7 Proof Roadmap

The key in proving Theorem 1 and 2 is to establish bounds on the primal-dual progress $\Delta_{p}^{t}+\Delta_{d}^{t}-\Delta_{p}^{t-1}-$ Δ_{d}^{t-1}. As intermediate steps, the two lemmas below bound the dual-progress $\Delta_{d}^{t}-\Delta_{d}^{t-1}$ and the primalprogress $\Delta_{p}^{t}-\Delta_{p}^{t-1}$ with respect to the primal variables $\left\{\boldsymbol{z}^{t}\right\}$ and the optimal primal variables $\left\{\overline{\boldsymbol{z}}^{t}\right\}$ at each iteration.
Lemma 1 (Dual Progress). The dual progress is upper bounded as

$$
\begin{equation*}
\Delta_{d}^{t}-\Delta_{d}^{t-1} \leq-\eta\left(M \boldsymbol{z}^{t}\right)^{T}\left(M \overline{\boldsymbol{z}}^{t}\right) \tag{14}
\end{equation*}
$$

Lemma 2 (Primal Progress). The primal progress is upper bounded as

$$
\begin{aligned}
\Delta_{p}^{t}-\Delta_{p}^{t-1} & \leq \mathcal{L}\left(\boldsymbol{z}^{t+1}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right) \\
& +\eta\left\|M \boldsymbol{z}^{t}\right\|^{2}-\eta\left\langle M \boldsymbol{z}^{t}, M \overline{\boldsymbol{z}}^{t}\right\rangle
\end{aligned}
$$

By combining results of Lemma 1 and 2, we obtain an intermediate upper bound on the primal-dual progress:

$$
\begin{align*}
& \Delta_{d}^{t}-\Delta_{d}^{t-1}+\Delta_{p}^{t}-\Delta_{p}^{t-1} \\
& \leq \eta\left\|M \boldsymbol{z}^{t}-M \overline{\boldsymbol{z}}^{t}\right\|^{2}-\eta\left\|M \overline{\boldsymbol{z}}^{t}\right\|^{2} \tag{15}\\
& +\mathcal{L}\left(\boldsymbol{z}^{t+1}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)
\end{align*}
$$

The following four lemmas provide upper bounds on the three sub-terms in (15), i.e., $\left\|M \boldsymbol{z}^{t}-M \overline{\boldsymbol{z}}^{t}\right\|^{2}$, $-\eta\left\|M \overline{\boldsymbol{z}}^{t}\right\|^{2}$, and $\mathcal{L}\left(\boldsymbol{z}^{t+1}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)$, where the bounds on the last term are algorithm-dependent and therefore are tackled by Lemma 5 and Lemma 19 for Algorithm 1 and Algorithm 2 respectively.

Lemma 3.

$$
\begin{equation*}
\left\|M \boldsymbol{z}^{t}-M \overline{\boldsymbol{z}}^{t}\right\|^{2} \leq \frac{2}{\rho}\left(\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t}\right)\right) \tag{16}
\end{equation*}
$$

Lemma 4 (Hong and Luo 2012). There is a constant $\tau>0$ such that

$$
\begin{equation*}
\Delta_{d}(\boldsymbol{\mu}) \leq \tau\|M \overline{\boldsymbol{z}}(\boldsymbol{\mu})\|^{2} \tag{17}
\end{equation*}
$$

for any $\boldsymbol{\mu}$ in the dual domain and any primal minimizer $\overline{\boldsymbol{z}}(\boldsymbol{\mu})$ satisfying (13).

Lemma 5. The descent amount of Augmented Lagrangian function produced by one pass of FCFW (in Algorithm 1) has

$$
\begin{align*}
& \mathcal{L}\left(\boldsymbol{z}^{t+1}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right) \\
& \leq-\frac{m_{\mathcal{M}}}{2|\mathcal{F}| Q}\left(\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t}\right)\right) \tag{18}
\end{align*}
$$

where $Q=\rho\|M\|^{2}$.

Lemma 6. The descent amount of Augmented Lagrangian function produced by iterations of Algorithm 2 has

$$
\begin{align*}
& \mathcal{L}\left(\boldsymbol{z}^{t+1}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right) \\
& \leq \frac{-m_{1}}{Q_{\max }}\left(\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t}\right)\right) \tag{19}
\end{align*}
$$

where $Q_{\text {max }}=\max _{f \in \mathcal{F}} Q_{f}$ and

$$
\begin{equation*}
m_{1}:=\frac{1}{\max \left\{16 \theta_{1} \Delta \mathcal{L}^{0}, 2 \theta_{1}\left(1+4 L_{g}^{2}\right) / \rho, 6\right\}} \tag{20}
\end{equation*}
$$

is the generalized strong convexity constant for function $\mathcal{L}(., \boldsymbol{\mu})$. Here $\Delta \mathcal{L}^{0}$ is a bound on $\mathcal{L}\left(\boldsymbol{z}^{0}, \boldsymbol{\mu}^{t}\right)$ $\mathcal{L}\left(\overline{\boldsymbol{z}}^{0}, \boldsymbol{\mu}^{t}\right), L_{g}$ is local Lipschitz-continuous constant of the function $g(\boldsymbol{x}):=\|\boldsymbol{x}\|^{2}$, and θ_{1} is the Hoffman constant depending on the geometry of optimal solution set.

Now we are ready to prove Theorem 1 and 2.
Proof of Theorem 1. Let $\kappa=m_{\mathcal{M}} /(|\mathcal{F}| Q)$. By lemma 5 and (15), we have

$$
\begin{align*}
& \Delta_{d}^{t}-\Delta_{d}^{t-1}+\Delta_{p}^{t}-\Delta_{p}^{t-1} \\
\leq & \frac{-\kappa}{1+\kappa}\left(\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t}\right)\right) \tag{21}\\
& +\frac{2 \eta}{\rho}\left(\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t}\right)\right)-\eta\left\|M \overline{\boldsymbol{z}}^{t}\right\|^{2}
\end{align*}
$$

Then by choosing $\eta<\frac{\kappa \rho}{2(1+\kappa)}$, we have guaranteed descent on $\Delta_{p}+\Delta_{d}$ for each GDMM iteration. By choosing $\eta \leq \frac{\kappa \rho}{4(1+\kappa)}$, we have

$$
\begin{aligned}
& \left(\Delta_{d}^{t}+\Delta_{p}^{t}\right)-\left(\Delta_{d}^{t-1}+\Delta_{p}^{t-1}\right) \\
\leq & \frac{-\kappa}{2(1+\kappa)}\left(\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t}\right)\right)-\eta\left\|M \overline{\boldsymbol{z}}^{t}\right\|^{2} \\
\leq & \frac{-\kappa}{2(1+\kappa)} \Delta_{d}^{t}-\frac{\eta}{\tau} \Delta_{d}^{t} \\
\leq & -\min \left(\frac{\kappa}{2(1+\kappa)}, \frac{\eta}{\tau}\right)\left(\Delta_{p}^{t}+\Delta_{d}^{t}\right)
\end{aligned}
$$

where the second inequality is from Lemma 4. We thus obtain a recursion of the form

$$
\Delta_{d}^{t}+\Delta_{p}^{t} \leq \frac{1}{1+\min \left(\frac{\kappa}{2(1+\kappa)}, \frac{\eta}{\tau}\right)}\left(\Delta_{d}^{t-1}+\Delta_{p}^{t-1}\right)
$$

which then leads to the conclusion.
The proof of Theorem 2 is the same as above except that the definition of κ is changed to $m_{1} / Q_{\max }$ and Lemma 5 is replaced by Lemma 19.

8 Proof of Lemmas

Proof of Lemma 1.

$$
\begin{aligned}
\Delta_{d}^{t}-\Delta_{d}^{t-1} & =\mathcal{L}\left(\overline{\boldsymbol{z}}^{t-1}, \boldsymbol{\mu}^{t-1}\right)-\mathcal{L}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t}\right) \\
& \leq \mathcal{L}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t-1}\right)-\mathcal{L}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t}\right) \\
& =\left\langle\boldsymbol{\mu}^{t-1}-\boldsymbol{\mu}^{t}, M \overline{\boldsymbol{z}}^{t}\right\rangle \\
& =-\eta\left\langle M \boldsymbol{z}^{t}, M \overline{\boldsymbol{z}}^{t}\right\rangle
\end{aligned}
$$

where the first inequality follows from the optimality of $\overline{\boldsymbol{z}}^{t-1}$ for the function $\mathcal{L}\left(\boldsymbol{z}, \boldsymbol{\mu}^{t-1}\right)$ defined by $\boldsymbol{\mu}^{t-1}$, and the last equality follows from the dual update (9).

Proof of Lemma 2.

$$
\begin{aligned}
& \Delta_{p}^{t}-\Delta_{p}^{t-1} \\
= & \mathcal{L}\left(\boldsymbol{z}^{t+1}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t-1}\right)-\left(d\left(\boldsymbol{\mu}^{t}\right)-d\left(\boldsymbol{\mu}^{t-1}\right)\right) \\
\leq & \mathcal{L}\left(\boldsymbol{z}^{t+1}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)+\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t-1}\right) \\
& +\left(d\left(\boldsymbol{\mu}^{t-1}\right)-d\left(\boldsymbol{\mu}^{t}\right)\right) \\
\leq & \mathcal{L}\left(\boldsymbol{z}^{t+1}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)+\eta\left\|M \boldsymbol{z}^{t}\right\|^{2}-\eta\left\langle M \boldsymbol{z}^{t}, M \overline{\boldsymbol{z}}^{t}\right\rangle
\end{aligned}
$$

where the last inequality uses Lemma 1 on $d\left(\boldsymbol{\mu}^{t-1}\right)-$ $d\left(\boldsymbol{\mu}^{t}\right)=\Delta_{d}^{t}-\Delta_{d}^{t-1}$.
Proof of Lemma 3. Introduce

$$
\tilde{\mathcal{L}}(\boldsymbol{z}, \boldsymbol{\mu})=h(\boldsymbol{z})+G(M \boldsymbol{z})
$$

where

$$
G(M \boldsymbol{z})=\frac{\rho}{2}\|M \boldsymbol{z}\|^{2}
$$

and

$$
h(\boldsymbol{z})=\langle-\boldsymbol{\theta}, \boldsymbol{z}\rangle+\langle\boldsymbol{\mu}, M \boldsymbol{z}\rangle+\boldsymbol{I}_{\boldsymbol{z} \in \mathcal{M}}
$$

Here

$$
\boldsymbol{I}_{\boldsymbol{z} \in \mathcal{M}}=\left\{\begin{array}{cc}
0 & \boldsymbol{z} \in \mathcal{M} \\
\infty & \text { otherwise }
\end{array}\right.
$$

As feasibility is strictly enforced during primal updates, we have

$$
\begin{equation*}
\tilde{\mathcal{L}}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t}\right)=\mathcal{L}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t}\right), \quad \tilde{\mathcal{L}}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)=\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right) \tag{22}
\end{equation*}
$$

As $\overline{\boldsymbol{z}}^{t}$ is a critical point of $\mathcal{L}\left(\boldsymbol{z}, \boldsymbol{\mu}^{t}\right)$, and by definition, $\mathcal{L}\left(\boldsymbol{z}, \boldsymbol{\mu}^{t}\right) \leq \tilde{\mathcal{L}}\left(\boldsymbol{z}, \boldsymbol{\mu}^{t}\right)$, we obtain,

$$
0 \in \partial_{\boldsymbol{z}} \tilde{\mathcal{L}}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t}\right)=\partial h\left(\overline{\boldsymbol{z}}^{t}\right)+M^{T} \nabla G\left(M \overline{\boldsymbol{z}}^{t}\right)
$$

Note that $h(\cdot)$ is convex, it follows that

$$
\begin{equation*}
h\left(\boldsymbol{z}^{t}\right)-h\left(\overline{\boldsymbol{z}}^{t}\right) \geq\left\langle\boldsymbol{v}, \boldsymbol{z}^{t}-\overline{\boldsymbol{z}}^{t}\right\rangle, \quad \forall \boldsymbol{v} \in \partial h\left(\overline{\boldsymbol{z}}^{t}\right) \tag{23}
\end{equation*}
$$

Moreover,

$$
\begin{align*}
& G\left(M\left(\boldsymbol{z}^{t}\right)\right)-G\left(M\left(\overline{\boldsymbol{z}}^{t}\right)\right) \tag{24}\\
& =\frac{\rho}{2}\left(\left\|M \boldsymbol{z}^{t}\right\|^{2}-\left\|M \overline{\boldsymbol{z}}^{t}\right\|^{2}\right) \\
& =\frac{\rho}{2}\left(\boldsymbol{z}^{t}-\overline{\boldsymbol{z}}^{t}\right)^{T} M^{T} M\left(\boldsymbol{z}^{t}+\overline{\boldsymbol{z}}^{t}\right) \\
& =\rho\left(\boldsymbol{z}^{t}-\overline{\boldsymbol{z}}^{t}\right)^{T} M^{T} M \overline{\boldsymbol{z}}^{t}+\frac{\rho}{2}\left(\boldsymbol{z}^{t}-\overline{\boldsymbol{z}}^{t}\right)^{T} M^{T} M\left(\boldsymbol{z}^{t}-\overline{\boldsymbol{z}}^{t}\right) \\
& =\left\langle M^{T} \nabla G\left(M \overline{\boldsymbol{z}}^{t}\right), \boldsymbol{z}^{t}-\overline{\boldsymbol{z}}^{t}\right\rangle+\frac{\rho}{2}\left\|M \boldsymbol{z}^{t}-M \overline{\boldsymbol{z}}^{t}\right\|^{2} \tag{25}
\end{align*}
$$

Combing (22), (23), and (25), we arrive at

$$
\mathcal{L}\left(\boldsymbol{z}^{t}, \boldsymbol{\mu}^{t}\right)-\mathcal{L}\left(\overline{\boldsymbol{z}}^{t}, \boldsymbol{\mu}^{t}\right) \geq \frac{\rho}{2}\left\|M\left(\boldsymbol{z}^{t}\right)-M\left(\overline{\boldsymbol{z}}^{t}\right)\right\|^{2}
$$

Proof of Lemma 4. This is a lemma adapted from [22]. Since our primal objective (2) is a linear function with each block of primal variables \boldsymbol{x}_{i} (or \boldsymbol{y}_{f}) constrained in a simplex domain, it satisfies the assumptions $A(a)-A(e)$ and $A(g)$ in [22]. Then Lemma 3.1 of [22] guarantees that, as long as $\|\nabla d(\boldsymbol{\mu})\|$ is always bounded, there is a constant $\tau>0$ s.t.

$$
\Delta_{d}(\boldsymbol{\mu}) \leq \tau\|\nabla d(\boldsymbol{\mu})\|^{2}=\|M \overline{\boldsymbol{z}}(\boldsymbol{\mu})\|^{2}
$$

for all $\boldsymbol{\mu}$ in the dual domain. Note our problem satisfies the condition of bounded gradient magnitude since

$$
\begin{aligned}
& \|\nabla d(\boldsymbol{\mu})\|=\|M \overline{\boldsymbol{z}}(\boldsymbol{\mu})\| \leq\|M \overline{\boldsymbol{z}}(\boldsymbol{\mu})\|_{1} \\
& \leq\|M\|_{1}\|\overline{\boldsymbol{z}}(\boldsymbol{\mu})\|_{1} \leq\left(\max _{f}\left|\mathcal{Y}_{f}\right|\right)(|\mathcal{F}|+|\mathcal{V}|)
\end{aligned}
$$

where the last inequality is because each block of variables in $\overline{\boldsymbol{z}}(\boldsymbol{\mu})$ lie in a simplex domain.
Proof of Lemma 5. Recall that the Augmented Lagrangian $\mathcal{L}(\boldsymbol{z}, \boldsymbol{\mu})$ is of the form

$$
\begin{equation*}
\mathcal{L}(\boldsymbol{z}, \boldsymbol{\mu})=\left\langle-\boldsymbol{\theta}+M^{T} \boldsymbol{\mu}, \boldsymbol{z}\right\rangle+G(M \boldsymbol{z}), \forall i \in \mathcal{V} \tag{26}
\end{equation*}
$$

where M is the matrix that encodes all constraints of the form

$$
M_{i f} \boldsymbol{z}_{f}-\boldsymbol{z}_{i}=\left[\begin{array}{ll}
M_{i f} & -I_{i}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{z}_{f} \\
\boldsymbol{z}_{i}
\end{array}\right]=\mathbf{0}
$$

and function $G(\boldsymbol{w})=\frac{\rho}{2}\|\boldsymbol{w}\|^{2}$ is strongly convex with parameter ρ. Let

$$
\begin{equation*}
H(\boldsymbol{z}):=\mathcal{L}(\boldsymbol{z}, \boldsymbol{\mu}) \tag{27}
\end{equation*}
$$

Since we are minimizing the function subject to a convex, polyhedral domain \mathcal{M}, by Theorem 10 of [23], we have the generalized geometrical strong convexity constant $m_{\mathcal{M}}$ of the form

$$
\begin{equation*}
m_{\mathcal{M}}:=m(P W i d t h(\mathcal{M}))^{2} \tag{28}
\end{equation*}
$$

where $P W \operatorname{idth}(\mathcal{M})>0$ is the pyramidal width of the simplex domain \mathcal{M} and m is the generalized strong convexity constant of function (26) (defined by Lemma 9 of [23]). By definition of the geometric strong convexity constant, we have

$$
\begin{equation*}
H(\boldsymbol{z})-H^{*} \leq \frac{g_{F W}^{2}}{2 m_{\mathcal{M}}} \tag{29}
\end{equation*}
$$

from (23) in [23], where $g_{F W}:=\left\langle\nabla H(\boldsymbol{z}), \boldsymbol{v}_{F W}-\boldsymbol{v}_{A}\right\rangle$. $\boldsymbol{v}_{F W}$ is the greedy Frank-Wolfe (FW) direction

$$
\begin{equation*}
\boldsymbol{v}_{F W}:=\arg \min _{\boldsymbol{v} \in \mathcal{M}}\langle\nabla H(\boldsymbol{z}), \boldsymbol{v}\rangle \tag{30}
\end{equation*}
$$

and \boldsymbol{v}_{A} is the away direction

$$
\begin{equation*}
\boldsymbol{v}_{A}:=\arg \max _{\boldsymbol{v} \in \mathcal{M}}\langle\nabla \tilde{H}(\boldsymbol{z}), \boldsymbol{v}\rangle \tag{31}
\end{equation*}
$$

where

$$
\nabla_{k} \tilde{H}(\boldsymbol{z})= \begin{cases}\nabla_{k} H(\boldsymbol{z}), & z_{k} \neq 0 \\ -\infty, & \text { o.w }\end{cases}
$$

Then let $m=|\mathcal{F}|$ be the number of factors. For each inner iteration s of the Fully-Corrective FW, by minimizing subproblem (5) w.r.t. an active set that contains the FW direction and also the away direction (by the definition (31)), we have, for any $\forall \gamma \in[0,1]$,

$$
\begin{equation*}
H\left(\boldsymbol{z}^{t+1}\right)-H\left(\boldsymbol{z}^{t}\right) \leq \gamma g_{F W}^{t}+m Q \gamma^{2} \tag{32}
\end{equation*}
$$

Suppose the minimizer of (32) $\gamma^{*}=-\frac{g_{F W}^{t}}{2 m Q}$ has $\gamma^{*}<1$, we have

$$
\begin{equation*}
H\left(\boldsymbol{z}^{t+1}\right)-H\left(\boldsymbol{z}^{t}\right) \leq-\frac{g_{F W}^{t 2}}{4 m Q} \tag{33}
\end{equation*}
$$

Otherwise, let $\gamma^{*}=1$, we have

$$
\begin{aligned}
& H\left(\boldsymbol{z}^{t+1}\right)-H\left(\boldsymbol{z}^{t}\right) \\
& \leq g_{F W}^{t}+m Q \leq \frac{g_{F W}^{t}}{2}<-\frac{g_{F W}^{t 2}}{2 m Q} \leq-\frac{g_{F W}^{t 2}}{4 m Q},
\end{aligned}
$$

where the second inequality holds since $-\frac{g_{F W}^{t}}{2 Q m} \geq 1$.
Combining with the error bound (29), we have

$$
\begin{equation*}
H\left(\boldsymbol{z}^{t+1}\right)-H\left(\boldsymbol{z}^{t}\right) \leq-\frac{m_{\mathcal{M}}\left(H\left(\boldsymbol{z}^{t}\right)-H^{*}\right)}{2 m Q} \tag{34}
\end{equation*}
$$

Proof of Lemma 19.

For problem of the form (13), the optimal solution is profiled by the polyhedral set $\mathcal{S}:=\{\boldsymbol{z} \mid M \boldsymbol{z}=$ $\left.\boldsymbol{t}^{*}, \boldsymbol{\Delta}^{T} \boldsymbol{z}=s^{*}, \boldsymbol{z} \in \mathcal{M}\right\}$ for some $\boldsymbol{t}^{*}, s^{*}$. Denoting $\overline{\boldsymbol{z}}:=\Pi_{\mathcal{S}}(\boldsymbol{z})$, we can bound the distance of any feasible point \boldsymbol{z} to its projection $\Pi_{\mathcal{S}}(\boldsymbol{z})$ to set \mathcal{S} by

$$
\begin{align*}
& \|\overline{\boldsymbol{z}}-\boldsymbol{z}\|_{2,1}^{2}=\left(\sum_{f \in \mathcal{F}}\left\|\overline{\boldsymbol{z}}_{f}-\boldsymbol{z}_{f}\right\|_{2}\right)^{2} \tag{35}\\
& \leq \theta_{1}\left(\left\|M \boldsymbol{z}-\boldsymbol{t}^{*}\right\|^{2}+\left\|\boldsymbol{\Delta}^{T} \boldsymbol{z}-s^{*}\right\|^{2}\right)
\end{align*}
$$

where θ_{1} is a constant depending on the set \mathcal{S}, using the Hoffman's inequality [37].

Then for each iteration t of the Algorithm 2, consider the descent amount produced by the update w.r.t. the selected factor satisfying (11). We have

$$
\begin{align*}
& H\left(\boldsymbol{z}^{t+1}\right)-H\left(\boldsymbol{z}^{t}\right) \\
& \leq \min _{\boldsymbol{z}_{f^{*}}^{t}+\boldsymbol{d}_{f^{*}} \in \Delta_{f^{*}}}\left\langle\nabla_{\boldsymbol{z}_{f^{*}}} H, \boldsymbol{d}_{f^{*}}\right\rangle+\frac{Q_{\max }}{2}\left\|\boldsymbol{d}_{f^{*}}\right\|^{2} \\
& =\min _{\boldsymbol{z}^{t}+\boldsymbol{d} \in \mathcal{M}} \sum_{f \in \mathcal{F}}\left\langle\nabla_{\boldsymbol{z}_{f}} H, \boldsymbol{d}_{f}\right\rangle+\frac{Q_{\max }}{2}\left(\sum_{f \in \mathcal{F}}\left\|\boldsymbol{d}_{f}\right\|\right)^{2} \tag{36}
\end{align*}
$$

where the second equality is from the definition (11) of f^{*}.
Then we have

$$
\begin{align*}
&\left.H\left(\boldsymbol{z}^{t+1}\right)\right]-H\left(\boldsymbol{z}^{t}\right) \\
& \leq \min _{\boldsymbol{z}^{t}+\boldsymbol{d} \in \mathcal{M}}\left(\sum_{f \in \mathcal{F}}\left\langle\nabla_{\boldsymbol{z}_{f}} H, \boldsymbol{d}_{f}\right\rangle+\frac{Q_{\max }}{2}\left(\sum_{f \in \mathcal{F}}\left\|\boldsymbol{d}_{f}\right\|\right)^{2}\right) \\
& \leq \min _{\boldsymbol{z}^{t}+\boldsymbol{d} \in \mathcal{M}} H\left(\boldsymbol{z}^{t}+\boldsymbol{d}\right)-H\left(\boldsymbol{z}^{t}\right)+\frac{Q_{\max }}{2}\left(\sum_{f \in \mathcal{F}}\left\|\boldsymbol{d}_{f}\right\|\right)^{2} \\
& \leq \min _{\beta \in[0,1]} H\left(\boldsymbol{z}^{t}+\beta\left(\overline{\boldsymbol{z}}^{t}-\boldsymbol{z}^{t}\right)\right)-H\left(\boldsymbol{z}^{t}\right) \\
&+\frac{Q_{\max } \beta^{2}}{2}\left(\sum_{f \in \mathcal{F}}\left\|\overline{\boldsymbol{z}}_{f}^{t}-\boldsymbol{z}_{f}^{t}\right\|\right)^{2} \\
& \leq \min _{\beta \in[0,1]} \beta\left(H\left(\overline{\boldsymbol{z}}^{t}\right)-H\left(\boldsymbol{z}^{t}\right)\right)+\frac{Q_{\max } \beta^{2}}{2}\left\|\overline{\boldsymbol{z}}^{t}-\boldsymbol{z}^{t}\right\|_{2,1}^{2} \tag{37}
\end{align*}
$$

where $\overline{\boldsymbol{z}}^{t}=\Pi_{\mathcal{S}}\left(\boldsymbol{z}^{t}\right)$ is the projection of \boldsymbol{z}^{t} to the optimal solution set \mathcal{S}. The second and last inequality is due to convexity, and the third inequality is due to a confinement of optimization domain. Then let L_{g} be the local Lipschitz-continuous constant of function $G(M \boldsymbol{z})=\frac{\rho}{2}\|M \boldsymbol{z}\|^{2}$ in the bounded domain of $M \boldsymbol{z}$. We discuss two cases in the following.
Case 1: $4 L_{g}^{2}\left\|M \boldsymbol{z}^{\boldsymbol{t}}-\boldsymbol{t}^{*}\right\|^{2}<\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right)^{2}$.
In this case, we have

$$
\begin{align*}
\left\|\boldsymbol{z}^{t}-\overline{\boldsymbol{z}}^{t}\right\|_{2,1}^{2} & \leq \theta_{1}\left(\left\|M \boldsymbol{z}^{t}-\boldsymbol{t}^{*}\right\|^{2}+\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{s}-s^{*}\right)^{2}\right) \\
& \leq \theta_{1}\left(\frac{1}{L_{g}^{2}}+1\right)\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right)^{2} \\
& \leq 2 \theta_{1}\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right)^{2} \tag{38}
\end{align*}
$$

and

$$
\left|\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right| \geq 2 L_{g}\left\|M \boldsymbol{z}^{t}-\boldsymbol{t}^{*}\right\| \geq 2\left|G\left(M \boldsymbol{z}^{t}\right)-G\left(\boldsymbol{t}^{*}\right)\right|
$$

by the definition of Lipschitz constant L_{g}. Note $\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}$ is non-negative since otherwise, $H\left(\boldsymbol{z}^{t}\right)-$ $H^{*}=G\left(M \boldsymbol{z}^{t}\right)-G\left(\boldsymbol{t}^{*}\right)+\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right) \leq \mid G\left(M \boldsymbol{z}^{t}\right)-$ $\left.G\left(\boldsymbol{t}^{*}\right)\left|-\left|\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right| \leq-\frac{1}{2}\right| \boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*} \right\rvert\,<0$, which leads to contradiction. Therefore, we have

$$
\begin{align*}
& H\left(\boldsymbol{z}^{t}\right)-H^{*} \\
& =G\left(M \boldsymbol{z}^{t}\right)-G\left(\boldsymbol{t}^{*}\right)+\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right) \\
& \geq-\left|G\left(M \boldsymbol{z}^{t}\right)-G\left(\boldsymbol{t}^{*}\right)\right|+\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right) \tag{39}\\
& \geq \frac{1}{2}\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right)
\end{align*}
$$

Combining (37), (38) and (39), we have

$$
\begin{aligned}
& H\left(\boldsymbol{z}^{t+1}\right)-H\left(\boldsymbol{z}^{t}\right) \\
& \leq \min _{\beta \in[0,1]}-\frac{\beta}{2}\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right)+\frac{2 Q_{\max } \theta_{1} \beta^{2}}{2}\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right)^{2} \\
& = \begin{cases}-1 /\left(16 Q_{\max } \theta_{1}\right) & , 1 /\left(4 \rho \theta_{1}\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right)\right) \leq 1 \\
-\frac{1}{4}\left(\boldsymbol{\Delta}^{T} \boldsymbol{\alpha}^{s}-s^{*}\right) & , \text { o.w. }\end{cases}
\end{aligned}
$$

Furthermore, we have

$$
-\frac{1}{16 Q_{\max } \theta_{1}} \leq-\frac{1}{16 Q_{\max } \theta_{1}\left(H^{0}-H^{*}\right)}\left(H\left(\boldsymbol{z}^{t}\right)-H^{*}\right)
$$

where $H^{0}=H\left(\boldsymbol{z}^{0}\right)$, and

$$
-\frac{1}{4}\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right) \leq-\frac{1}{6}\left(H\left(\boldsymbol{z}^{t}\right)-H^{*}\right)
$$

since $H\left(\boldsymbol{z}^{t}\right)-H^{*} \leq\left|G\left(M \boldsymbol{z}^{t}\right)-G\left(\boldsymbol{t}^{*}\right)\right|+\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*} \leq$ $\frac{3}{2}\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right)$. In summary, for Case 1 we obtain

$$
\begin{equation*}
\left.H\left(\boldsymbol{z}^{t+1}\right)\right]-H^{*} \leq\left(1-\frac{m_{0}}{Q_{\max }}\right)\left(H\left(\boldsymbol{z}^{t}\right)-H^{*}\right) \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{0}=\frac{1}{\max \left\{16 \theta_{1}\left(H^{0}-H^{*}\right), 6\right\}} \tag{41}
\end{equation*}
$$

Case 2: $4 L_{g}^{2}\left\|M \boldsymbol{z}^{t}-\boldsymbol{t}^{*}\right\|^{2} \geq\left(\boldsymbol{\Delta}^{T} \boldsymbol{z}^{t}-s^{*}\right)^{2}$.
In this case, we have

$$
\begin{equation*}
\left\|\overline{\boldsymbol{z}}^{t}-\boldsymbol{z}^{t}\right\|^{2} \leq \theta_{1}\left(1+4 L_{g}^{2}\right)\left\|M \boldsymbol{z}^{t}-\boldsymbol{t}^{*}\right\|^{2} \tag{42}
\end{equation*}
$$

and by strong convexity of $G($.$) ,$

$$
\begin{aligned}
& H\left(\boldsymbol{z}^{t}\right)-H^{*} \geq \\
& \boldsymbol{\Delta}^{T}\left(\boldsymbol{z}^{t}-\boldsymbol{z}^{*}\right)+\nabla G\left(t^{*}\right)^{T} M\left(\overline{\boldsymbol{z}}^{t}-\boldsymbol{z}^{t}\right)+\frac{\rho}{2}\left\|M \boldsymbol{z}^{t}-\boldsymbol{t}^{*}\right\|^{2}
\end{aligned}
$$

Now let $h(\boldsymbol{\alpha})$ be a function that takes value 0 when \boldsymbol{z} is feasible and takes value ∞ otherwise. Adding inequality $0=h\left(\boldsymbol{z}^{t}\right)-h\left(\overline{\boldsymbol{z}}^{t}\right) \geq\left\langle\boldsymbol{\sigma}^{*}, \boldsymbol{z}^{t}-\overline{\boldsymbol{z}}^{t}\right\rangle$ for some $\boldsymbol{\sigma}^{*} \in \partial h\left(\overline{\boldsymbol{z}}^{t}\right)$ to the above gives

$$
\begin{equation*}
H\left(\boldsymbol{z}^{t}\right)-H^{*} \geq \frac{\rho}{2}\left\|M \boldsymbol{z}^{t}-\boldsymbol{t}^{*}\right\|^{2} \tag{43}
\end{equation*}
$$

since $\boldsymbol{\sigma}^{*}+\boldsymbol{\Delta}+\nabla G\left(\boldsymbol{t}^{*}\right)^{T} M=\boldsymbol{\sigma}^{*}+\nabla H\left(\boldsymbol{z}^{t}\right)=0$. Combining (37), (42), and (43), we obtain

Combining results of Case 1 (40) and Case 2 (44), we have

$$
\begin{equation*}
H\left(\boldsymbol{z}^{t+1}\right)-H\left(\boldsymbol{z}^{t}\right) \leq-\frac{m_{1}}{Q_{\max }}\left(H\left(\boldsymbol{z}^{t}\right)-H^{*}\right) \tag{45}
\end{equation*}
$$

where

$$
m_{1}=\frac{1}{\max \left\{16 \theta_{1} \Delta \mathcal{L}^{0}, 2 \theta_{1}\left(1+4 L_{g}^{2}\right) / \rho, 6\right\}}
$$

This leads to the conclusion.

$9 \quad$ Active set size statistics for all experiments

Dataset	$\|\mathcal{F}\|$	$\mathbb{E}_{t}\left\|\mathcal{A}_{\mathcal{F}}^{t}\right\|$
MultiLabel	7544670	6128.2
Dataset	$\left\|\mathcal{Y}_{f}\right\|$	$\mathbb{E}_{t, f}\left\|\mathcal{A}_{f}^{t}\right\|$
Segmentation	441	4.9
ImageAlignment	6889	2.4
Protein	163216	12.7
GraphMatching	1069156	1.66

Table 3: Run time statistics for GDMM active set. For multilabel dataset, we use Algorithm 2, thus $|\mathcal{F}|$ and $\mathbb{E}_{t}\left|\mathcal{A}_{\mathcal{F}}^{t}\right|$ are compared, where $\mathbb{E}_{t}\left|\mathcal{A}_{\mathcal{F}}^{t}\right|$ is the expected size of $\mathcal{A}_{\mathcal{F}}$ over all iterations. For other datasets, we use Algorithm 1, thus $\left|\mathcal{Y}_{f}\right|$ and $\mathbb{E}_{t, f}\left|\mathcal{A}_{f}^{t}\right|$ are compared, the latter is the expected size of \mathcal{A}_{f} over all iterations and bigram factors.

$$
\begin{align*}
& H\left(\boldsymbol{z}^{t+1}\right)-H\left(\boldsymbol{z}^{t}\right) \\
& \leq \min _{\beta \in[0,1]}-\beta\left(H\left(\boldsymbol{z}^{t}\right)-H^{*}\right)+\frac{\theta_{1}\left(1+4 L_{g}^{2}\right) Q_{\max } \beta^{2}}{2 \rho}\left(H\left(\boldsymbol{z}^{t}\right)-H^{*}\right) \\
& =-\frac{\rho}{2 \theta_{1}\left(1+4 L_{g}^{2}\right) Q_{\max }}\left(H\left(\boldsymbol{z}^{t}\right)-H^{*}\right) \tag{44}
\end{align*}
$$

