpDPexp{ (V4 + 1) log Vo — 12

— p(log

2\[ +plog\/ m(k)}

(ur — L)y/A(p + 1) log Vm(®
! VB3 |
Note that (z—1)? > 22 /4 when z > 2. Thus, form(®) > 3
andp > 1, \/4(p +1)log vVm®) > 2. Therefore

E sup |F® (x) —
x€P

F(x)|

< 4(Jlup| + |lp|)KpD? exp{—(p + 1) log(V m(*)
1 plog Vm® — p(log “F 17y

2V2Lp
(up — ZF)\/4(p + 1) log Vm®*)
Jr
NN
log m(*)
<G SORE

where C1 = 4(Jur| +|lr ) Kp D? exp{—p(log £25L2)} +

2V2L
(UF — lF)\/p + 1.
Next, we will obtain a bound for E|F®) (x¥) — F(x*)|.
Lemma 3 implies both

Fx) s <FO ) < Py +5 (2

and
F(x) =6 < FP(x") < F(x") 46 3)
happen with probability at least 1 -

2Kp(2)P EXP{—%} Consequently, on
one hand
FO ) > Fx) -6 (by (2))
> F(x*)— ¢ (optimality of x* for F'(-))
On the other hand,

F<’“)(x5f>) < F®)(x*) (optimiality of x\¥) for F)(.))

<F(x*)+0 (by (3))
Therefore, we have
P{FO ) - F(x7)| = 6}
D m®)(§ — 2L pe)?
< 2Kp(—)P —_——
> 73( € ) eXp{ 2(UF — lF)2 }7
and hence E|[F® (x")) — F(x*)| = C, lof;nf’}f)k). O

4 Proof of Lemma 4

Proof. The right hand side of the stated result in Lemma
4 is obtained by setting b; = 1 for ¢ < m and b; = 0 for
, 1> m. We w111 show that this choice of {b;} maximizes
Z e 2k b cg. Consider an assignment of b; that there
1sab —Oforr < mand by, = 1 for s > m. Define a new
assignment b} such that there is b; = b; fori # r,s,bl. =1
and b, = 0. Then

EZJk?Ck‘
E adkfc;g—i—gaJchk—I—gaJchk

k=s+1
n
n
= E ngyck.—|— E ZJkJCk"’E a kack
k=s+1 k=r+1
ke /
= E Z?k icy +a E ZJLkJCk+E a Jkyck
k=s+1 k=r+1
n ’ ’
< E aXi= kbfck—i— g aXi= ’»bﬂck—i— E aXi=k Jck
k=s+1 k=r+1

:ankack

Therefore, such interchanges will always increase the value
of Yr_; a>i=+" ¢;, and hence setting b; = 1 fori < m
and b; = 0 for ¢ > m maximizes it. [

5 Proof of Theorem 1

Proof. At iteration k, let x(¥) denote the current solution,

&1, ..., &k denote the samples obtained in the algorithm,

d*) denote the direction that the algorithm will take at this

step and (¥) denote the step length. Define F(¥)(x) =
m k .

ﬁ Yo f&,x), M = arg minyep F®)(x) and
F = F®)(x™). Note that F*) is Lipschitz continu-
m()

% >y Le, and
m,(k)
<k> Dim1 O

VF®)(x). From

ous with Lipschitz constant L(’“) =

strongly convex with constant o(%) =

addition, the stochastic gradient g(k)
the choice of d®) in the algorithm,

(g, d®)y < Lig® p®  x®)y gk k) _ by

_Lom
2<g ,

— N

p® —u®) <.
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Hence, we can lower bound (g(*), d(*))2 by

(g, d0)? > 1 (g® u® - p®)2

> max (g™, u - p)?
peV,ucU®)

(definition of p*) and u®))

e R N

(VO (x4, 0~ p)?

g™ = VFE) (x(k))
1 Q3 (VF®(x(k) xk) xgk)>2
4 |U®) |2 | x(k) — kak)HQ

(by Lemma 1)

03 {FO(x®) — FM)?
AP ) — X
(Convexity of F(F)(.))

= - max
peV,ucU®)

IV

vV

2 (k
b0 2P0 (x) — FV)

v

(by strong convexity of F'(*) )

2
> %{F(“ (x®)y = M.

Similarly, we can upper bound (g(k), d(k)> by
1
(81,d) < S(g™,p®) — ulh)
1
< §<g(k)’xik) —x®))
(definition of p(*) and u(*))

(VF®) (x®)y x () x())
@® = VEH) (xk))

1
2

IN

}{F*(k) — F®) (xR},
2
(Convexity of F(+))

With the above bounds, we can separate our analysis into
the following four cases at iteration k

ARy A > Tandy® < 1.

B®) A8 >1andy® > 1.
C®)y A8 < Tand4®) < A8

Dy B < 1andy®) = 48

By the descent lemma, we have
Fk) (X(k+1)) — k) (X(k) + fy(k)d(k)) )

k k)\2
< PO (x(®)) 40 (7 () (x00), q(h)y L )(27( ) e 2

1.(6) ()2
= PO 140 g a®) ¢ EEOZ g2 gs)

In case (A™)), let 0 4(1) denote the indicator function for
this case. Then

§ g {F®) (xk+0y — pFy
< 8 4 {F® (x®)) — J QININICD) g™, d®)+
LK) (7(’“))2
=T a1y
<g(k)7 d(k)>2
2L ||d®)|?
(definition of v(*) in case A(F)

= 5400 {F® (x®)) — pF) _

Q%O’F

< 5A(k){(1 — m)(}?(k)(x(k)) _ F*Ek))}
Q2 ofF k
< a1~ oxag,pe) F V) — 1)

In case (B*)), since y(*) > 1, we have

—(g®), d®)) > LW a®)|? and  (6)
L) (k)2
48 (g®) gy 4 %Hd(MHQ (7
) L&)
< (g®.d®) + =~ a7, ®)

Use dpm to denote the indicator function for this case.
Then,

S {(F® (x*+D) - FM}
< g {F® (x®)) — FF 4

L) (k)2
YITF® (x®), d®) + =———[d®|*}

2
= S {F® (x®)) — FF) 4 k) (g(k) g(k)y
L) (~(K))2
+ %Hdu@) &

(k)

< 50 {FO () — 9 4 (g, d®) + L2102}
(by (8))

< 5 (FO (M) — Y+ 2™, d®)} by )

1 k
< Sp {5 (FP (xM) - M)

In case (C®)), let 5o be the indicator function for this
case and we can use exactly the same argument as in case
(A) to obtain the following inequality

S {FH) (DY — F)Ek)}

(k) @(k))2
< S [P (xB)y _ gty _ (87, A"
< dom{ (x\") 2L(k)||d(’€)||2
Q%O’F

~tever o) P ) = R

< dom{(l

Case (D)) is the so called “drop step” in the conditional
gradient algorithm with away-steps. Use dpx) to denote
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the indicator function for this case.

(k)
Ymax >
we have

6D(k>{(F(k)( (k+1)) _
< (5D(k){F(k)( (k))

(k))}
FF 4 ~®) (TR (x0)) qk))

L(k)(’y(k))

e s
= b (FO(e) - F 4 4(g), d) 4

Lk ()2

= a2

( )
< 5D(k){F(k)(X(k)) _ F*(k)},
Q%o

Deﬁne p = min{3, Ten*L, o7 }- Note that p is a determin-
istic constant between 0 and 1. Therefore we have

F(k)(x(k+1)) B F*(k:)
< ({1 = p) 1P HE® (x0) - V)

= (1= p)1=0pm} (=1 (x(k)) _ Fik_l))
+ (1 - p) 9w {F®) (xB)) - ¥
_ F(k—l)(x(k)) +F£k_1)}

= (1= p)I=0pm(p=1 () _ F*(k—l))

+ (1 = p) 9w P (x0)y — p(x*)) 4 p(x*)

— P (x®0) 4 pr - g8 pD ey

< (1= p)=dpm (=1 (k) _ F)Skfl))
+ (1= PP PO (x0) - ()]

+[FED W) = P+ |FY — P

+[F*Y )y
< (1— p) =i 10,0} (PO (xV) = g0y
k
S (1= p) = o PO (x9) — P(x))
i=1
+ |FO=D(x®D) = p(x®)| + |F£i) _
+|FSTY — Py

At iteration k, there are at most (k + 1)/2 drop steps, i.e.,
at most (k + 1)/2 dpu’s equal to 1. Then by Lemma 22,

Note that 7(’“) =
—(g®, d®) /(L") || d®)||?) in this case. Hence,

we have
k k . . .
> (1= p) =00 HFO () — Fx)|
i=1
+[FODED) = PO+ B — B+ |FD — F))
k
< D AFOED) = P+ (O (x0) - PxO)
i=k/2
+ B — P+ | POV - Py
k/2—1
+ 2 A HIFORO) R )
+|F ’-1><x<z>> = PO+ |FY = Pl [EY - F),
Therefore
F(k)(x(kJrl)) . F*(k)
S0 T e e+ Y () - )
i=k/2
PO (D) — PO 4 [FEY — B [FETY — Fo)
k/2—1
+ 2 A HIFORO) R )
+ |F<H (x®) — Fx)| + [FY — F*[ + |FIY - P},

— F® = p(xt+D) — pr 4
— P(x®*+D)) + (F* — F™). Thus

In addition, F(¥)(x(k+1))
(F(k) (x(’“‘U)

F(xk+Dy — p

k+1
k—1 .

<(1=p)7 (up =)+ Y A{IFO D) - F(x))
i=k/2

+ PO (D) — PO 4 |FY — B4 [FEY — Fo))

k/2—1
2 (=)0 — GO
+ |F“-1><x<“> = Px)] + [E = Fr 4 [FED — e}

Note that for any deterministic x € P, we have

EF®)(x) = F(x). In addition, by Corollary ??, the fol-
lowing bound holds for every iteration k
BIF®) (x(4) — F(x)
log m()
< E sup F®(x) - F(x < Ci\| ————
sup [0 (x) — F(x)| < Oy =2
and
1 (k)
E|F*(k) —F* < logm
m(k)
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Combining all above bounds and use m(?) = [1/(1 —
0)%2], we have

]E{F( (k+1)) . F*}

< (1-p)"7 (up —Ip)
k+1

log m(i ) log m(i=1)
+201{ Z m® mG-1)
i=k/2
k/2—1 , .
N Z o)/ log m(®) log m(i—=1)
m(®) m(i—1)

k1 AR, log m@i—1)
<(1=p)7 (up—1lp) +4Ci1{ Y o

i=k/2
k/2—1

o

log m(i—1)
mG—1)

k/2 7

(1"% decreases for z > ¢)

< <1—p)%<uF—zF>

k41
—|—4C’1,/2log {Z (I-p

i=k/2

k/2—1

+ Y (1=p)MAVi

< Cq(1 —B)%

for some constant Cy and 0 < 8 < p < 1. O

6 Proof of Corollary 3

Proof. Let k be the total number of iterations performed
by Algorithm 2 so that an e-accurate solution is obtained
for the first time. Theorem 1 implies C(1 — B)% < €
and hence k > 1 4 2loge/log(1 — B3). In iteration i of
Algorithm 2, m() = 1/(1 — p)**2 of stochastic gradi-
ent evaluations are performed. Thus, the total number of
stochastic gradient evaluations until iteration k is

_ 1 1/0-pP -1/ - p)PF?
= 1-1/0-pp

< = j)2k+4 < a _Qp)4 exp{—2klog(1 — p)}

—p)—4

<2 {=21log(1
5 €X —z 10
S TP log(1 - B)
— 0((1) TR )

€

— O((1)™).

€

log elog(1 — p)

7 Proof of Theorem 2

Proof. Since d®) = p®*) — u®) similar to the proof of
Theorem 1, we have

X QZ o . k
(g™ a2 > 47;\]2 {(F®) (x(k)) — Ft )}
(60, ) < (D 5O (<)),

The remaining proof for Theorem 1 could also apply here
except that the case D®) can be either a ‘drop step’ or a
so-called ‘swap step’. A swap step moves the weight of
a active vertex to another active vertex. There are at most
(1- W)k drop steps and swap steps after & iteration.
The same argument as in Theorem 1 implies

E{F(x(k"'l)) _

F*} <C3(1— ¢)k/(3\V|!+1)

for a deterministic constant C3 and 0 < ¢ < k < 1/2. O

8 More Figures for Million Song Dataset
Experiment

We tested the algorithms on the Million Song Dataset for
different choices of i and «. The performances of the algo-
rithms follow the same pattern as we described in the paper.
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