
High-dimensional Time Series Clustering via Cross-Predictability

Dezhi Hong Quanquan Gu Kamin Whitehouse
University of Virginia University of Virginia University of Virginia

Abstract

The key to time series clustering is how to
characterize the similarity between any two
time series. In this paper, we explore a new
similarity metric called “cross-predictability”:
the degree to which a future value in each
time series is predicted by past values of the
others. However, it is challenging to estimate
such cross-predictability among time series
in the high-dimensional regime, where the
number of time series is much larger than the
length of each time series. We address this
challenge with a sparsity assumption: only
time series in the same cluster have signifi-
cant cross-predictability with each other. We
demonstrate that this approach is computa-
tionally attractive, and provide a theoretical
proof that the proposed algorithm will iden-
tify the correct clustering structure with high
probability under certain conditions. To the
best of our knowledge, this is the first prac-
tical high-dimensional time series clustering
algorithm with a provable guarantee. We eval-
uate with experiments on both synthetic data
and real-world data, and results indicate that
our method can achieve more than 80% clus-
tering accuracy on real-world data, which is
20% higher than the state-of-art baselines.

1 INTRODUCTION

The proliferation of cheap, ubiquitous sensing infras-
tructure has enabled continuous monitoring of the
world, and many expect the Internet of Things to have
over 25 billion devices by 2020 [12]. In this paradigm,
time series data will often be high-dimensional: the
number of time series d (i.e., number of sensors) will
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be much larger than the length of each time series T .
Time series clustering often serves as an important first
step for many applications and poses long-standing
challenges. In this paper, we explore the challenge of
time series clustering in the high-dimensional regime.

The key to time series clustering is how to character-
ize the similarity between any two time series. In the
past several decades, various metrics for measuring the
similarity/distance between time series have been in-
vestigated [8, 13, 6, 11, 18, 26, 10, 20, 34, 3], and so on.
Hidden Markov Models [29, 24] have also been utilized
to derive the distances between time series for cluster-
ing. Recently, a few new metrics [27, 19] to measure the
similarity between time series have been proposed and
applied to cluster brain-computer interface data and
motion capture data. However, all the aforementioned
work either did not provide theoretical guarantees for
their methods, or only considered scenarios where the
number of observations per time series T far exceeds
the number of time series d.

In this paper, we explore a new similarity metric called
“cross-predictability”: the degree to which a future value
in each time series is predicted by past values of the
others. This metric captures causal relationships be-
tween time series, such as seasonal or diurnal e↵ects on
multiple environment sensors, market e↵ects on multi-
ple stock prices, and so on. However, it is challenging
to estimate such cross-predictability among time series
in the high-dimensional setting where d > T : a con-
ventional regression task, for example, would have d
variables and T equations, which is under-constrained.
Intuitively, only time series in the same cluster would
have significant cross-predictability for each other, thus
yielding sparse relationships that are indicative of the
cluster structure. Consequently, we propose to esti-
mate cross-predictability by imposing a sparsity as-
sumption on the cross-predictability matrix, i.e., that
only time series in the same cluster have significant
cross-predictability with each other. To do this, we
propose a new regularized Dantzig selector, which is a
variant of standard Dantzig selector [7], to estimate the
similarity among the time series. We demonstrate that
this approach is computationally attractive because it
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involves solving d regularized Dantzig selectors that
can be optimized by alternating direction method of
multipliers (ADMM) [4] in parallel.

Additionally, we provide a theoretical proof that the
proposed algorithm will identify the correct clustering
structure with high probability, if two conditions hold:
1) the individual time series themselves can be modeled
with an autoregressive model [14], and 2) the transition
matrix for the vector autoregressive model is block
diagonal, i.e., that it is actually possible to create
clusters such that time series in the same cluster are
cross-predictive while those in di↵erent clusters are not.

To the best of our knowledge, this is the first practi-
cal high-dimensional time series clustering algorithm
with a provable guarantee. It is worth noting that the
proposed algorithm can be generally applied to cluster
any high dimensional times series, regardless of the un-
derlying data distribution. We make the autoregressive
model assumption solely for the purpose of providing
the theoretical guarantees for our method.

To demonstrate the e↵ectiveness of our method, we
conduct experiments on a real-world data set of sensor
time series as well as simulations with synthetic data.
Our method can achieve more than 80% clustering
accuracy on the real-world data set, which is 20% higher
than the state-of-art baselines.

Notations We compile here some standard notations
used throughout the paper. In this paper, we use low-
ercase letters x, y, . . . to denote scalars, bold lowercase
letters x,y, . . . for vectors, and bold uppercase letters
X,Y, . . . for matrices. We denote random vectors by
X,Y . We denote the (i, j) entry of a matrix as Mij ,
and use Mi⇤ to index the i-th row of a matrix (like-
wise, M⇤j for the j-th column). We also use MS,T

to represent a submatrix of M with its rows indexed
by the indices in set S and columns indexed by T . In
addition, we write Sc to denote the complement of a set
S. For any matrix M, P(M) represents the symmetric
convex hull of its columns, i.e., P(M) = conv(±X).
For any matrices M1,M2, . . .Mk, we denote a block
diagonal matrix by diag(M1,M2, . . . ,Mk) such that
the k-th diagonal block is Mk. Throughout the pa-
per, we will use vector norm `q for 0 < q < 1 and

`1 of v defined as kvkq =
⇣P

i |vi|
q
⌘1/q

, kvk1,1 =

maxi |vi|, and matrix norm `q, element-wise `1 and
`F of M as kMkq = maxkvkq=1 kMvkq, kMk1,1 =

maxij |Mij | , kMkF =
⇣P

i,j |Mij |
2
⌘1/2

.

2 RELATED WORK

There has been a substantial body of work on time
series clustering, and in this section we briefly overview

two related categories: clustering based on similarity
and subspace clustering.

Similarity/Distance-based Time Series Cluster-
ing A wide range of classical similarity/distance met-
rics have been developed and studied [8], including Pear-
son’s correlation coe�cient [13], cosine similarity [6],
autocorrelation [11], dynamic time warping [18, 26],
Euclidean Distance [10], edit distance [20], distance
metric learning [34, 3], and so on. Studies have also
shown that time series can be modeled as generated
from Hidden Markov Models [29, 24], and the esti-
mated weight for each mixture can be used to cluster
the time series. Recently, Ryabko et al. [27] considered
brain-computer interface data for which independence
assumptions do not hold, and for clustering they pro-
posed a new distance metric to measure the similarity
between two time series distributions. Khaleghi et
al. [19] formulated a novel metric to quantify the dis-
tance between time series and proved the consistency
of k-means for clustering processes according only to
their distributions. However, in the aforementioned
studies, they either did not provide theoretical analysis
of the performance or only handled settings where the
number of time series d is smaller than the number
of observations T . Di↵erent from the above similarity
or distance metrics, we define the similarity between
time series from a new perspective - time series are
clustered based on how much they can be predicted by
each other.

Subspace Clustering (SC) Another relevant line
of research on high-dimensional data analysis is sub-
space clustering [9], where the assumption is that data
lie on the union of multiple lower-dimensional linear
spaces and data points can be clustered into the sub-
space they belong to. SC has been widely applied to
face images clustering [1], social graphs [17] and so on.
Recently, extensions to handling noisy data [21, 31, 33]
and data with irrelevant features [25] have been stud-
ied as well. SC achieves the state-of-art performance
while enjoying rigorous theoretical guarantees. The
key di↵erence between SC and our method is two-fold:
first, SC assumes data lie on di↵erent subspaces and
even data in the same subspace are independent and
identically distributed (i.i.d.), while we assume the time
series follow a VAR model and are dependent for the
ones in the same cluster; second, SC mathematically
solves for each data point a linear regression problem
with all other data points being the candidate, while
in contrast, our study solves the regression problem to
estimate the prediction weights between observations
from di↵erent time stamps using all the time series.
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3 METHODOLOGY

3.1 The VAR Model

Our algorithm is motivated by the autoregressive
model, and the later-on theoretical guarantee for our
algorithm also relies on the autoregressive model as-
sumption, so we briefly review the stationary first-
order vector autoregressive model with Gaussian noise
here. Let random vectors X1, . . . ,XT be from a
stationary process (Xt)1t=�1, and we further define
X = [X1, . . . ,Xt, . . .XT ]> 2 RT⇥d, where Xt =
(x1, . . . , xd)> 2 Rd is a d-dimensional vector and each
column of X is a one-dimensional time series with T
samples. In particular, we assume each Xt can be
modeled by a first-order vector autoregressive model:

Xt+1 = AXt +Zt, for t = 1, 2, . . . , T � 1. (3.1)

To secure the above process to be stationary, the tran-
sition matrix A must have bounded spectral norm,
i.e., kAk2 < 1. We also assume Zt ⇠ N(0, ) is i.i.d.
additive noise independent of Xt, and Xt has zero
mean and a covariance matrix ⌃, i.e., Xt ⇠ N(0,⌃),
where ⌃ = E[XtX

>
t ] is the autocovariance matrix. In

addition, we have the lag-1 autocovariance matrix as
⌃1 = E[XtX

>
t+1]. Since (Xt)1t=�1 is stationary, it is

easy to observe that the covariance matrix ⌃ depends
on A and  , i.e., ⌃ = A>⌃A + , and we further
have:

⌃A> = ⌃1. (3.2)

Essentially, the zero and nonzero entries in the tran-
sition matrix A directly reflect the Granger non-
causalities and causalities with regard to the stochastic
time series. In other words, a nonzero entry Aij implies
that the j-th time series is predictive for the i-th time
series, with the magnitude |Aij | indicating how much
the predictive power is. The new similarity metric
in our clustering algorithm is built upon such cross-
predictive relationship between time series. Now we
set to introduce the clustering algorithm.

3.2 The Proposed Clustering Algorithm

Our algorithm first estimates the cross-predictability
among the time series, and then identifies the clustering
structure based on the estimated relationship. To in-
troduce our proposed algorithm, we need the following
notations: XS = [X1, . . . ,XT�1]

>
2 R(T�1)⇥d, XT =

[X2, . . . ,XT ]
>

2 R(T�1)⇥d, ⌃̂ = X>
SXS/(T � 1), and

⌃̂1 = X>
SXT /(T � 1). Inspired by the relationship

in Eq. (3.2), our main idea is to estimate A based on
the relationship between A and the autocovariance
and lag-1 autocovariance matrices. This motivates the

following Dantzig selector type estimator [15],

Â = argmin
A

kAk1 subject to k⌃̂A>
�⌃̂1k1,1  µ,

(3.3)
where µ > 0 is a tuning parameter. Since each row of
A is independent, the above optimization problem can
be decomposed into d independent sub-problems and
solved individually as follows:

�̂i = argmin
�i

k�ik1 subject to k⌃̂�i � �̂ik1,1  µ,

(3.4)
where �̂i = (⌃̂1)⇤i = X>

S (XT )⇤i/(T � 1), i.e., �̂i is the

i-th column of ⌃̂1, and Â =
h
�̂1, . . . , �̂d

i>
2 Rd⇥d

with each �̂i 2 Rd. Therefore, the �̂i in (3.4) is an
estimation of the i-th row of the transition matrix A.
Furthermore, for each µ > 0, there always exists a
� > 0 such that (3.4) is equivalent to the following
regularized Dantzig selector type estimator:

�̂i = argmin
�i

�k⌃̂�i � �̂ik1,1 + k�ik1, (3.5)

where � is a regularization parameter to determine
the sparsity of the estimation. (3.4) can be solved by
alternating direction method of multipliers (ADMM)
[4]. All the d optimization problems can be solved in
parallel, thus computationally e�cient.

After solving the problem in (3.5), we construct an

a�nity matrix W based on Â =
h
�̂1, . . . , �̂d

i>
by

symmetrization, and compute the corresponding Lapla-
cian to perform standard spectral clustering [23, 28]
to recover the clusters in the input time series. The
procedure is summarized in Algorithm 1.

3.3 Discussion

At first glance, the regularized Dantzig selector in (3.5)
and Lasso appear similar. However, di↵erent from
Lasso, the “input” of the regression problem in Eq (3.5)
is the lag-0 covariance matrix, and the “response” is
the lag-1 covariance matrix. Here the lag-one covari-
ance matrix encodes and includes into consideration
the first-order temporal information, which is missing
in conventional similarity metrics such as correlation.
Additionally, di↵erent from the Lasso-based estimation
procedure [2], which penalizes the square loss, the reg-
ularized Dantzig selector estimator penalizes the `1,1
loss.

It is also worth noting that Algorithm 1 shares a similar
high level idea as the subspace clustering (SC) algo-
rithm [30, 33, 31], but the key di↵erence is that SC
considers the relationship between each data point and
all the other points, while in contrast, our estimator
solves the regression problem to estimate the predic-
tive relationship between the observations from time
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Algorithm 1: Time Series Clustering Algorithm

Input: Time series X = [X1, . . .XT ]
>

2 RT⇥d,

XS = [X1, . . . ,XT�1]
>

2 R(T�1)⇥d,

XT = [X2, . . . ,XT ]
>

2 R(T�1)⇥d,
⌃̂ = X>

SXS/(T � 1), and �̂i = X>
S (XT )⇤i/(T � 1)

Output: Cluster membership of each time series Y
1. Solve for each i = 1, . . . , d:

�̂i = argmin
�i

�k⌃̂�i � �̂ik1,1 + k�ik1;

2. Set Â =
h
�̂1, . . . , �̂d

i>
;

3. Construct the a�nity graph G with nodes being
the d time series in X, and edge weights given by the

matrix W =
��Â

��+
��Â

��>;
4. Compute the unnormalized Laplacian L = M � W
of graph G, with M = diag(m1,m2, . . . ,md) and

mi =
Pd

j=1 Wij ;
5. Compute the first k eigenvectors �1, . . . ,�k of L
and let V 2 Rd⇥k be the matrix containing as
columns the first k eigenvectors;

6. Cluster time series x0
i 2 Rk, as the i-th row of V,

with the k-means algorithm into clusters
C1, . . . , Cl, . . . , Ck.

d

d
⇥

T - 1

d

T - 1

d

…
…

…
…

A
X

S

X
T

X1X2

XT�1XT

�

A�,di

Xt+1,di Xt,�

Figure 1: Illustration of the Proposed Regularized
Dantzig Selector: it solves the regression problem to
estimate the predictive relationship between the obser-
vations from time t+ 1 and time t considering all the
time series.

t+ 1 and the observations from time t considering all
the time series, as illustrated in Figure 1. Another
fundamental di↵erence here is, SC assumes data are
i.i.d. and lie on di↵erent subspaces, while here the time
series data are obviously dependent. This poses a big
challenge to the theoretical analysis of our algorithm.

4 MAIN RESULTS

In this section, we state our main theory - a provable
guarantee for successfully recovering the underlying
clustering structure of the input time series. We first
introduce some necessary definitions for understanding
our main theorem.

4.1 Preliminaries

To define the clusters among time series X un-
der the context of VAR model, we assume A =
diag(A1, . . . ,Al, . . . ,Ak) to be block diagonal, where
Al 2 Rdl⇥dl and the number of time series d satis-
fies d =

Pk
l=1 dl. Consequently, we can rewrite X

as X =
⇥
X1, . . . ,Xl, . . . ,Xk

⇤
with each Xl

2 RT⇥dl

obeying:

X

l
t+1 = AlX

l
t +Z

l
t, for t = 1, 2, . . . , T � 1,

which essentially defines the clustering structure in the
time series, such that the dataX l

t+1 2 Rdl at time point
t+ 1 depends only on the data X

l
t from the previous

time point t in the same block indexed by Al. In other
words, as an e↵ect of Al, data are more predictive for
each other in the same block, rather than for those
in the other blocks. The block diagonal transition
matrix A gives rise to the fact that the time series
in X 2 RT⇥d formulate k clusters C1, . . . , Cl, . . . , Ck of
RT⇥dl , and each Cl contains dl one-dimensional time
series of RT denoted as Xl. Without loss of generality,
let X =

⇥
X1, . . . ,Xl, . . . ,Xk

⇤
be ordered. We further

write Sl to denote the set of indices corresponding to
the columns of X that belong to cluster Cl.

Definition 4.1 (Cluster Recovery Property). The clus-
ters {Cl}

k
l=1 and the time series X from these clusters

obey the cluster recovery property (CRP) with a param-
eter �, if and only if it holds that for all i, the optimal
solution �̂i to (3.5) satisfies: (1) �̂i is nonzero; (2) the
indices of nonzero entries in �̂i correspond to only the
columns of X that are in the same cluster as X⇤i.

This property ensures that the output coe�cient ma-
trix Â and a�nity matrix W will be exactly block
diagonal, with each cluster represented in a disjoint
block. Particularly, recall that we assume the transition
matrix A in the VAR model to be block diagonal, and
therefore the CRP is guaranteed to hold for data gener-
ated from such a model. For convenience, we will refer
to the second requirement as the “Self-Reconstruction
Property (SRP)” from now on.

Definition 4.2 (Inradius [30]). The inradius of a con-
vex body P, denoted by r(P), is defined as the radius
of the largest Euclidean ball inscribed in P.

By the definition, the radius of a P(X) measures the
dispersion of the time series in X. Naturally, well-
dispersed data will yield a large inradius while data
with skewed distribution will have a small inradius.

4.2 Theoretical Guarantees

One of our major contributions in this paper is to pro-
vide theoretical guarantees for successfully recovering
the clustering structure in the data.
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Theorem 4.3. Under the assumption of VAR model
with a block diagonal transition matrix, we compactly
denote P

l
0 = P(⌃Sl,Sl), P

l
1 = P((⌃1)Sl,Sl), r

l
0 = r(P l

0),
rl1 = r(P l

1), and r0r1 = minl rl0r
l
1 for l = 1, 2, ..., k, and

let

⇢ =
16k⌃k2 maxj ⌃jj

minj ⌃jj(1 � kAk2)

r
6 log d+ 4

T
. (4.1)

Furthermore, if

r0r1 >
k⌃Sc

l ,Slk1,1 + 2⇢

k�Slk1,1 � 2⇢
, (4.2)

where �Sl 2 Rdl is a column of ⌃1, then with probability
at least 1� 6d�1 the cluster recovery property holds for
all the values of the regularization parameter � in the
range:

1

r0r1(k�Slk1,1 � 2⇢) � ⇢
< � <

1

⇢+ k⌃Sc
l ,Slk1,1

,

(4.3)
which is guaranteed to be non-empty.

We defer the full proof of the theorem in the supplemen-
tary material. The theorem provides an upper bound
and a lower bound for the regularization parameter �,
to successfully recover the underlying clustering struc-
ture in the time series: on the one hand, � cannot be
too large, otherwise A will be too dense to perform
clustering on. On the other hand, as � approximates 0
the connectivity among time series decreases because
the optimal solution to (3.5) becomes more sparse. To
guarantee the obtained solution is nontrivial (i.e., �̂i

is nonzero), � must be larger than a certain value. In
addition, a lower bound on r0r1 is established, which
imposes a requirement on the dispersion of the covari-
ance between time series within the same cluster. We
further make the following remarks:

Remark 4.4 (Tolerance of Noise across Clusters).
From (4.2) we see that, for the CRP to hold, the dis-
persion of the columns of ⌃ (each column is taken as
a data point 2 Rd) needs to be su�ciently large. r0 is
the dispersion of covariance between time series in a
cluster Sl, and r1 is the dispersion of lag-1 covariance
between time series in a cluster Sl. The RHS of (4.2)
depends on the scale of ⌃Sc

l ,Sl and reflects the maxi-
mum correlation between the time series in one cluster
Sl and any time series from all the other clusters.

Remark 4.5 (Sample Complexity). We can observe
that the factor before the square root in (4.1) is bounded
by the largest and smallest eigenvalue of ⌃, and there-
fore we can rewrite ⇢ = 

p
(6 log d+ 4)/T where

 is a constant dependent on ⌃. We can further
derive from (4.2) that T > 42(6 log d + 4)(r0r1 +
1)2/(r0r1k�Slk1,1�k⌃Sc

l ,Slk1,1)2, which essentially

indicates that the sample complexity for CRP to hold is
O(log d). In other words, for the algorithm to succeed,
the number of time series d is allowed to grow expo-
nentially with the length of time series T ; as long as
log d is smaller than the length of time series T , our
theory holds. Indeed, it is desired to see such a property
for high-dimensional data, as d can often possibly far
exceeds the number of samples T .

Remark 4.6 (A Uniform Parameter �). Another direct
observation from the main theorem is that we can find
a uniform value for �, within the range as specified
in (4.3), which can work for the regression task in (3.5)
for all i = 1, ..., d. In other words, problem in (3.5) is
solvable with a single � and can be solved in parallel
for each i = 1, ..., d.

5 EXPERIMENTS

In this section, we demonstrate the correctness of our
theoretical findings and the e↵ectiveness of our pro-
posed clustering algorithm on both synthetic and real-
world data. We first experiment with di↵erent sets of
parameters, including the number of time series d, the
length of the time series T , and the number of clusters
k in the data. The experimental results confirm that,
when the required condition in Theorem 4.3 is satisfied,
the clusters in the data can be recovered perfectly. We
further apply the algorithm to a real-world data set
where the task is to group sensor time series by their
type of measurement (e.g., a temperature sensor vs. a
humidity sensor). Our algorithm is able to outperform
the state-of-art baselines by more than 20% measured
by adjusted rand index.

5.1 Baselines

In our proposed clustering algorithm, we estimate the
similarity matrix with the regularized Dantzig selector
(referred to as CP). As baselines, instead of using our
estimator, we consider the following methods to obtain
the similarity matrix, and the rest of the clustering
procedure remains the same as ours:

Correlation Coe�cient (CC): In this baseline, we
compute the Pearson correlation coe�cient between
all pairs of time series, and use these coe�cients to
construct the similarity matrix.

Cosine Similarity (Cosine): In the second baseline,
we compute the pairwise cosine similarity for all the
time series, and preserve only the similarity scores for
the top-k nearest neighbors for each time series and
put them as the row of the similarity matrix. Our
experiment shows that the results are not sensitive to
k and we set k = 5.

Autocorrelation (ACF): This baseline first com-
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putes the autocorrelation vectors (with a lag up to
50) for each time series, and then further calculates
the Euclidean distance between each pair of time series
based on the autocorrelation vectors. We use the im-
plementation in [22] to obtain the distance matrix first,
and then convert the distance into similarity score with
Gaussian kernel function. (Smaller distances should
map to larger similarity scores.)

Dynamic Time Warping (DTW): DTW is a pop-
ular method to compute the similarity between time
series. Here we compute the pairwise DTW similar-
ity score for all the time series, and then normalize
similarity scores to between 0 and 1.

We also implement a baseline that does not rely on the
similarity between time series:

Principal Component Analysis (PCA): In this
method, PCA is first applied to reduce the dimension-
ality of each original time series by preserving d(=4)
principle components, and then k-means is applied to
these PCA scores for clustering.

5.2 Synthetic Data

In this section, we show the e↵ectiveness of our pro-
posed clustering algorithm via numerical simulations.
Particularly, the dataXt at a time point t are generated
from a VAR model as defined in (3.1), and we generate
the input time series X as follows: (1) We first generate
the block diagonal transition matrix A with k clusters,
and the values within each block are generated with a
Bernoulli distribution; (2) Since we assume (X)1t=�1to
be stationary, we then rescale A such that its spectral
norm kAk2 = ↵ < 1; (3) Given A, ⌃ is generated such
that the elements on the diagonal equal to 1 and the
o↵-diagonal elements are set to a same small value, e.g.,
0.1. Then we rescale ⌃ to have its spectral norm satisfy
k⌃k2 = 2kAk2; (4) Next, according to the stationary
property, the covariance matrix of the additive noise Zt

follows  = ⌃� A>⌃A, where  must be a positive
definite matrix; (5) We can then generate X1 from the
multivariate normal distribution with the parameters
generated in previous steps, and obtain the following
Xt with the VAR model. We fix the number of time
series d at 100, and choose the length of the time series
T from a grid of {1, 3, 5, 7, 9} ⇥ log(d) (rounded to the
closet integer), i.e, the ratio of T/ log(d) varies from 1
to 9. For each value of T , we repeat the data gener-
ation process for 100 times and report the average of
the experimental results.

We first experiment with di↵erent values for the reg-
ularization parameter � and examine if the two re-
quirements as stated in Definition 4.1 are satisfied.
We scan through an exponential space of � from
1/(log(d)/T ) ⇥ 10�1 to 1/(log(d)/T ) ⇥ 103 and define

the metric Self-Reconstruction Property Violation Rate
(VioRate) of the estimated transition matrix A as fol-
lows:

V ioRate =

P
i,j /2Cl

|Aij |P
i,j2Cl

|Aij |
,

where (i, j) 2 Cl denotes that the i-th time series X⇤i
and the j-th time series X⇤j are in the same cluster
Cl for some l (likewise for (i, j) /2 Cl). By definition,
V ioRate measures relatively how significant the predic-
tive weights are for pairs of time series across di↵erent
clusters, compared to the weights for pairs in the same
cluster. For a trivial solution, i.e., A = 0, the V ioRate
is defined to be 1 while for a solution satisfying the
self-reconstruction property, the V ioRate should be
exactly 0. The violation rates for di↵erent T/ log(d)
and � values when k = 25 are illustrated in Figure 2a;
the results confirm our theoretical findings. We ob-
serve that when � is small, the solution violates the
nonzero requirement, thus the V ioRate being 1 (refer
to the two rows at the bottom). When � is su�ciently
large within a range, the violation rates are zero, in-
dicating all the entries in the o↵-diagonal blocks of
the estimated A are zero, which satisfies the SRP. In
Figure 2b, we show the quality of time series clustering
(measured by adjusted rand index and higher is better)
with the corresponding A obtained in Figure 2a. We
can notice that cases perfectly satisfying the nonzero
and SRP requirements can produce perfect clustering
results. Furthermore, it is also clear that exact self-
reconstruction condition is not necessary for perfect
clustering.

We next investigate how the number of clusters k a↵ects
the clustering performance, where we vary the value of
k from 5 to 25. For the regularization parameter �, we
scan through the same exponential space as the above
experiment with 5-fold cross-validation, and choose
the one with the minimal cross-validation error. We
fix kAk2 at 0.4 and report the average results of the
100 runs for each set of parameters as illustrated in
Figure 3. We clearly see that a larger k leads to better
clustering results, which makes sense since the more the
number of clusters is, the sparser A is, and therefore
the more accurate the estimation of A is.

We also examine the e↵ect of the transition matrix’s
spectral norm kAk2 on the clustering quality. To this
end, we set kAk2 = ↵ and vary ↵ from 0.1 to 0.9, and
the covariance matrix ⌃ and  are generated in the
same way as described earlier. For the parameter �, we
take the same cross-validation procedure as above. We
fix the number of clusters k at 25 and report the average
results of the 100 runs for each set of parameters, as
shown in Figure 4. We observe that, for a certain
value of T/ log(d), the clustering quality increases as
the spectral norm of the transition matrix decreases.
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(a) Self-Reconstruction Property (SRP) violation

rate for di↵erent T/ log(d) against di↵erent � with

k = 25: too small a � will produce trivial solutions

(A = 0, thus V ioRate = 1) while a su�ciently

large � gives a solution satisfying both the nonzero

and SRP requirements (V ioRate = 0).
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(b) Clustering quality for di↵erent T/ log(d)

against di↵erent � with k = 25: cases satisfy-

ing the nonzero and SRP conditions yield perfect

clustering results. It is also clear that the exact

self-reconstruction condition (V ioRate = 0) is not

necessary for perfect clustering.

Figure 2: Self-Reconstruction Property Violation Rate and the Corresponding Clustering Quality (measured by
Adjusted Rand Index) with Di↵erent T/ log(d) Against Di↵erent �.
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Figure 3: Clustering Quality for Di↵erent
T/ log(d) Against Di↵erent Number of Clusters
k: larger k is better.
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Figure 4: Clustering Quality for Di↵erent
T/ log(d) Against Di↵erent Values ↵ for Spectral
Norm kAk2: smaller ↵ is better.

This indicates that the spectral norm of the transition
matrix is a critical factor and verifies the theoretical
findings in (4.1).

To compare our method with the baselines described
in §5.1, we further conduct two sets of experiments on
synthetic data with di↵erent parameters. To generate
the synthetic data in the first experiment (referred to
as Synthetic Data-1 in Table 1), we set the number of
time series d = 50, the length of time series T = 50, the
number of clusters k = 5, and the transition matrix’s
spectral norm kAk2 = 0.5. For the second experiment
(Synthetic Data-2 in Table 1), we change T to 100, and
the rest of parameters remain the same. We see that,
when d is comparable to T in the first experiment, our
method (CP) performs significantly better than the
baselines. When the number of samples T is increased
to 100, all the baselines see performance boost, while
our method produces perfect clustering results.

One shall note the better performance of PCA, our
understanding is that PCA extracts better explana-
tory components out of the sample covariance matrix,
which still captures the underlying causal relationship
between variables, though it does not consider the first-
order temporal information as our proposed method
does. For the other baselines, they simply compute
similarity directly between variables, which is not su�-
ciently e↵ective in characterizing the relationship be-
tween time series in the high-dimensional setting.



High-dimensional Time Series Clustering via Cross-Predictability

Table 1: Experimental Comparisons with Baselines: results on synthetic and real data demonstrate the advantage
of our proposed algorithm (CP), and each cell includes the average clustering performance (adjusted rand index)
of 10 runs with standard deviation.

CC Cosine ACF DTW PCA CP

Synthetic Data-1

(d = 50, T = 50)

0.383± 0.171 0.521± 0.123 0.240± 0.147 0.282± 0.184 0.786± 0.139 0.943± 0.165

Synthetic Data-2

(d = 50, T = 100)

0.603± 0.181 0.551± 0.143 0.253± 0.109 0.410± 0.105 0.912± 0.141 1.000± 0.000

Real Data

0.617± 0.031 0.542± 0.014 0.362± 0.113 0.523± 0.119 0.456± 0.144 0.824± 0.025

5.3 Real-world Data

To further examine how e↵ective our proposed algo-
rithm is in practice, we also apply it to a real-world
data set, where the assumption of VAR model with
block diagonal transition matrix might not be perfectly
satisfied. The data set [16] contains data collected
from 204 sensor time series from 51 rooms on 4 dif-
ferent floors of a large o�ce building on a university
campus. Each room is instrumented with 4 di↵erent
types of sensors: a CO2 sensor, a temperature sensor,
a humidity sensor and a light sensor. The data from
each sensor is recorded every 15 minutes and the data
set contains one-week worth of data. There are missing
values in the one-week period, so the total number of
observations T is smaller than the number of sensor
time series d. Our goal is to assign each sensor time
series into the correct type cluster, e.g., a tempera-
ture cluster or a CO2 cluster. Recognizing the type
of sensors is often an important step for many useful
applications. For instance, when applying analytics
stacks comprised of a bundle of analytics jobs to a
building for energy savings, every particular analytics
job requires as input some specific types of sensors.
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Figure 5: Clustering Quality of Our Regularized
Dantzig Selector-based Spectral Clustering Algorithm:
the algorithm works with a wide range of �.

In this case, we do not know the values of the parame-
ters in the su�cient condition in Theorem 4.3, so we
cannot fine-tune �. We roughly scan through the en-
tire range of [0,1] for 1/� and the results are shown

in Figure 5 (the data points beyond 0.15 all drop to
zero, thus omitted in the figure). It again confirms
our theoretical findings in the sense that the proposed
clustering algorithm can work when � is su�ciently
large, even not perfectly. We also examine how well the
baselines (detailed in §5.1) perform on the real data set,
and the results are summarized in Table 1. Our method
can achieve more than 80% accuracy and outperforms
the best baseline by more than 20%, indicating that
our method can still be e↵ective when the assumption
of VAR with a block diagonal transition matrix might
not be satisfied.

6 CONCLUSIONS

In this paper, we study the time series clustering
problem with a new similarity metric in the high-
dimensional regime, where the number of time series is
much larger than the length of time series. Di↵erent
from existing metrics, our similarity metric measures
the “cross-predictability” between time series, i.e., the
degree to which a future value in each time series is pre-
dicted by past values of the others. We impose a spar-
sity assumption and propose a regularized Dantzig se-
lector estimator to learn the cross-predictability among
time series for clustering. We further provide a theoret-
ical proof that the proposed algorithm will successfully
recover the clustering structure in the data with high
probability under certain conditions. Experiments on
both synthetic and real-world data verify the correct-
ness of our findings, and demonstrate the e↵ectiveness
of the algorithm. For the real-world task of sensor
type clustering, our method is able to outperform the
state-of-art baselines by more than 20% with regard to
clustering quality.
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