
A Computing conditional expectations in the input space
We here give a derivation for the target density on the constraint manifold in the input space of a differentiable generative
model for computing expectations conditional on observations of the output. This is largely a restatement of results in [1,
§2.3] and is provided mainly to make those results more easily relatable to the notation of this paper.

For clarity in this section the measure being integrated with respect to will be explicitly denoted. For a variable of
integration x, �D {dx} will denote the D dimensional Lebesgue measure and D {dx} the D dimensional Hausdorff
measure over some space  which will be specified.

A key result we will use is Federer’s Co-Area Formula [2, §3.2.12]:
Theorem (Co-Area Formula). Let M ∶  ⊆ ℝL →  ⊆ ℝK be Lipschitz with L > K and ℎ ∶  → ℝ be Lebesgue
measurable. Then

∫
ℎ(x)

|

|

|

|

)M
)x

)M
)x

T
|

|

|

|

1
2
�L {dx} = ∫ ∫M−1(v)

ℎ(x)L−K {dx} �K {dv} (1)

with )M
)x =

[

)mi
)xj

]

i,j
the Jacobian of the map, M−1(v) the L −K dimensional sub-manifold embedded in  with Hausdorff

measure L−K {dx}, which is the solution set {x ∈  ∶ M(x) = v}.
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which can be easily shown by setting ℎ(x) = ℎ∗(x)
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We will also use what is sometimes termed the Law of the Unconscious Statistician (LOTUS) to express expectations of
functions of random (vector) variables when an explicit density on the random output of the function is not known.
Theorem (Law of the Unconscious Statistician). Let y be a random vector on support  ⊆ ℝN with density p x [x] with
respect to the Lebesgue measure �N {dx} and f ∶  → ℝ be Lebesgue measurable. If we define a new random variable
v = f (x) then

E [v] = E [f (x)] = ∫
f (x)p x [x] �N {dx} . (3)

Corollary. If x is defined as x = G(u) for some G ∶  ⊆ ℝM →  then

E [f (x)] = E [(f ◦G)(u)] = ∫
f ◦G(u)pu [u] �M {du} . (4)

This leads us to the main result
Theorem. Let u be a random vector with density pu [u] = �(u) with respect to the Lebesgue measure �M {du} on support
 = ℝM . Further let G ∶  →  be a smooth map, with  = ℝN ; N ≤M defining a random vector x = G(u). Assume
)G
)u exists and has full row-rank almost everywhere.

Partition the output space  =  × with  = ℝNy and  = ℝNz and y = Gy(u), z = Gz(u). Then the conditional
expectation of some function f of z given y = ȳ has been observed is
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M−Ny {du} . (5)

with p y [ȳ] the marginal density on y with respect to the Lebesgue measure �Ny {dy} which must be non-zero for the
conditional expectation to be well-defined;  is the M − Ny dimensional sub-manifold defined by the solution set
{

u ∈  ∶ Gy(u) = ȳ
}

.
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Proof. By the Law of Total Expectation we have that
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Using LOTUS (3) we get
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Applying the co-area formula corollary (2) to the right-hand side gives
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Define ⋆ =
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As this holds for arbitrary Lebesgue measurable f , this implies that the terms inside the braces are equal for all y ∈ ⋆. As
ȳ ∈ ⋆ by assumption and  = G−1

y (ȳ) we have
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Corollary. Define a target density with respect to the Hausdorff measure M−Ny {du} on 
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If we generate a set of MCMC samples
{

u(s)
}S
s=1 which leave �(u) invariant with respect to M−Ny {du} on , by the Law

of Large Numbers we can then form a Monte Carlo estimate for the conditional expectation
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B Evaluating the target density and its gradient
For the constrained Hamiltonian dynamics we need to be able to evaluate the logarithm of the target density (13) up to an
additive constant and its gradient with respect to u. We have that
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where Z is the normalising constant for the density which is independent of u.
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In general evaluating the Gram matrix determinant log
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However as part of the constrained dynamics updates the lower-triangular Cholesky decomposition L of the Gram matrix
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is calculated. Using basic properties of the matrix determinant we have
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The base density �(u) will typically be of a simple form e.g. standard Gaussian, therefore we can evaluate the logarithm of
the target density up to an additive constant at a marginal computational cost that scales linearly with dimensionality.

For the gradient we can use reverse-mode automatic differentiation to calculate the gradient of (19) with respect to u.
This requires propagating partial derivatives through the Cholesky decomposition [3]; efficient implementations for this are
present in many automatic differentiation frameworks including Theano.

Alternatively the gradient of (15) can be explicitly derived. The gradient of log �(u) will generally be trivial and
) logZ
)u = 0. The gradient of the second term can be calculated using
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The matrix inside the square brackets is independent of i and can be computed once by solving the system of equations by
forward and backward substitution. The matrix of second partial derivatives )2Gy

)ui)u
can either be manually derived for the

specific generator function or calculated using automatic differentiation. The trace of the matrix product is then just the sum
over all indices of the element-wise product of the pair.

C Exploiting structure in the generator
Often the generator inputs u can be split in to two distinct groups — global inputs v which effect all of the observed outputs
(e.g. inputs which map to model parameters) and local ‘noise’ inputs n, each element of which affect only a subset of the
outputs.

In particular systems with a generator function Gy which can be expressed in one of the two forms

yi = gi(v, ni) (element-wise) or yi = g̃i(v, yi−1, ni) = gi(v,n≤i) (autoregressive) (22)

have a Jacobian )C
)u =

[

)C
)v
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]

in which )C
)n is diagonal (element-wise) or triangular (autoregressive).

The decomposition of )C)u
)C
)u

T = )C
)n
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T + )C
)v

)C
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T can then be computed by low-rank Cholesky updates of the triangular
/ diagonal matrix )C

)n with each of the columns of )C)v . As dim(v) = L is often significantly less than, and independent of,
the number of outputs conditioned onNy, the resulting (LN2

y ) cost of the Cholesky updates is a significant improvement
over the original (N3

y ).
Many learnt differentiable generative models have an element-wise noise structure including the Gaussian VAE. The

autoregressive noise structure commonly occurs in stochastic dynamical simulations where the outputs are a time sequence
of states, with noise being added each time-step, for example the Lotka-Volterra model considered in the experiments in
Section 7.
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D Lotka-Volterra parameter empirical histogram
Larger version of figure 2b showing empirical histograms for posterior samples of Lotka–Volterra model parameters.

Figure 1: Marginal empirical histograms for the (logarithm of the) four parameters (columns) from constrained HMC
samples (top) and ABC samples with � = 10 (middle) and � = 100 (bottom). Horizontal axes shared across columns. Red
arrows indicate true parameter values. Green curve - log-normal prior density.
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