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Abstract

Two-sample feature selection is a ubiqui-
tous problem in both scientific and engineer-
ing studies. We propose a feature selection
method to find features that describe a dif-
ference in two probability distributions. The
proposed method is nonparametric and does
not assume any specific parametric models
on data distributions. We show that the
proposed method is computationally efficient
and does not require any extra computa-
tion for model selection. Moreover, we prove
that the proposed method provides a consis-
tent estimator of features under mild condi-
tions. Our experimental results show that
the proposed method outperforms the cur-
rent method with regard to both accuracy
and computation time.

1 Introduction

Two-sample feature selection is a task of finding
features with distribution differences between two
datasets. Feature selection helps us understand what
causes differences between the datasets, which is a fun-
damental question in both scientific and engineering
studies. Important example tasks include the two-
sample test [1, 2] and anomaly detection [3, 4]. For ex-
ample, in gene expression data analysis, a two-sample
test-based approach allows us to find genes that are

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copy-
right 2017 by the author(s).

specific to some subtypes [5]. In the anomaly detec-
tion context, one can find causes of an error by lo-
calizing features that behave differently between the
datasets sampled before and after the occurrence of
the error [6].

In this paper, we focus on finding features that de-
scribe a difference between two probability distribu-
tions. Suppose we have i.i.d. samples from the prob-
ability distributions p(x) and q(x) of sizes N and M ,
respectively, where x ∈ RD is a D-dimensional fea-
ture. Using these samples, we aim to find a subset
of features S ⊆ {1, 2, . . . , D} in which the two dis-
tributions do not match. Intuitively, we expect that
p(xS) ̸= q(xS) and p(xSc) = q(xSc) hold, where xS

and xSc denote subsets of a random variable x speci-
fied by the set S and its complement Sc, respectively.
We refer to the problem as different-feature selection.

There have been several studies on different-feature
selection in the two sample test and the anomaly de-
tection contexts. In the two sample test context,
Benjamini and Hochberg [1] proposed comparing each
signle feature using statistical tests, and then adjust-
ing the false discovery rate. In the anomaly detection
context in which the objective is to find features with
anomalies, the Mahalanobis-Taguchi System (MT) [3]
is one of the most classical method. The MT models
both p and q as Gaussian and then finds features with
a different mean or covariance. Following MT, several
lines of research focused on different-feature selection
under the Gaussian setting. Hirose et al. [7] proposed
using the change in inter-sensor correlations to find
features with distribution changes. Jiang et al. [8] pro-
posed a PCA-based method. Idé et al. [6, 9] used the
changes in the correlation and partial correlation. In
our previous study [4], we proposed an algorithm with
a consistency guarantee.



Consistent and Efficient Nonparametric Different-Feature Selection

Table 1: Comparison of nonparametric different-feature selection methods.
SPARDA [5]

(w/ projected gradient)
SPARDA [5]

(w/ relax and tighten) Proposed Method

Computation Speed Fast Slow Fast
Cross Validation Necessary Necessary Not Necessary

Optimality Local optimal Nearly global optimal
in practice

Nearly global optimal
in practice

Recently, Mueller and Jaakkola [5] proposed a new
different-feature selection method called SPARDA.
SPARDA finds a feature set S by searching a sub-
space with the maximum distribution difference by
solving a nonconvex problem. In particular, Mueller
and Jaakkola [5] used a nonparametric metric called
Wasserstein distance [10] to measure a difference be-
tween the distributions. Because the Wasserstein dis-
tance is nonparametric, SPARDA does not assume any
specific parametric models on p and q. This prop-
erty contrasts with the MT and its variants where
the Gaussian distribution is used. This nonparamet-
ric nature of SPARDA is favorable in practice because
we usually do not know the data distribution mod-
els, and they can be non-Gaussian in many cases.
Mueller and Jaakkola [5] also proved that SPARDA
provides a consistent estimator of the feature subset
S. The major difficulty with SPARDA, however, is
solving the nonconvex optimization problem. Mueller
and Jaakkola [5] proposed a relax and tighten proce-
dure that can find nearly global optima; however, this
procedure incurs high computational complexity. It
solves a semidefinite program at every iteration, each
of which runs in O(D3NM) time. Therefore, apply-
ing the relax and tighten procedure to large datasets
is difficult. Projected gradient ascent is a faster alter-
native method that runs in O(D(N + M) + N log N +
M log M) time per iteration. However, it is easily
trapped by local optima, as we will see in our exper-
iments. Note that in practice, the computation time
of these methods is further increased by the need for
cross validation for model selection; SPARDA needs
to choose an optimal regularization parameter.

This literature survey reveals the limitations of exist-
ing different-feature selection methods. The Gaussian-
based methods have limited applicability due to the
restrictive Gaussian assumption, whereas the nonpara-
metric SPARDA approach has computational diffi-
culty. Therefore, a computationally efficient different-
feature selection method with a less restrictive assump-
tion is required.

Our major contributions are twofold. First, we pro-
pose a simple nonparametric method for different-
feature selection. The proposed method does not as-
sume any specific parametric models on p and q, and
its time complexity is only O(D2(N + M) log NM) on
average. Moreover, the proposed method does not re-
quire optimization of any regularization parameters;

thus, it does not require any extra computation for
model selection. We formulate the problem as a spars-
est k-subgraph problem [11] using the estimated KL-
divergence. Although the problem is NP-hard in gen-
eral, we derive a nearly global optimal solution using
a greedy method. Table 1 summarizes the properties
of the proposed method and SPARDA.

The second contribution is consistency theorems for
the proposed method. The consistency of the different-
feature selection method was first proved in our pre-
vious study [4, Corollary 1] under the Gaussian set-
ting. Mueller and Jaakkola [5, Theorem 4] proved the
consistency of SPARDA without assuming any specific
parametric models. We prove the consistency of the
proposed method under mild assumptions on the dis-
tributions p and q. Our consistency guarantee requires
conditions only on the KL-divergence between the data
distributions but not on their distribution models.

Our experimental results confirmed the high accuracy
and computational efficiency of the proposed method
for both synthetic and real-world data. We found that
the proposed nonparametric method can detect a com-
plex distribution difference effectively and outperforms
Gaussian-based methods. We also compared the pro-
posed method and SPARDA with projected gradient
ascent for both accuracy and runtime. The results
showed that the proposed method attained higher ac-
curacy for many cases. We conjecture that SPARDA
tended to be trapped by local optima, while the pro-
posed method could find a nearly global optima using
the greedy method. We also observed that the speed
of the proposed method was comparable to or even
several times faster than SPARDA.

2 Problem Definition

Notation: Let [D] := {1, 2, . . . , D} for D ∈ N. For
a vector x ∈ RD, xd is its d-th component, and for
a matrix L ∈ RD×D, Ldd′ is its (d, d′)-th component.
For a set S ⊆ [D], Sc := [D]\S is its complement. For
a vector x and a set S ⊆ [D], xS := {xd | d ∈ S} is a
feature subset. N (µ, Σ) denotes the Gaussian distri-
bution with mean µ and covariance Σ. 0D denotes the
D-dimensional vector with all entries equal to zero.

We now define the different-feature selection prob-
lem we consider in this paper. Let x :=
(x1, x2, . . . , xD)⊤ ∈ RD be a D-dimensional feature.
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We aim to find features in which the distributions do
not match between two distributions. That is, for a
subset S ⊆ [D], we expect that there is a distribution
difference in the d-th feature xd when d ∈ S, while
there is no distribution difference in the d′-th feature
xd′ when d′ /∈ S. We formalize the problem as follows.

Problem 1 (Different-Feature Selection)
Given i.i.d. samples P = {y(n)}N

n=1
i.i.d.∼ p(x) and

Q = {z(m)}M
m=1

i.i.d.∼ q(x), identify the set S ⊆ [D]
that satisfies

p(xSc) = q(xSc), (1)
p(xSc∪{d}) ̸= q(xSc∪{d}), ∀d ∈ S. (2)

Conditions (1) and (2) require that the distributions
match on the feature subset Sc, and the equation does
not hold when the feature d ∈ S is removed from S
and added to Sc

We note that Problem 1 is a generalization of a com-
mon feature selection problem for binary classifica-
tion. Whereas existing methods, such as Lasso logistic
regression [12], search for discriminative features be-
tween the two classes, in Problem 1, we also search
for non-discriminative features with distribution dif-
ferences (e.g., features with variance changes).

3 Proposed Nonparametric Method

We propose a simple nonparametric method for
different-feature selection that satisfies two require-
ments, i.e., less restrictive assumption and computa-
tional efficiency. Specifically, we derive a computa-
tionally efficient algorithm by focusing only on the
difference of marginal distributions on the pair of fea-
tures. Moreover, the proposed method can capture the
difference on higher-order moments of distributions,
which is overlooked by the Gaussian-based methods.
We present the algorithm in this section, and provide
two important properties in the next section.

The proposed method consists of KL-divergence es-
timation and solving a sparsest k-subgraph prob-
lem [11]. In the proposed method, we use the uni-
variate and bivariate KL-divergences KL[p(xd)||q(xd)]
and KL[p(xd, xd′)||q(xd, xd′)]. Here, p(xd) and q(xd)
are univariate distributions on p and q, and p(xd, xd′)
and q(xd, xd′) are bivariate distributions on p and q,
respectively. Note that p(xd) = q(xd) is required
for d ∈ Sc from Condition (1). Thus, we have
KL[p(xd)||q(xd)] = 0 for d ∈ Sc. Similarly, we have
KL[p(xd, xd′)||q(xd, xd′)] = 0 for d, d′ ∈ Sc. In con-
trast, we may have KL[p(xd, xd′)||q(xd, xd′)] > 0 for
some d ∈ S. This is because the removal of d from

S violates the equality, as in Condition (2), which in-
dicates that there may exist d′ ∈ [D] \ {d} with the
distribution difference p(xd, xd′) ̸= q(xd, xd′). By us-
ing these properties on each univariate and bivariate
distribution, we estimate the set S.

In the proposed method, we first compute a KL-
divergence matrix between P and Q. We then es-
timate the set S by solving the sparsest k-subgraph
problem [11] on the KL-divergence matrix.

3.1 Step 1: Compute KL-divergence Matrix

We define the KL-divergence matrix L ∈ RD×D as
Ldd = KL[p(xd)||q(xd)] for d ∈ [D] and Ldd′ =
KL[p(xd, xd′)||q(xd, xd′)] for d, d′ ∈ [D], d ̸= d′. In
practice, we use the estimated KL-divergence using
the nearest-neighbor-based method [13]: for T ⊆
[D], K̂L[p(xT )||q(xT )] := |T |

N

∑N
n=1 log ν(y(n);T )

ρ(y(n);T ) +
log M

N−1 , where ρ(y(n); T ) := miny′∈P\{y(n)}∥y
(n)
T −y′

T ∥
and ν(y(n); T ) := minz∈Q ∥y(n)

T − zT ∥. We denote
the estimated KL-divergence matrix as L̂ hereafter.
The nearest-neighbor-based estimator is asymptoti-
cally unbiased and consistent under a regularity condi-
tion [13, Theorem 1, 2]. Note that the estimated KL-
divergence can be negative; nevertheless, the method
and the theoretical analysis are valid. Because Step 1
is composed of D(D+1)

2 independent computations, it
can be parallelized easily.

3.2 Step 2: Solve Sparsest k-subgraph
Problem

Estimation of the set S amounts to finding a submatrix
of L̂ whose entries are close to zero. This is because
L̂dd′ ≈ 0 is expected for d, d′ ∈ Sc from Condition
(1), while L̂dd′ > 0 is expected for some d ∈ S from
Condition (2). Such a set S can be derived by solving
the following problem:

Ŝ = argmin
S⊆[D]

∑
d,d′∈Sc L̂dd′ = f(S), s.t. |S| = α, (3)

where α is the number of features with distribution dif-
ferences. The problem (3) is equivalent to the sparsest
k-subgraph problem [4] with k = D − α, and is NP-
hard in general [11]. The exact solution can be de-
rived using state-of-the-art solvers such as IBM ILOG
CPLEX although it may take exponential time.

In practice, we can use a greedy method to derive a
pragmatic solution in reasonable time, as shown in our
previous study [4, Algorithm 1]. One difficulty with
the greedy method, however, is that α is unknown in
most cases. Therefore, we propose a new heuristic
algorithm (Algorithm 1) to avoid specifying the num-
ber α. With the algorithm, we score the feature xd
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Algorithm 1 Greedy Scoring Method
Input: KL-divergence matrix L̂ ∈ RD×D

Output: Score vector ŝ ∈ RD

Define f(S) :=
∑

δ,δ′∈Sc L̂δδ′

Let Ŝ ← ∅, ŝ← 0D

for i = 1 to D do
d← argmind′∈Ŝc f(Ŝ ∪ {d′})
ŝd ← (f(Ŝ)− f(Ŝ ∪ {d})) / (D − i + 1)
Ŝ ← Ŝ ∪ {d}

end for

based on the normalized change in the function value
f when an element d is added to Ŝ. If the addition
of d to Ŝ significantly reduces the function value, we
can conjecture that there is a distribution difference
in the feature xd. Formally, we estimate the set S by
Ŝt := {d | ŝd > t} by applying a threshold t to the
score ŝ derived from Algorithm 1. This procedure is
more practical than the original greedy method be-
cause α does not need to be specified explicitly. The
threshold t can be determined, for instance, by a visual
inspection of the score bar chart. One can also use a
convex relaxation method [4] to solve the problem (3).
One can derive a sparse solution that does not require
specifying a threshold at a cost of computation time.

4 Theoretical Analysis

4.1 Computational Complexity

Here, we show that the proposed method runs in
O(D2(N +M) log NM) average time. In the proposed
method, Step 1 runs in O(D2(N + M) log NM) aver-
age time, and Step 2 runs in O(D2) time which is
negligible compared to that of Step 1.

In Step 1, for the computation of K̂L[p(xT )||q(xT )],
we search for the nearest-neighbors for each of the N
points y(n) from the sets P and Q. Note that we can
search for the nearest-neighbors efficiently using a k-
d tree [14]. We require O(N log N + M log M) time
to construct k-d trees for both P and Q [14]. For
the nearest-neighbor search, although we may require
O(N + M) time in the worst case, the average time
is O(log NM) in practice. Thus, we have an overall
search complexity for all N points as O(N log NM) on
average. Because we estimate the KL-divergence for
each of D(D+1)

2 components in L̂, we have the average
time complexity as O(D2(N + M) log NM).

Step 2 has less time complexity compared to Step 1.
Algorithm 1 runs in O(D2) time by using a book keep-
ing. In book keeping, we maintain a ∈ RD such that
ad′ :=

∑
δ∈Ŝc L̂d′δ for every d′ ∈ Ŝc. Then, in every

iteration, the value of f(Ŝ ∪ {d}) can be computed as
f(Ŝ ∪ {d}) = f(Ŝ) − 2ad + L̂dd which is O(1) time
for every d ∈ Ŝc. Thus, the argmin operation can

be computed in O(D) time. We then update a by
ad′ ← ad′ − L̂d′d when an update Ŝ ← Ŝ ∪ {d} is exe-
cuted, which is also O(D) time. Hence, one iteration
in Algorithm 1 runs in O(D) time, and the overall time
complexity is O(D2).

4.2 Consistency Guarantee

We give a consistency guarantee for the esti-
mated set Ŝ derived by solving the problem (3):
limN,M→∞ P (Ŝ ̸= S) = 0.

This guarantee is based on the following assumption
about the distributions p and q.

Assumption 1 (Regularity [13]) There exists an
ϵ > 0 such that the following conditions hold for all
T ⊆ [D] with |T | ≤ 2:∫

| log p(xT )|2+ϵp(xT )dxT <∞,∫
| log ∥xT − yT ∥|2+ϵp(xT )p(yT )dxT dyT <∞,∫
| log q(xT )|2+ϵp(xT )dxT <∞,∫
| log ∥xT − yT ∥|2+ϵp(xT )q(yT )dxT dyT <∞.

Assumption 1 requires the distributions p(x) and q(x)
to decay sufficiently fast, i.e., they are not very heavy-
tailed. Common distributions such as Gaussian and
Laplacian satisfy this assumption.

The next two theorems indicate that we can derive
a consistent estimator of the set S without assuming
any specific parametric models on p and q. This con-
trasts with our previous method [4] where consistency
is guaranteed under some limited distributions such as
Gaussian. All proofs can be found in the supplemental
material (Appendix 11).

Theorem 1 (Necessary Condition) Suppose As-
sumption 1 holds. If Ŝ is consistent, one of (N1) and
(N2) holds for any d ∈ S: (N1) Ldd > 0, (N2) ∃d′ ∈
[D] \ {d}, Ldd′ > 0.

Theorem 2 (Sufficient Condition) Ŝ is consistent
when Assumption 1 and one of (S1) and (S2) holds for
any d ∈ S: (S1) Ldd > 0, (S2) ∀d′ ∈ [D]\{d}, Ldd′ >0.

Conditions (N1) and (N2) require the distribution dif-
ference to be observed on some pair of features. Note
that this is not a restrictive condition in practice. Con-
ditions (N1) and (N2) are violated only when the dif-
ference appears on the distribution of more than two
variables, i.e., p(xd, xd′ , xd′′) ̸= q(xd, xd′ , xd′′) holds
while p(xT ) = q(xT ) for any T ⊊ {d, d′, d′′}. Intu-
itively, these cases are negligible in practice as they
require the distributions p and q to have very specific
structures. The following theorem guarantees that this
intuition is correct in the Gaussian case. Indeed, Con-
ditions (N1) and (N2) hold for any distribution differ-
ences under Problem 1 with a Gaussian distribution.
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Theorem 3 When both p and q are Gaussian, one of
(N1) and (N2) holds for any d ∈ S.

5 Experiments

We evaluated the different-feature selection perfor-
mance of the proposed method both on its accuracy
and runtime. We first give illustrative examples with
synthetic data that describe the advantage and dis-
advantage of the proposed method. We then present
experimental results on UCI datasets and on a quan-
tum system anomaly detection application. All exper-
iments were conducted using a 16-core VM with an
Intel Xeon E312xx, 16GB of RAM, and Ubuntu 15.04.

Baseline Methods: We compared the proposed
method to four baseline methods. The first three are
the Gaussian-based methods MT [3], Idé’09 [6], and
Hara’15 [4], and the last one is the nonparametric
method SPARDA [5]. See the supplemental material
for the details of each method.

Implementations: In the experiments, we used the
greedy scoring method (Algorithm 1) for the proposed
method. The proposed method and Gaussian-based
methods were implemented in Python. SPARDA was
implemented in C++ based on the MATLAB code
fastSPARDA.m, which is available on the author’s web-
site (http://www.mit.edu/˜jonasm/). For SPARDA,
because the relax and tighten procedure was too slow,
we used the projected gradient ascent, which runs in
O(D(N + M) + N log N + M log M) time per iter-
ation. Because the projected gradient ascent tends
to be trapped by local optima, we used five random
restarts. We set the regularization parameter candi-
date for SPARDA to {0, 10−4, 10−3, 10−2, 10−1} and
selected the optimal one using 5-fold cross validation.

Evaluation Metric: Each method outputs a D-
dimensional score vector that describes how likely the
corresponding feature has changed. We compare the
score vector to the ground truth features S, and then
measure the area under the receiver operating charac-
teristic curve (AUROC). AUROC= 1 means that the
features are correctly identified with high scores.

5.1 Illustrative Examples

Here, we show the advantage and disadvantage of the
proposed method on synthetic experiments. We also
present a runtime comparison of the proposed method
and SPARDA.

[Example 1] Gaussian with Covariance Change:
In the first example, we used Gaussian data. We gen-
erated synthetic data as follows: Let Θ be a 20 × 20
randomly generated matrix from N (0, 1). We then

computed Σ = Θ⊤Θ and normalized the diagonal of
Σ to be one. We then generated 20-dimensional data
from the distributions p(x) = N (020, Σ) and q(x) =
N (020, Σ′), where Σ′

11 = 0.49Σ11 + 0.09Σ22 + 0.21Σ12,
Σ′

1d = 0.7Σ1d + 0.3Σdd for d ∈ [20] \ {1}, and Σdd′ =
Σ′

dd′ otherwise. In this setting, S = {1} is the solution
to Problem 1. We set the numbers of data points in
P and Q to be equal, i.e., N = M . Then, we ran-
domly generated datasets 100 times for several differ-
ent dataset sizes N .

Figure 1(a) shows the average AUROC of each method
over 100 random data realizations. Idé’09 and Hara’15
converged to an average AUROC = 1 around N = 102

and N = 103, respectively. The proposed method at-
tained an average AUROC = 1 around N = 3 × 103,
which is slower than the previous two methods. This
shows that the use of the correct parametric model
is advantageous in different-feature selection. How-
ever, it is noteworthy that the proposed method pro-
vided a consistent result with large sample sizes, as
implied from Theorem 2. In other words, the pro-
posed method can be an alternative to Gaussian-based
methods when there is a sufficiently large number of
samples. Note that SPARDA attained a comparable
average AUROC.

[Example 2] Gaussian Mixture with Mixture
Rate Change: In the second example, we used non-
Gaussian data to show the advantage of the proposed
method. In the example, we generated 20-dimensional
data from the Gaussian mixture distributions p and q
with different mixture rates on feature x1. Let p(u) =
N (020, Σ) be a 20-dimensional Gaussian distribution.
We defined p(xd|ud) = 0.5δ(xd−ud−4)+0.5δ(xd−ud+
4) for d = 1 and p(xd|ud) = δ(xd−ud) otherwise, where
δ(·) is a delta function. We also defined q(xd|ud) =
0.35δ(xd−ud− 4) + 0.35δ(xd−ud + 4) + 0.3δ(xd−ud)
for d = 1 and q(xd|ud) = δ(xd− ud) otherwise. In this
setting, S = {1} is the solution to Problem 1. Note
that the change from p to q causes variance change
in feature x1; therefore, it can be detected using the
Gaussian-based methods.

Figure 1(b) shows the advantage of the proposed
method and SPARDA. They attained an average AU-
ROC = 1 around N = 102, which is a significantly fast
convergence compared to the Gaussian-based meth-
ods. Idé’09 required N = 103 to attain an average
AUROC = 1, and MT and Hara’15 required more
samples. This indicates that the proposed method
and SPARDA can detect the complex distribution dif-
ference effectively due to their nonparametric nature.
Thus, they performed well with non-Gaussian data
where the Gaussian-based methods performed poorly.
Note that SPARDA performed better than the pro-
posed method for small sample sizes in this example.
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(a) Example 1: Gaussian w/ Covariance Change

(b) Example 2: Gaussian Mixture w/ Rate Change

Figure 1: Comparison of AUROC

Figure 2: Comparison of runtime for Example 1. Run-
times of single-thread and ten-thread implementations
were measured.

Runtime Comparison: Figure 2 shows the entire
runtime of the proposed method and SPARDA for Ex-
ample 1. For comparison, we used both single-thread
and ten-thread implementations. In the ten-thread im-
plementation, the computation of the matrix L̂ was
parallelized in the proposed method, while the param-
eter search with cross validation and random restarts
were parallelized in SPARDA.

From Figure 2, we find that the proposed method
was significantly faster than SPARDA for large sample
sizes. This was because the proposed method has small
time complexity and does not require any extra com-
putation for model selection. For N ≥ 103, with both
the single-thread and ten-thread implementations, the
proposed method was more than 100 times faster than
SPARDA. Together with Figure 1(a), the result shows

Table 2: Datasets from the UCI Repository. D0 is
number of features and N0 is number of data points.
D denotes number of effective features after screening;
we removed features taking less than 10 different val-
ues. Each dataset is normalized so that mean of each
feature is zero and variance is one. CBM dataset is
from Coraddu et al. [15].

D0 D N0
CASP 10 10 45730
CBM 18 13 11934

Diagnosis 48 48 58509
MiniBooNE 50 50 130065

Statlog 37 36 6435

that the proposed method could provide consistent so-
lutions with more than 100 times less runtime. By con-
trast, SPARDA was computationally advantageous for
small sample sizes.

5.2 Experiments on UCI Datasets

Here, we present experimental results on five real-
world datasets from the UCI repository [16]. The list
of the datasets is shown in Table 2. These datasets
are non-Gaussian and are, therefore, appropriate for
evaluating the effectiveness of the proposed method.

We constructed the datasets P and Q from each
dataset, each of which consists of randomly chosen
N = M = 1, 000 data points without overlap. For
dataset Q, we randomly selected a feature subset S ⊂
[D] with |S| = 3 and modified the distribution of xS .
Specifically, for d ∈ S and d′ ∈ Sc, we applied one of
the following five changes: (a) Mean Shift xd ← xd +c;
(b) Variance Change xd ← xd + cϵ, ϵ ∼ N (0, 1); (c)
Covariance Change xd ← (1− c)xd + cxd′ ; (d) Covari-
ance Change (Conditional) xd ← (1−c)xd +cxd′ when
xd′ ≤ v; (e) Covariance Change (No Variance Change)
xd ← w(1 − c)xd + wcxd′ , where c ∈ [0, 1] is the pa-
rameter that controls the difference level, v is the 25%
quantile of xd′ in the dataset Q, and w is a scalar fac-
tor that maintain the variance of xd unchanged. Note
that these changes affect the mean or covariance of
the distribution; thus, they can be detected using the
Gaussian-based methods.

Table 3 shows the results of Covariance Change with
two difference levels. The results for the other changes
were similar to those shown in Table 3, and we moved
them to the supplemental material (Appendix 9).

From Table 3, we find three important results that
show the effectiveness of the proposed method. The
first finding is that the AUROC of the proposed
method attained the best average score among the
five methods for all cases. Moreover, we observe that
there is more than 0.2 improvement of the average AU-
ROCs between the proposed method and Gaussian-
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Table 3: UCI Dataset Results: Left – average AUROC ± standard deviation on 20 random data realizations.
Proposed (exact) is a referential result with the exact solution of (3) derived using IBM ILOG CPLEX. The
highest AUROC among five methods is shown in bold letters. The best results and other results were compared
using a t-test (5%), and results that were not rejected are also highlighted; Right – average runtime ± stan-
dard deviation of the proposed method and SPARDA with ten-thread parallelization. The smaller runtime is
highlighted.

[Covariance Change]
AUROC Runtime (sec)

c
Proposed

(exact) Proposed MT [3] Idé’09 [6] Hara’15 [4] SPARDA [5] Proposed SPARDA

CASP .3 .92± .11 .93± .07 .61± .20 .86± .10 .84± .14 .75± .18 0.37± 0.07 8.51± 4.93
.5 .98± .07 .98± .03 .66± .18 .90± .06 .92± .11 .77± .19 0.36± 0.08 4.98± 3.77

CBM .3 .95± .09 .96± .07 .41± .15 .81± .15 .82± .11 .62± .15 0.41± 0.06 19.3± 9.74
.5 .96± .09 .98± .04 .45± .18 .82± .14 .84± .11 .70± .13 0.41± 0.04 12.7± 10.5

Diag
nosis

.3 .90± .09 .94± .06 .45± .16 .82± .13 .79± .13 .47± .14 1.35± 0.08 31.1± 54.5

.5 .95± .08 .97± .04 .50± .11 .87± .11 .87± .12 .62± .24 1.33± 0.07 24.3± 40.2
Mini

BooNE
.3 .74± .14 .94± .05 .45± .13 .60± .16 .54± .13 .55± .19 1.64± 0.12 153± 58.8
.5 .88± .12 .98± .02 .44± .13 .65± .19 .58± .15 .56± .20 1.68± 0.10 138± 57.0

Stat
log

.3 1.0± .00 1.0± .00 .42± .18 1.0± .00 .95± .07 .67± .26 0.67± 0.06 10.4± 4.32

.5 .98± .05 .98± .07 .27± .09 1.0± .00 .99± .03 .82± .21 0.68± 0.07 6.60± 5.07

based methods for many cases. As discussed in Sec-
tion 5.1, this is because the proposed method can de-
tect the complex distribution difference more effec-
tively than the Gaussian-based methods. Note that
the proposed method also outperformed SPARDA. We
conjecture that this was because SPARDA tended to
be trapped by local optima when solving the noncon-
vex optimization.

The second finding is the computational efficacy of the
proposed method. The proposed method was from 3
to more than 70 times faster than the entire runtime
of SPARDA (see also Appendix 9).

The third finding is on the left two columns. The re-
sults show that the proposed method with the greedy
scoring method attained comparable results with the
exact solution of the sparsest k-subgraph problem (3).
In other words, the greedy scoring method (Algo-
rithm 1) provided good approximate solutions and
can be a practical alternative for the exact method
that may require exponential time. Note that the
greedy scoring method sometimes outperformed the
exact method (see Appendix 9 for the discussion).

To demonstrate the success of the proposed method in
detail, we display a result from the CBM dataset with
Covariance Change (c = 0.3) in Figure 3. In this ex-
ample, we set the features with distribution differences
as S = {1, 5, 11}. In Figure 3(a), we observe that the
score of the proposed method marked the top-three
values on the set S, which is an ideal result. This
is not the case with the other four baseline methods.
The three Gaussian-based methods marked the largest
score on the fifth feature, but they failed to detect the
other two features. SPARDA marked the largest score
on the first feature, but it failed to detect the other
two features. The estimated KL-divergence matrix L̂

in Figure 3(f) shows why the proposed method could
detect differences successfully. L̂ had large values on
the rows and columns that corresponds to the set S.
This means that Conditions (S1) and (S2) in Theo-
rem 2 are met; thus, the set S was detected properly.

5.3 Application to Anomaly Detection in
Quantum Systems

We applied the proposed method to anomaly detec-
tion in quantum systems [17]. In quantum informatics,
we sometimes face unknown errors in the given quan-
tum state. For such cases, it is critically important
to find the error sources for several applications, such
as quantum computation, quantum cryptography, and
quantum metrology.

In this experiment, we used data derived from a real
physical experiment. In the physical experiment, 300
healthy density matrices were derived, each of which is
a 4×4 Hermitian matrix. 50 anomalous matrices were
also derived with a decoherence in their (1, 4)-th en-
try. See Appendix 10 for the details of the experimen-
tal settings. Experimentally obtained density matrices
have the changes in both on the mean and variance on
the (1, 4)-th entry (Table 4). Here, the task is to find
the erroneous (1, 4)-th entry using different-feature se-
lection. In the experiment, we applied two preprocess-
ing. First, because the error appears only on the ab-
solute value of the matrix entry, we computed the ab-
solute value of each entry. Second, because the matrix
is symmetric, we extracted only upper-triangular en-
tries and transformed the matrix to a ten-dimensional
vector.

Figure 4(a) shows that the proposed method and
SPARDA attained AUROC=1 for all the decoherence
levels (two lines overlapped in the figure). To exam-
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(a) Proposed (b) MT [3] (c) Idé’09 [6]

(d) Hara’15 [4] (e) SPARDA [5]
(f) Estimated KL-divergence matrix L̂

Figure 3: Results on the CBM dataset with Covariance Change (c = 0.3): (a)–(e) Change Score ŝ: (red bars on
the 1st, 5th, and 11th features denote that they are features with distribution differences, while blue bars on the
other features denote that they have no distribution differences); (f) Estimated KL-divergence matrix L̂.

(a) Mean and Variance Change (b) Only Variance Change

Figure 4: AUROCs on decoherence data

Table 4: Decoherence level and
the mean and the variance of
(1, 4)-th entry. Level 0 is a
healthy data.

Level Mean Var.
0 0.42 0.000651
1 0.40 0.001055
2 0.38 0.000876
3 0.36 0.000817
4 0.34 0.000768

ine the performance of each method in a more com-
plex situation, we removed the mean change from the
anomalous data. Here, the task is to identify the (1, 4)-
th entry only from its variance changes. Figure 4(b)
shows that, in this setting, only the proposed method
attained AUROC= 1 for all decoherence levels. This
result confirms that the proposed method could find
different-features most effectively.

6 Conclusion

We have proposed a simple nonparametric method
for different-feature selection that satisfies the two re-
quirements, namely, less restrictive assumptions and
computational efficiency. In the proposed method,
we have first computed the KL-divergence matrix and
then solved the sparsest k-subgraph problem derived
from the matrix using a greedy scoring method. We
have shown that the proposed method runs in only
O(D2(N + M) log NM) average time. Moreover, it
does not require extra computation for model selec-
tion. We have also proved that the proposed method
provides a consistent solution under mild conditions.
In particular, it requires less restrictive assumptions on
the data distributions for consistent estimation com-

pared to current Gaussian-based methods.

The experimental results revealed that the proposed
method significantly outperformed the Gaussian-based
methods. The proposed method detected the com-
plex distribution difference effectively and attained a
high AUROC even for cases in which the Gaussian-
based methods worked poorly. We also compared
the proposed method to the state-of-the-art method
SPARDA. The experimental results showed that the
proposed method attained a higher AUROC than
SPARDA on several datasets while requiring small
computation time.

Despite the computational efficiency of the proposed
method, there still remains a scalability issue. That is,
the time complexity is proportional to D2, which can
be prohibitive in a high dimensional setting. Improv-
ing the computational scalability is one of our future
directions.
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