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Abstract

In many security and healthcare systems a se-
quence of sensors/tests are used for detection
and diagnosis. Each test outputs a prediction
of the latent state, and carries with it inherent
costs. Our objective is to learn strategies for
selecting tests to optimize accuracy & costs.
Unfortunately it is often impossible to acquire
in-situ ground truth annotations and we are
left with the problem of unsupervised sensor
selection (USS). We pose USS as a version
of stochastic partial monitoring problem with
an unusual reward structure (even noisy an-
notations are unavailable). Unsurprisingly no
learner can achieve sublinear regret without
further assumptions. To this end we propose
the notion of weak-dominance. This is a con-
dition on the joint probability distribution of
test outputs and latent state and says that
whenever a test is accurate on an example, a
later test in the sequence is likely to be accu-
rate as well.We empirically verify that weak
dominance holds on real datasets and prove
that it is a maximal condition for achieving
sublinear regret. We reduce USS to a spe-
cial case of multi-armed bandit problem with
side information and develop polynomial time
algorithms that achieve sublinear regret.

1 Introduction

Sequential sensor selection arises in many security and
healthcare diagnostic systems. In these applications
we have a diverse collection of sensor-based-tests with
differing costs and accuracy. In these applications
(see Fig. 1) inexpensive tests are first conducted and
based on their outcomes a decision for acquiring more
(expensive) tests are made. The goal in these sys-
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Figure 1: Sequential Sensor/Test Selection in Airport Se-

curity Systems. A number of different imaging and non-

imaging tests are sequentially processed (see [1]). Costs

can arise due to sensor availability and delay. Inexpensive

tests are first conducted and based on their outcomes more

expensive tests are conducted.

tems is to maximize overall accuracy for an available
cost-budget. Generally, the components that can be
optimized include sensor classifiers (to improve test
accuracy), sensor ordering, and decision strategies for
sequential sensor selection. Nevertheless, sensor clas-
sifiers and sensor ordering are typically part of the
infrastructure and generally harder to control/modify
in both security and medical systems. To this end we
focus here on the sequential sensor selection problem
and use the terms sensor and test interchangeably. The
need for systematically learning optimal decision strate-
gies for balancing accuracy & costs arises from the fact
that these applications involve legacy systems where
sensor/test selection strategies are local; often managed
under institutional, rather than national guidelines [2].
While it is possible to learn such decision strategies
given sufficient annotated training data, what makes
these applications challenging is that it is often difficult
to acquire in-situ ground truth labels.

These observations motivate the problem of learning
decision strategies for optimal sensor selection in situa-
tions where we do not have the benefit of ground-truth
annotations, and what we refer to as the Unsupervised
Sensor Selection (USS) problem. In Section 2 we pose
our problem as a version of stochastic partial monitor-
ing problem [3] with atypical reward structure, where
tests are viewed as actions and sequential observations
serve as side information. As is common, we pose
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the problem in terms of competitive optimality. We
consider a competitor who can choose an optimal test
with the benefit of hindsight. Our goal is to minimize
cumulative regret, the extra cost incurred due to the
initial ignorance of the learner.

In Section 3 we first show (unsurprisingly) that no
learner can achieve sublinear regret without further as-
sumptions. To this end we propose the notions of weak
and strong dominance, which correspond to constraints
on joint probability distributions over the latent state
and test-outcomes. Strong Dominance (SD) is a prop-
erty arising in many engineered systems and says that
whenever a test is accurate on an example, a later test
in the sequence is almost surely accurate on that exam-
ple. Weak Dominance (WD) is a relaxed notion that
allows for errors in these predictions. We empirically
demonstrate that WD holds by evaluating it on several
real datasets. We also show that WD is fundamental
in the sense that while there exist learners that achieve
sublinear regret over WD instances, no new instances
can be added to this class without losing this property.

In Section 4 under SD we show that USS is reducible
to a version of multi-armed bandit problem (MAB)
with side-observation, a problem that is known to be
learnable with sub-linear regret. In our reduction, we
identify tests as bandit arms. The payoff of an arm
is given by marginal losses relative to the root test,
and the side observation structure is defined by the
feedback graph induced by the directed graph. We
then formally show that there is a one-to-one mapping
between algorithms for USS and algorithms for MAB
with side-observation. In particular, under SD, the
regret bounds for MAB with side-observation then
imply corresponding regret bounds for USS.

In Section 5 we give algorithms for the problem classes
specified by either SD or WD. For SD instances the
algorithm is based on the work of Wu et al. [4]. This
algorithm is shown to enjoy an asymptotically optimal
regret for problems satisfying SD.

1.1 Related Work

In contrast to our USS setup there exists a wide body
of literature dealing with sensor selection (see [5]). Like
us they also deal with cascade models with costs for
features/tests but their method is based on training
decision strategies with fully supervised data. There
are also several methods that work in an online bandit
setting and train prediction models with feature costs
[6] but again they require true labels as reward-feedback.
A somewhat more general version of [6] is developed in
[7] where in addition the learner can choose to acquire
true labels for a cost.

Our paper bears some similarity with the concept of

active classification, which deals with learning stopping
policies [8, 9] among a given sequence of tests. Like us
these works also consider costs for utilizing tests and
the goal is to learn when to stop to make decisions.
Nevertheless, unlike our setup the loss associated with
the decision is observed in their context.

Our paper is related to the framework of finite partial
monitoring problems [3], which deals with how to in-
fer unknown key information and where tests/actions
reveal different types of information about the un-
known information. In this context [10] consider spe-
cial cases where payoff/rewards for a subset of ac-
tions are observed. This is further studied as a side-
observation problem in [11] and as graph-structured
feedback [12, 13, 4]. Our work is distinct from these
setups because we are unable to observe rewards for
our chosen actions or any other actions.

2 Unsupervised Sensor Selection

Preliminaries and Notation: Proofs for formal
statements appear in the supplementary. All random
variables are printed with upper case letters, while the
reverse is not necessarily true. The set of real num-
bers is denoted by R. For positive integer n, we let
[n] = {1, . . . , n}. We let M

1

(X ) to denote the set of
probability distributions over some (measurable) set X .
When X is finite with a cardinality of d .

= |X |, M
1

(X )

denotes the d-dimensional probability simplex. We let
hx, yi =

P

i

x

i

y

i

denote the standard inner product of
vectors x, y.

We first define the unsupervised, stochastic, cascaded
sensor selection (USS) problem, a special subclass of
stochastic partial monitoring problems (for complete-
ness, we describe these problems in Appendix A). Later
we will briefly describe extensions to tree-structures
and contextual cases. An USS instance is specified
by a pair ✓ = (P, c), where P is a distribution over
the K + 1 dimensional binary hypercube and c is a K-
dimensional, nonnegative valued vector of costs. While
the learner knows c from the start, P is initially un-
known. Henceforth we identify problem instance ✓ and
P and e.g. will write Y ⇠ ✓ to denote Y ⇠ P . The
instance parameters specify the learner-environment
interaction as follows: In each round for t = 1, 2, . . . ,
the environment generates a K + 1-dimensional binary
vector Y = (Y

t

, Y

1

t

, . . . , Y

K

t

) chosen at random from P .
Here, Y i

t

is the output of sensor i, while Y

t

is a (hidden)
label to be guessed by the learner. Simultaneously, the
learner chooses an index I

t

2 [K] and observes the
sensor outputs Y

1

t

, . . . , Y

It
t

. The sensors are known to
be ordered from least accurate to most accurate, i.e.,
�

k

(✓)

.

= P
�

Y

t

6= Y

k

t

�

is decreasing with k increasing.
Knowing this, the learner’s choice of I

t

also indicates
that he/she chooses I

t

to predict the unknown label
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Test 1
Cost c1

Test 2
Cost c2

Test K
Cost cK

Figure 2: Cascaded Unsupervised Sequential Sensor Selec-

tion. Yt is the hidden state of the instance and Y 1
t , Y

2
t . . .

are test outputs. Not shown are features that a sensor could

process to produce the output.

Y

t

. Observing sensors is costly: The cost of choos-
ing I

t

is C

It

.

= c

1

+ · · · + c

It . The total cost suffered
by the learner in round t is thus C

It + I{Y
t

6= Y

It
t

}.
The goal of the learner is to compete with the best
choice given the hindsight of the values (�

k

)

k

. Let
c(k, ✓) = E

⇥

C

k

+ I{Y
t

6= Y

k

t

}
⇤

(= C

k

+�

k

) and c

⇤
(✓) =

min

k

c(k, ✓). The expected regret of the learner up to
the end of round T is R

T

= (

P

T

t=1

E [c(I

t

, ✓)])�Tc⇤(✓).

Sublinear Regret: The quantification of the learning
speed is given by the expected regret R

T

, which, for
brevity and when it does not cause confusion, we will
just call regret. A sublinear regret, i.e., R

T

/T ! 0 as
T !1 means that the learner in the long run collects
almost as much reward on expectation as if the optimal
action was known to it.

In what follows, we let a⇤(✓) denote the optimal action
that has the smallest index.1 The optimality of actions
can be captured in terms of marginal costs and marginal
errors. In particular, an action i is optimal if for all
j > i the marginal increase in cost, C

j

� C

i

, is larger
than the marginal decrease in error, �

i

� �

j

: 8 j � i

C

j

� C

i

| {z }

Marginal Cost

� E

h

I{Y
t

6= Y

i

t

}� I{Y
t

6= Y

j

t

}
i

| {z }

Marginal Error = �i � �j

. (1)

3 When is USS Learnable?

Let ⇥

SA

be the set of all stochastic, cascaded sensor
selection problems. Thus, ✓ 2 ⇥

SA

such that if Y ⇠ ✓

then �

k

(✓)

.

= P
�

Y 6= Y

k

�

is a decreasing sequence.
Given a subset ⇥ ⇢ ⇥

SA

, we say that ⇥ is learnable if
there exists a learning algorithm A such that for any
✓ 2 ⇥, the expected regret E [R

n

(A, ✓)] of algorithm A
on instance ✓ is sublinear. A subset ⇥ is said to be a
maximal learnable problem class if it is learnable and
for any ⇥

0 ⇢ ⇥

SA

superset of ⇥, ⇥0 is not learnable.
In this section we study two special learnable problem
classes, ⇥

SD

⇢ ⇥

WD

, where the regularity properties
of the instances in ⇥

SD

are more intuitive, while ⇥

WD

can be seen as a maximal extension of ⇥
SD

.

Let us start with some definitions. Given an instance
1
Note that even if i < j are optimal actions, there can

be suboptimal actions in the interval [i, j](= [i, j]\N), e.g.,

�1 = 0.3, C1 = 0, �2 = 0.25, C2 = 0.1, �3 = 0, C3 = 0.3.

✓ 2 ⇥

SA

, we can decompose ✓ (or P ) into the joint
distribution P

S

of the sensor outputs S = (Y

1

, . . . , Y

k

)

and the conditional distribution of the state of the en-
vironment, given the sensor outputs, P

Y |S . Specifically,
letting (Y, S) ⇠ P , for s 2 {0, 1}K and y 2 {0, 1},
P

S

(s) = P (S = s) and P

Y |S(y|s) = P (Y = y|S = s).
We denote this by P = P

S

⌦ P

Y |S . A learner who
observes the output of all sensors for long enough is
able to identify P

S

with arbitrary precision, while P

Y |S
remains hidden from the learner. This leads to the
following statement:

Proposition 1. A subset ⇥ ⇢ ⇥

SA

is learnable if and
only if there exists a map a : M

1

({0, 1}K)! [K] such
that for any ✓ = (P, c) 2 ⇥ with decomposition P =

P

S

⌦ P

Y |S, a(P
S

) is an optimal action in ✓. Following
our previous convention, we also write ✓ = P

S

⌦ P

Y |S.

An action selection map a : M

1

({0, 1}K)! [K] is said
to be sound for an instance ✓ 2 ⇥

SA

with ✓ = P

S

⌦P
Y |S

if a(P

S

) selects an optimal action in ✓. With this
terminology, the previous proposition says that a set
of instances ⇥ is learnable if and only if there exists a
sound action selection map for all the instances in ⇥.

A class of sensor selection problems that contains in-
stances that satisfy the so-called strong dominance
condition will be shown to be learnable:

Definition 1 (Strong Dominance (SD)). An instance
✓ 2 ⇥

SA

is said to satisfy the strong dominance prop-
erty if it holds in the instance that if a sensor predicts
correctly then all the sensors in the subsequent stages of
the cascade also predict correctly, i.e., for any i 2 [K],

Y

i

= Y ) Y

i+1

= · · · = Y

K

= Y (2)

almost surely (a.s.) where (Y, Y

1

, . . . , Y

K

) ⇠ ✓.

Before we develop this concept further we will mo-
tivate strong dominance based on experiments on a
few real-world examples. First, SD naturally arises
in the context of a cascade of error-correcting codes
(see [14, 15]). On the other hand for “natural” sys-
tems SD holds “approximately” only. Table 1 lists the
error probabilities of the classifiers (sensors) for the
heart and diabetic datasets from UCI repository. We
split features into two sets based on provided costs
(cheap tests are based on patient history and costly
tests include all the features). We then trained an SVM
classifier with 5-fold cross-validation and report scores
based on held-out test data. The last column lists the
probability that second sensor misclassifies an instance
that is correctly classified by the first sensor. SD is the
notion that suggests that this probability is zero. We
find in these datasets that �

12

is small thus justifying
our notion. In general we have found this behavior is
representative of other cost-associated datasets.
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Dataset �

1

�

2

�

12

PIMA Diabetes 0.32 0.23 0.065
Heart (Cleveland) 0.305 0.169 0.051

Table 1: Depicts approximate SD property on real datasets:

�1
.
= Pr(Y 1 6= Y ), �2

.
= Pr(Y 2 6= Y ), �12

.
= Pr(Y 1 =

Y, Y 2 6= Y )

We next show that SD conditions ensures learn-
ability. To this end, let ⇥

SD

= {✓ 2 ⇥

SA

:

✓ satisfies SD condition }.
Theorem 2. The set ⇥

SD

is learnable.

In the following results we let (Y, Y

1

, . . . , Y

K

) ⇠ ✓.
The key to the proof of Theorem 2 is the following
proposition:
Proposition 3. Let �

i

= �

i

(✓) for ✓ 2 ⇥

SA

,
Then, for any i, j 2 [K], �

i

� �

j

= P
�

Y

i 6= Y

j

�

�
2P

�

Y

j 6= Y, Y

i

= Y

�

.

Next we relax SD. The relaxation is developed through
a series of smaller propositions. We start with a corol-
lary to Proposition 3:
Corollary 4. Let i < j. Then 0  �

i

� �

j


P
�

Y

i 6= Y

j

�

.

The next two propositions consider the dual cases i < j

and i > j and the decrease/increase of total costs:
Proposition 5. Let i < j. Assume

C

j

� C

i

62 [�

i

� �

j

,P
�

Y

i 6= Y

j

�

) . (3)

Then �

i

+ C

i

 �

j

+ C

j

if and only if C

j

� C

i

�
P
�

Y

i 6= Y

j

�

.

Proposition 6. Let j < i. Assume

C

i

� C

j

62 (�

j

� �

i

,P
�

Y

i 6= Y

j

�

] . (4)

Then, �

i

+ C

i

 �

j

+ C

j

if and only if C

i

� C

j


P
�

Y

i 6= Y

j

�

.

These results motivate the following definition:
Definition 2 (Weak Dominance (WD)). An instance
✓ 2 ⇥

SA

is said to satisfy the weak dominance property
if for i = a

⇤
(✓),

⇢ = min

j>i

C

j

� C

i

P (Y

i 6= Y

j

)

� 1 . (5)

We denote the set of all instances in ⇥

SA

that satisfies
this condition by ⇥

WD

.

Note that ⇥

SD

⇢ ⇥

WD

since for any ✓ 2 ⇥

SD

and any
j > i = a

⇤
(✓), on the one hand C

j

�C

i

� �

i

��

j

, while
on the other hand, by SD, P

�

Y

i 6= Y

j

�

= �

i

� �

j

.

We now relate WD to the optimality condition de-
scribed in Eq. (1). WD can be viewed as a more

stringent condition for optimal actions. For an action
to be optimal we require that the marginal cost be
larger than marginal absolute error, namely, for all
j > i, with i = a

⇤
(✓):

C

j

� C

i

| {z }

Marginal Cost

� E

h

�

�

�

I{Y
t

6= Y

i

t

}� I{Y
t

6= Y

j

t

}
�

�

�

i

| {z }

Marginal Absolute Error

(6)

where we have re-written P
�

Y

i 6= Y

j

�

as the marginal
absolute error.

We propose the following action selector a

wd

:

M

1

({0, 1}K)! [K]:
Definition 3. For P

S

2M

1

({0, 1}K) let a
wd

(P

S

) de-
note the smallest index i 2 [K] such that

8j < i : C

i

� C

j

< P
�

Y

i 6= Y

j

�

, (7a)
8j > i : C

j

� C

i

� P
�

Y

i 6= Y

j

�

, (7b)

where C

i

= c

1

+ · · ·+ c

i

, i 2 [K] and (Y

1

, . . . , Y

K

) ⇠
P

S

. (If no such index exists, a
wd

is undefined, i.e., a
wd

is a partial function.)

The action selector a

wd

is sound for any ✓ 2 ⇥

WD

and
is in in fact essentially the only sound action selector
map defined for all instances of ⇥

WD

. Further, the
set ⇥

WD

is essentially a maximal learnable set in the
dom(a

wd

), i.e., ⇥

WD

is learnable but not uniformly
learnable (see Appendix B for formal statements and
proofs).

4 Regret Equivalence

In this section we establish that USS with SD property
is ‘regret equivalent’ to an instance of multi-armed-
bandit (MAB) with side-information [11]. The cor-
responding MAB algorithm can then be suitably im-
ported to solve USS efficiently. Recall that in a MAB
with side-information when in some round a decision
maker chooses an action a it receives noisy rewards
for all actions in N (a). In the simplest case, N (a)

is known ahead and a 2 N (a). The challenge is to
minimize regret as usual.

Let P
USS

be the set of USSs with action set A = [K].
The corresponding bandit problems will have the same
action set, while for action k 2 [K] the neighborhood
set is N (k) = [k]. Take any instance (P, c) 2 P

USS

and let (Y, Y

1

, . . . , Y

K

) ⇠ P be the unobserved state
of environment. We let the reward distribution for arm
k in the corresponding bandit problem be a shifted
Bernoulli distribution. In particular, the cost of arm k

follows the distribution of I{Y k 6=Y

1}�C

k

(we use costs
here to avoid flipping signs).

The random costs of different arms are defined to be
independent of each other. Let P

side

denote the set
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of resulting bandit problems and let f : P
USS

! P
side

be the map that transforms USS instances to bandit
instances by following the above transformation.

Now let ⇡ 2 ⇧(P
side

) be a policy for P
side

, i.e., a
map that describes what action to chosen given past
information. Policy ⇡ can also be used on any (P, c) in-
stance in P

USS

in an obvious way: In particular, given
the history of actions and states A

1

, U

1

, . . . , A

t

, U

t

in ✓ = (P, c) where U

s

= (Y

s

, Y

1

s

, . . . , Y

K

s

) such
that the distribution of U

s

given that A

s

= a is P

marginalized to Ya, the next action to be taken is
A

t+1

⇠ ⇡(·|A
1

, V

1

, . . . , A

t

, V

t

), where V
s

= (I{Y 1
s 6=Y

1
s }�

C

1

, . . . , I{Y 1
s 6=Y

As
s } � C

As). Let the resulting policy be
denoted by ⇡

0. The following can be checked by simple
direct calculation:

Proposition 7. If ✓ 2 ⇥

SD

, then the regret of ⇡ on
f(✓) 2 P

side

is the same as the regret of ⇡0 on ✓.

This implies that R⇤
T

(⇥

SD

)  R⇤
T

(f(⇥

SD

)). Now note
that this reasoning can also be repeated in the other
“direction”: For this, first note that the map f has a
right inverse g (thus, f �g is the identity over P

side

) and
if ⇡0 is a policy for P

USS

, then ⇡

0 can be “used” on any
instance ✓ 2 P

side

via the “inverse” of the above policy-
transformation: Given the sequence (A

1

, V

1

, . . . , A

t

, V

t

)

where V
s

= (B

1

s

+C

1

, . . . , B

K

s

+C

s

) is the vector of costs
for round s with B

k

s

being a Bernoulli with parameter
�

k

, let A

t+1

⇠ ⇡

0
(·|A

1

,W

1

, . . . , A

t

,W

t

) where W

s

=

(B

1

s

, . . . , B

As
s

). Denoting by ⇡ the resulting policy, we
have the following proposition:

Proposition 8. Let ✓ 2 f(⇥

SD

). Then the regret of
policy ⇡ on ✓ 2 f(⇥

SD

) is the same as the regret of
policy ⇡

0 on instance f

�1

(✓).

Hence, R⇤
T

(f(⇥

SD

))  R⇤
T

(⇥

SD

). In summary, we get
the following result:

Theorem 9. R⇤
T

(⇥

SD

) = R⇤
T

(f(⇥

SD

)).

Lower Bounds: Note that as a consequence of the
reduction and the one-to-one correspondence between
the two problems, lower bounds for MAB with side-
information is a lower bound for USS problem.

5 Algorithms

The reduction of the previous section suggests that
one can utilize an algorithm developed for stochastic
bandits with side-observation to learn on USS instances
satisfying SD property. In this paper we make use of
Algorithm 1 of [4] that was proposed for stochastic ban-
dits with Gaussian side observations. As noted in the
same paper, the algorithm is also suitable for problems
where the payoff distributions are sub-Gaussian. As
Bernoulli random variables are �

2

= 1/4-sub-Gaussian

Algorithm 1 Algorithm for USS under SD property

1: Play action K and observe Y

1

, . . . , Y

K .
2: Set �̂

1

i

 I{Y 1 6=Y

i} for all i 2 [K].
3: Initialize the exploration count: n

e

 0.
4: Initialize the allocation counts: N

K

(1) 1.
5: for t = 2, 3, ... do
6: if N(t�1)

4↵ log t

2 C(�̂

t�1

) then
7: Set I

t

 argmin

k2[K]

c(k, �̂

t�1

).
8: else
9: if N

K

(t� 1) < �(n

e

)/K then
10: Set I

t

= K.
11: else
12: Set I

t

to some i for which
N

i

(t� 1) < u

⇤
i

(�̂

t�1

)4↵ log t.
13: end if
14: Increment exploration count: n

e

 n

e

+ 1.
15: end if
16: Play I

t

and observe Y

1

, . . . , Y

It .
17: For i 2 [I

t

], set
�̂

t

i

 (1� 1

t

)�̂

t�1

i

+

1

t

I{Y 1 6=Y

i}.
18: end for

(after centering), the algorithm is also applicable in our
case.

For the convenience of the reader, we give the algorithm
resulting from applying the reduction to Algorithm 1 of
[4] in an explicit form. To do this we need some extra
notation. Recall that given a USS instance ✓ = (P, c),
we let �

k

= P
�

Y 6= Y

k

�

where (Y, Y

1

, . . . , Y

K

) ⇠ P

and k 2 [K]. Let k

⇤
= argmin

k

�

k

+ C

k

denote the
optimal action and �

k

(✓) = �

k

+C

k

� (�

k

⇤
+C

k

⇤
) the

sub-optimality gap of arm k. Further, let �

⇤
(✓) =

min{�
k

(✓), k 6= k

⇤} denote the smallest positive sub-
optimality gap and define �

⇤
k

(✓) = max{�
k

(✓),�

⇤
(✓)}.

Since cost vector c is fixed, in the following we use
parameter � in place of ✓ to denote the problem in-
stance. To explain the algorithm, we need to introduce
some new concepts. A (fractional) allocation count
u 2 [0,1)

K determines for each action i how many
times the action is selected. Thanks to the cascade
structure, using an action i implies observing the out-
put of all the sensors with index j less than equal to i.
Hence, a sensor j gets observed u

j

+ u

j+1

+ · · ·+ u

K

times. We call an allocation count “sufficiently in-
formative” if (with some level of confidence) it holds
that (i) for each suboptimal choice, the number of ob-
servations for the corresponding sensor is sufficiently
large to distinguish it from the optimal choice; and
(ii) the optimal choice is also distinguishable from the
second best choice. We collect these counts into the set
C(�) for a given parameter �: C(�) = {u 2 [0,1)

K

:

u

j

+ u

j+1

+ · · · + u

K

� 2�

2

(�

⇤
j (✓))

2 , j 2 [K]} (note that
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�

2

= 1/4). Further, let u

⇤
(�) be the allocation count

that minimizes the total expected excess cost over
the set of sufficiently informative allocation counts:
In particular, we let u

⇤
(�) = argmin

u2C(�)

hu,�(✓)i
with the understanding that for any optimal action
k, u

⇤
k

(�) = min{u
k

: u 2 C(�)}. For an allocation
count u 2 [0,1)

K let m(u) 2 NK denote total sensor
observations, where m

j

(u) =

P

j

i=1

u

i

corresponds to
observations of sensor j.

The idea of our algorithm, shown as Algorithm 1, is
as follows: The algorithm keeps track of an estimate
�̂

t

.

= (�̂

t

i

)

i2[K]

of � in each round, which is initialized
by pulling arm K as this arm gives information about
all the other arms. In each round, the algorithm first
checks whether given the current estimate �̂

t and the
current confidence level (where the confidence level is
gradually increased over time), the allocation count
N(t) 2 NK is sufficiently informative (cf. line 6). If
this holds, the action that is optimal under �̂(t) is
chosen (cf. line 7). If the check fails, we need to ex-
plore. The idea of the exploration is that it tries to
ensure that the “optimal plan” – assuming �̂ is the
“correct” parameter – is followed (line 12). However,
this is only reasonable, if all components of � are rela-
tively well-estimated. Thus, first the algorithm checks
whether any of the components of � has a chance of
being particularly poorly estimated (line 9). Note that
the requirement here is that a significant, but still alto-
gether diminishing fraction of the exploration rounds is
spent on estimating each components: In the long run,
the fraction of exploration rounds amongst all rounds
itself is diminishing; hence the forced exploration of
line 10 overall has a small impact on the regret, while
it allows to stabilize the algorithm.

For ✓ 2 ⇥

SD

, let �(✓) be the error probabilities for
the various sensors. The following result follows from
Theorem 6 of [4]:
Theorem 10. Let ✏ > 0, ↵ > 2 arbitrary and choose
any non-decreasing �(n) that satisfies 0  �(n)  n/2

and �(m+ n)  �(m) + �(n) for m,n 2 N. Then, for
any ✓ 2 ⇥

SD

, letting � = �(✓) the expected regret of
Algorithm 1 after T steps satisfies

R
T

(✓, c) 
⇣

2K + 2 +

4K

↵� 2

⌘

+ 4K

T

X

s=0

exp

⇣�8�(s)✏2

2K

⌘

+ 2�

⇣

4↵ log T

X

i2[K]

u

⇤
i

(�, ✏) +K

⌘

+ 4↵ log T

X

i2[K]

u

⇤
i

(�, ✏)�

i

(✓) ,

where u

⇤
i

(�, ✏) = sup{u⇤
i

(�

0
) : k�0 � �k1  ✏}.

Further specifying �(n) and using the continuity of
u

⇤
(·) at ✓, it immediately follows that Algorithm 1

Algorithm 2 Algorithm for USS with WD property

1: Play action K and observe Y

1

, . . . , Y

K

2: Set �̂

1

ij

 I{Y i 6=Y

j} for all i, j 2 [K] and i < j.
3: n

i

(1) I{i=K} 8i 2 [K].
4: for t = 2, 3, ... do
5: U

t

ij

= �̂

t�1

ij

+

q

1.5 log(t)

nj(t�1)

8 i, j 2 [K] and i < j

6: S

t

= {i 2 [K � 1] : C

j

� C

i

� U

t

ij

8 j > i}
7: Set I

t

= argminS

t

[ {K}
8: Play I

t

and observe Y

1

, . . . , Y

It .
9: for i 2 [I

t

] do
10: n

i

(t) n

i

(t� 1) + 1

11: �̂

t

ij

 
⇣

1� 1

nj(t)

⌘

�̂

t�1

ij

+

1

nj(t)
I{Y j 6=Y

i}8 i <

j  I

t

12: end for
13: end for

achieves asymptotically optimal performance:
Corollary 11. Suppose the conditions of Theo-
rem 10 hold. Assume, furthermore, that �(n) satis-
fies �(n) = o(n) and

P1
s=0

exp

⇣

��(s)✏

2

2K�

2

⌘

< 1 for
any ✏ > 0, then for any ✓ such that u

⇤
(✓) is unique,

lim sup

T!1 R
T

(✓, c)/ log T  4↵ inf

u2C✓ hu,�(✓)i,
i.e., by the lower bound of [4] the algorithm is asymp-
totically optimal.

Note that any �(n) = an

b with a 2 (0,

1

2

], b 2 (0, 1)

satisfies the requirements in Theorem 10 and Corol-
lary 11.

Algorithm 1 only estimates the disagreements P{Y 1 6=
Y

j} for all j 2 [K] which suffices to identify the optimal
arm when SD property (see Section 4) holds. Clearly,
one can estimate pairwise disagreements probabilities
P{Y i 6= Y

j} for i 6= j and use them to order the arms.
We next develop a heuristic algorithm that uses this
information and works for USS under WD.

5.1 Algorithm for Weak Dominance

The reduction scheme described above is optimal for
SD instances and can fail under the more relaxed WD
property. This is because, while under SD, the marginal
error is equal to marginal disagreement (see Prop. 2)
implying that for any two sensors i < j, �

i

� �

j

=

(�

i

��

1

)� (�

j

��

1

) = P
�

Y

i 6= Y

1

�

�P
�

Y

i 6= Y

1

�

and
that the marginal error between any two sensors can
be computed by only keeping track of disagreements
relative to sensor 1, under WD, the marginal error
is a lower bound and keeping track only of disagree-
ments relative to sensor 1 no longer suffices because
P
�

Y

i 6= Y

1

�

�P
�

Y

i 6= Y

1

�

is no longer a good estimate
for P

�

Y

i 6= Y

j

�

.

Our key insight is based on the fact that, under WD,
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for a given set of the disagreement probabilities, for
all i 6= j, the set {i 2 [K � 1] : C

j

� C

i

� P{Y i 6=
Y

j} for all j > i} includes the optimal arm. We use
this idea in Algorithm 2 to identify the optimal arm
when an instance of USS satisfies WD. We will experi-
mentally validate Algorithm 2’s performance on real
datasets in the next section.

Algorithm 2 works as follows. In each round, t, based
on history, we keep track of estimates, �̂t

ij

, of disagree-
ments between sensors i 6= j. In the first round, the
algorithm plays arm K and initializes its values. In
each subsequent round, the algorithm computes the
upper confidence value of �̂t

ij

denoted as U

t

ij

(5) for all
pairs (i, j) and orders the arms: i is considered better
than arm j if C

j

�C

i

� U

t

ij

. Specifically, the algorithm
plays an arm i that satisfies C

j

�C

i

� U

t

ij

for all j > i

(cf. line 6). If no such arm is found, then it plays arm
K. Regret guarantees analogous to Theorem 10 under
SD for this new scheme can also be derived but only
under additional conditions. In particular, no similar
guarantee can be provided under WD alone because
the set of WD instances is not uniformly learnable
(Theorem 19 of Appendix B).

5.2 Extensions

We describe briefly a few extensions here, which we
will elaborate on in a longer version of the paper.

Tree Structures: The ideas presented can be extended
to the case when sensors are organized as a tree with
root node corresponding to sensor 1 and the decision
maker can select any path starting from the root node.
To see this, note that the marginal error condition
of Eq. (1) still characterizes optimal sensor selection.
Under a modified variant of SD, namely, when Eq. (2)
applies to all children of any sensor, it follows that it
is again sufficient to keep track of disagreements. In
an analogous fashion Eq. (5) can be suitably modified
as well. This leads to a sublinear regret algorithm for
tree-structures.

Context-Dependent Sensor Selection: Before a deci-
sion is made about which sensor to pick, a context
X 2 X ⇢ Rd is observed. It is assumed that the
hidden state and the sensor measurements depend on
the context in a stochastic fashion. Analogous to the
context-independent case, we impose context depen-
dent notions for SD and WD, namely, Eq. (2) and
Eq. (5) hold conditioned on each x 2 X . To handle
these cases we let �

i

(x)

.

= Pr(Y

i 6= Y | X = x) and
�

ij

(x)

.

= Pr(Y

i 6= Y

j | X = x) denote the correspond-
ing contextual error and disagreement probabilities.
Our sublinear regret guarantees can be generalized for
a parameterized GLM model for disagreement, namely,
when the log-odds ratio log

�ij(x)

1��ij(x)
can be written as

✓

0
ij

x for some unknown ✓

ij

2 Rd.

6 Experiments

In this section we evaluate performance of Algorithms 1
and 2 on a completely synthetic example and two “real”
examples derived from real datasets, PIMA-Diabetes
and Heart Disease (Cleveland). Both of these datasets
specify the costs for acquiring individual features.

Synthetic: We generate data as follows. The input,
Y

t

, is generated IID Ber(0.7). Outputs for sensors 1,
2, 3 have an overall error statistic, �

1

= 0.4, �

2

=

0.1, �

3

= 0.05 respectively. To ensure SD we enforce
Eq. (2) during the generation process. To relax SD, we
introduce errors up to 10% during data generation for
sensor outputs 2 and 3 when sensor 1 predicts correctly.

Real Datasets: We split the features into three “sen-
sors” based on their costs. For PIMA-Diabetes dataset
(size=768) the first sensor is associated with patient
history/profile at a cost of $6, the 2nd sensor in addi-
tion utilizes insulin test (cost $ 22) and the 3rd sensor
uses all attributes (cost $46). For the Heart dataset
(size=297) we use the first 7 attributes that includes
cholesterol readings, blood-sugar, and rest-ECG (cost
$27), the 2nd sensor utilizes in addition the thalach,
exang and oldpeak attributes that cost $300 and the
3rd sensor utilizes more extensive tests at a total cost
of $601.

We train three linear SVM classifiers with 5-fold cross-
validation and have verified that our results match
known state-of-art. Note that Table 1 shows that the
resulting classifiers/tests on these datasets approxi-
mately satisfies SD condition and thus our setup should
apply to these datasets. The size of these datasets is
relatively small and limits our ability to experiment.
To run the online algorithm we therefore generate an
instance randomly from the dataset (with replacement)
in each round. We repeat the experiments 20 times
and averages are shown with 95% confidence bounds.

Testing Learnability: We experiment with different
USS algorithms on the synthetic dataset. Our pur-
pose is twofold: (a) verify Algorithm 1 under SD; (b)
verify that WD condition gives a maximal learnable
set. Fig. 3 depicts the results of Algorithm 1 when
SD condition is satisfied and shows that we obtain
sublinear regret regardless of costs/probabilities. To
test WD requirement we parameterize the problem by
varying costs. Without loss of generality we fix the
cost of sensor 1 to be zero and the total cost of the
entire system to be C

tot

. We then vary the costs of
sensors 2 and 3. We test the hypothesis that WD is
a maximal learnable set. We enforce Sensor 2 as the
optimal sensor and vary the costs so that we continu-
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Figure 3: Regret under SD property
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Figure 4: Regret under as ⇢ from Eq. (5) varies.

Fig. 3 depicts regret of Algorithm 1 on synthetic data under SD. Under SD the regret is always sublinear regardless of

costs/probability. Fig. 4 demonstrates a phase-transition effect. (The regret of Algorithm 1 is not plotted here because

this algorithm fails in this case.) As ⇢ ! 1 (from the right) regret-per-round drastically increases, which is an indirect

indication of that WD is a maximal learnable set.
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Figure 5: Regret Curves on PIMA Diabetes
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Figure 6: Regret Curves on Heart Disease
Figs. 5 and 6 depict performance for real-datasets and presents comparisons against supervised (bandit with ground-truth

feedback) scenario.

ously pass from the situation where WD holds (⇢ � 1)
to the case where WD does not hold (⇢ < 1). Fig. 4
depicts regret-per-round for Algorithm 2 and as we can
verify there is indeed a transition at ⇢ = 1.

Unsupervised vs. Supervised Learning: The real
datasets provide an opportunity to understand how dif-
ferent types of information impact performance. We
compare Algorithm 2 against a corresponding bandit
algorithm where the learner receives feedback. In par-
ticular, for each action in each round, in the bandit
setting, the learner knows whether or not the corre-
sponding sensor output is correct. We implement the
“supervised bandit” setting by replacing Step 5 in Al-
gorithm 2 with estimated marginal error rates.

We scale costs by means of a tuning parameter (since
the costs of features are all greater than one) and con-
sider minimizing a combined objective (� Cost + Error)
as stated in Section 2. High (low)-values for � corre-
spond to low (high)-budget constraint. If we set a fixed
budget of $50, this corresponds to high-budget (small
�) and low budget (large �) for PIMA Diabetes (3rd
test optimal) and Heart Disease (1st test optimal) re-

spectively. Figs. 5 and 6 depict performance. We notice
that for both high as well as low cost scenarios, while su-
pervised does have lower regret, the USS cummulative
regret is also sublinear and within a constant fraction
of the supervised case. This is qualititively interesting
because these plots demonstrate that (although under
WD we do not have uniform learnability), in typical
cases, we learn as well as the supervised setting.

7 Conclusions

The paper describes a novel approach for unsupervised
sensor selection, which arises, e.g., in a number of
healthcare and security applications. The main chal-
lenge in these applications is that ground-truth anno-
tated examples are unavailable and it is often difficult
to acquire them in-situ. We proposed a novel approach
for sensor selection based on novel notions of weak- and
strong-dominance. We showed that weak dominance
property is maximal in that violation of this condition
leads to loss of learnability. Our experiments demon-
strate that weak dominance does hold in practice for
real datasets and we also found that for these datasets
sensor selection under no supervision can be as effective
as under supervision.
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