# Large-Scale Data-Dependent Kernel Approximation <br> Appendix 

This appendix presents the additional detail and proofs associated with the main paper [1].

## 1 Introduction

Let $k: \mathbb{R}^{p} \times \mathbb{R}^{p} \rightarrow \mathbb{R}_{+}$be a positive definite translation invariant function e.g. a Gaussian kernel $k(x, y)=\exp \left(-\gamma\|x-y\|^{2}\right)$. By Bochner's theorem there exists $\mu$ a positive function such that

$$
k(x, y)=\int_{\omega} e^{i \omega^{\top}(x-y)} \mu(\omega)
$$

Since $\mu$ is positive we can use it to draw i.i.d. samples $\omega_{i} \sim \mu$ which allows us to define a random feature map such that $\phi(x)=\left[\phi_{1}(x) \ldots \phi_{d}(x)\right]$, where $\phi_{i}(x)=\cos \left(\omega_{i}^{\top} x+b_{i}\right)$ (where $b_{i} \sim$ Uniform $[0,2 \pi]$ ). Let $\widehat{k}(x, y)=\sum_{i}^{d} \widehat{k}_{i}(x, y)=$ $\frac{1}{d} \sum_{i}^{d} \phi_{i}(x) \phi_{i}(y)^{\top}=\frac{1}{d} \phi(x) \phi(y)^{\top}$. This is a standard construction; see [2, 3] for more details.

Let $X$ be a fixed data matrix $N \times p$ corresponding to $N$ data points in $\mathbb{R}^{p}$ and let the matrix counterparts of the above notation applied to $X$ be $K(i, j)=k(X(i,:), X(j,:))$, as well as $\widehat{K}, \widehat{K}_{i}, \Phi_{i}\left(=\phi_{i}(X)\right)$ and $\Phi(=\phi(X))$.

With this notation we have

$$
\begin{equation*}
\widehat{K}=\sum_{i}^{d} \widehat{K}_{i}=\sum_{i}^{d} \Phi_{i} \Phi_{i}^{\top}=\Phi \Phi^{\top} \tag{1}
\end{equation*}
$$

We notice that $\widehat{K}_{i}$ are i.i.d. thus matrix concentration results apply to it.
To this end we want to use
Theorem 1 (Matrix Bernstein [4]) Let $Z_{1} \ldots Z_{m}$ be independent $n \times n$ Hermitian random matrices with $\mathbb{E}\left[Z_{i}\right]=0$ and $\left\|Z_{i}\right\| \leq R$. Let $\sigma^{2}=\max \left\{\left\|\sum_{i} \mathbb{E}\left[Z_{i}^{\top} Z_{i}\right]\right\|,\left\|\sum_{i} \mathbb{E}\left[Z_{i} Z_{i}^{\top}\right]\right\|\right\}$, where $\|$.$\| is the operator norm. Then$

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{i} Z_{i}\right\| \leq \sigma \sqrt{3 \log (2 n)}+R \log (2 n) \tag{2}
\end{equation*}
$$

Theorem 2 ( $\widehat{K}$ convergence [3]) Let $\widehat{K}$ be an d term random feature approximation of the kernel matrix $K \in \mathbb{R}^{N \times N}$

$$
\begin{equation*}
\mathbb{E}\|\widehat{K}-K\| \leq \sqrt{\frac{3 N^{2} \log N}{d}}+\frac{2 N \log N}{d} \tag{3}
\end{equation*}
$$

Proof ${ }^{1}$ Then $\widehat{K}_{i}$ are independent and we know that $\mathbb{E}[\widehat{K}]=K$.

$$
\begin{equation*}
E=\widehat{K}-K=\sum_{i}^{d} E_{i}, \quad E_{i}=\frac{1}{d}\left(\widehat{K}_{i}-K\right) \tag{4}
\end{equation*}
$$

Thus $\mathbb{E}\left[E_{i}\right]=0$ and $E_{i}$ are i.i.d. as well.
First we must show that each are bounded

$$
\begin{equation*}
\left\|E_{i}\right\|=\frac{1}{d}\left\|\Phi_{i} \Phi_{i}^{\top}-\mathbb{E}\left[\Phi \Phi^{\top}\right]\right\| \leq \frac{1}{d}\left(\left\|\Phi_{i}\right\|^{2}+\mathbb{E}\left[\|\Phi\|^{2}\right] \leq \frac{1}{d}\left(\left\|\Phi_{i}\right\|^{2}+\|\mathbb{E}[\Phi]\|^{2}\right) \leq \frac{2 B}{d}\right. \tag{5}
\end{equation*}
$$

[^0]where we used first the definitions of $\widehat{K}_{i}$ and $K$, followed by the triangle inequality, then Jensen for the expected value. $B$ is a finite bound for $\|\phi\|\left(\|\phi\|^{2} \leq B\right)$. We know that such a bound exists, by the way $\phi$ is constructed.
Then the variance of $E_{i}$ is
\[

$$
\begin{align*}
\mathbb{E}\left[E_{i}^{2}\right] & =\frac{1}{d^{2}} \mathbb{E}\left[\left(\Phi_{i} \Phi^{\top}-K\right)^{2}\right]  \tag{6}\\
& =\frac{1}{d^{2}} \mathbb{E}\left[\left(\left\|\Phi_{i}\right\|^{2} \Phi_{i} \Phi_{i}^{\top}-\Phi_{i} \Phi_{i}^{\top} K-K \Phi_{i} \Phi_{i}^{\top}+K^{2}\right)\right]  \tag{7}\\
& \preccurlyeq \frac{1}{d^{2}}\left[B K-2 K^{2}+K^{2}\right] \preccurlyeq \frac{B K}{d^{2}} \tag{8}
\end{align*}
$$
\]

where we unravel the square, then use $\mathbb{E}\left[\widehat{K}_{i}\right]=\mathbb{E}\left[\Phi_{i} \Phi_{i}^{\top}\right]=K$. The second $\preccurlyeq$ is due to $K$ being positive definite.

$$
\begin{equation*}
\left\|\mathbb{E}\left[E^{2}\right]\right\| \leq\left\|\sum_{i}^{d} \mathbb{E}\left[E_{i}^{2}\right]\right\| \leq \frac{1}{d} B\|K\| \tag{9}
\end{equation*}
$$

where we first used Jensen's inequality, then the semi-definite bound above with $d$ terms.
Given these bounds on the variance and the norm of the random variables, we can apply 2

$$
\begin{equation*}
\mathbb{E}\|\widehat{K}-K\| \leq \sqrt{\frac{3 B\|K\| \log N}{d}}+\frac{2 B \log N}{d} \tag{10}
\end{equation*}
$$

## 2 Data-Dependent Kernel

Let $L$ be the normalized Laplacian i.e. $L=I-D^{-1 / 2} W D^{-1 / 2}$ with $W$ again some fixed positive definite function of the data and $D$ a diagonal matrix with the sum of each row of $W$. Let $M=L$ or some positive power of the Laplacian $M=\alpha L^{c}$. Then we define

$$
\begin{equation*}
\widetilde{K}=K-K(I+M K)^{-1} M K \tag{11}
\end{equation*}
$$

as a new kernel, similarly to the one defined in [5].
So the goal is to obtain $\widetilde{\Phi}$ with both some guarantees of consistency and a large deviation bound, in order to characterize the speed of convergence.

To this end we define

$$
\begin{equation*}
\bar{K}=\widehat{K}-\widehat{K}(I+M \widehat{K})^{-1} M \widehat{K} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\breve{K}=\Phi\left(I+\Phi^{\top} M \Phi\right)^{-1} \Phi^{\top} \tag{13}
\end{equation*}
$$

The Sherman-Morrison-Woodbury (SMW) identity in its simplest form states that if both $I+U V^{\top}$ and $I+V^{\top} U$ are invertible then

$$
\begin{equation*}
\left(I+U V^{\top}\right)^{-1}=I-U\left(I+V^{\top} U\right)^{-1} V^{\top} \tag{14}
\end{equation*}
$$

Proposition 2 With the definitions above

$$
\begin{equation*}
\bar{K}=\breve{K} \tag{15}
\end{equation*}
$$

## Proof

$$
\begin{align*}
\bar{K} & =\widehat{K}-\widehat{K}(I+M \widehat{K})^{-1} M \widehat{K}  \tag{16}\\
& =\Phi \Phi^{\top}-\Phi \Phi^{\top}\left(I+M \Phi \Phi^{\top}\right)^{-1} M \Phi \Phi^{\top}  \tag{17}\\
& =\Phi\left(I-\Phi^{\top}\left(I+M \Phi \Phi^{\top}\right)^{-1} M \Phi\right) \Phi^{\top}  \tag{18}\\
& =\Phi\left(I+\Phi^{\top} M \Phi\right)^{-1} \Phi^{\top}  \tag{19}\\
& =\breve{K} \tag{20}
\end{align*}
$$

Where (19) comes by applying (14) with $U=\Phi^{\top}$ and $V=\Phi^{\top} M$ and using the symmetry of $M$.

So $\widetilde{\Phi}=\Phi\left(I+\Phi^{\top} M \Phi\right)^{-1 / 2}$ but given 15 we can use $\bar{K}$ instead of $\breve{K}$ for the convergence proofs. Now the goal is to obtain a bound on $\mathbb{E}\|\bar{K}-\widetilde{K}\|$.

Lemma 3 Let $\bar{K}$ and $\widetilde{K}$ defined as above and denoting $\mathbb{E}\left\|\widehat{K} M(I+\widehat{K} M)^{-1}\right\| \leq R$ and $\mathbb{E}\left\|(I+M K)^{-1} M K\right\| \leq T$, with $R, T$ constants we have that

$$
\begin{equation*}
\mathbb{E}\|\bar{K}-\widetilde{K}\| \leq \mathbb{E}\|K-\widehat{K}\|(1+T+R T+R) \tag{21}
\end{equation*}
$$

## Proof

$$
\begin{align*}
\|\bar{K}-\widetilde{K}\| & =\left\|\widehat{K}-\widehat{K}(I+M \widehat{K})^{-1} M \widehat{K}-K+K(I+M K)^{-1} M K\right\|  \tag{22}\\
& \leq\|\widehat{K}-K\|+\left\|\widehat{K}(I+M \widehat{K})^{-1} M \widehat{K}-K(I+M K)^{-1} M K\right\| \tag{23}
\end{align*}
$$

If we apply the triangle inequality for the second term in the right side of inequality $\underline{23}$ in the form of $\|A+B+C\| \leq$ $\|A\|+\|B\|+\|C\|$ with,

$$
\begin{align*}
& A=\widehat{K}(I+M K)^{-1} M K-K(I+M K)^{-1} M K  \tag{24}\\
& B=\widehat{K}(I+M \widehat{K})^{-1} M K-\widehat{K}(I+M K)^{-1} M K  \tag{25}\\
& C=\widehat{K}(I+M \widehat{K})^{-1} M \widehat{K}-\widehat{K}(I+M \widehat{K})^{-1} M K \tag{26}
\end{align*}
$$

we obtain the following,

$$
\begin{align*}
\left\|\widehat{K}(I+M \widehat{K})^{-1} M \widehat{K}-K(I+M K)^{-1} M K\right\| & \leq\left\|\widehat{K}(I+M K)^{-1} M K-K(I+M K)^{-1} M K\right\|  \tag{27}\\
& +\left\|\widehat{K}(I+M \widehat{K})^{-1} M K-\widehat{K}(I+M K)^{-1} M K\right\|  \tag{28}\\
& +\left\|\widehat{K}(I+M \widehat{K})^{-1} M \widehat{K}-\widehat{K}(I+M \widehat{K})^{-1} M K\right\| \tag{29}
\end{align*}
$$

For $\|A\|$ we obtain the following bound,

$$
\begin{equation*}
\left\|\widehat{K}(I+M K)^{-1} M K-K(I+M K)^{-1} M K\right\| \leq\|\widehat{K}-K\|\left\|(I+M K)^{-1} M K\right\| \tag{30}
\end{equation*}
$$

For $\|B\|$ we obtain the following bound,

$$
\begin{align*}
\left\|\widehat{K}(I+M \widehat{K})^{-1} M K-\widehat{K}(I+M K)^{-1} M K\right\| & =\left\|\widehat{K}(I+M \widehat{K})^{-1} M(\widehat{K}-K)(I+M K)^{-1} M K\right\|  \tag{31}\\
& \leq\left\|\widehat{K}(I+M \widehat{K})^{-1} M\right\|\|\widehat{K}-K\|\left\|(I+M K)^{-1} M K\right\|  \tag{32}\\
& =\left\|\widehat{K} M-\widehat{K} M(I+\widehat{K} M)^{-1} \widehat{K} M\right\|\|\widehat{K}-K\|\left\|(I+M K)^{-1} M K\right\|  \tag{33}\\
& =\left\|\widehat{K} M(I+\widehat{K} M)^{-1}\right\|\|\widehat{K}-K\|\left\|(I+M K)^{-1} M K\right\| \tag{34}
\end{align*}
$$

In order to obtain eq. 31) we apply the identity $X Z^{-1} Y-X W^{-1} Y=X Z^{-1}(W-Z) W^{-1} Y$ with $W=I+M K$, $X=\widehat{K}, Y=M K$ and $Z=I+M \widehat{K}$. To reach (33) we apply the SMW identity; for eq. 34] we apply the identity $Q-Q(I+Q)^{-1} Q=Q(I+Q)^{-1}$ with $Q=\widehat{K} M$.
For $\|C\|$ we have the following bound,

$$
\begin{align*}
\left\|\widehat{K}(I+M \widehat{K})^{-1} M \widehat{K}-\widehat{K}(I+M \widehat{K})^{-1} M K\right\| & \leq\left\|\widehat{K}(I+M \widehat{K})^{-1} M\right\|\|K-\widehat{K}\|  \tag{35}\\
& =\left\|\widehat{K} M-\widehat{K} M(I+\widehat{K} M)^{-1} \widehat{K} M\right\|\|K-\widehat{K}\|  \tag{36}\\
& =\left\|\widehat{K} M(I+\widehat{K} M)^{-1}\right\|\|K-\widehat{K}\| \tag{37}
\end{align*}
$$

For eqs. (36) and (37) we follow the same proof as for eqs. 33) and (34).
We will focus on the first term of the right side of (37).

$$
\begin{equation*}
\left\|\widehat{K} M(I+\widehat{K} M)^{-1}\right\| \leq\|\widehat{K}\|\|M\|\left\|(I+\widehat{K} M)^{-1}\right\| \tag{38}
\end{equation*}
$$

We seek to provide a bound for $\left\|(I+\widehat{K} M)^{-1}\right\|$. We know that $\sigma_{\max }\left((I+\widehat{K} M)^{-1}\right)=\frac{1}{\sigma_{\min }(I+\widehat{K} M)}$, with $\sigma_{\max }($.$) and$ $\sigma_{\min }($.$) being the maximum and minimum singular values, respectively. From [6] (with direct reference to their eq. 3.12)$ we can write the following inequality (which is valid for any non-singular complex matrix of order $N$, in our case $I+\widehat{K} M$ ), with $\|\cdot\|_{F}$ being the Frobenius norm

$$
\begin{equation*}
\sigma_{\min }(I+\widehat{K} M) \geq|\operatorname{det}(I+\widehat{K} M)|\left(\frac{\sqrt{N-1}}{\|I+\widehat{K} M\|_{F}}\right)^{N-1} \tag{39}
\end{equation*}
$$

For $|\operatorname{det}(I+\widehat{K} M)|$ we have the following bound, where $\lambda_{i}($.$) is the i^{t h}$ eigenvalue

$$
\begin{align*}
|\operatorname{det}(I+\widehat{K} M)| & =\left|\prod_{i} \lambda_{i}(I+\widehat{K} M)\right|  \tag{40}\\
& =\left|\prod_{i}\left(1+\lambda_{i}(\widehat{K} M)\right)\right|  \tag{41}\\
& \geq 1 \tag{42}
\end{align*}
$$

The last inequality results due to the fact that $\widehat{K} M$ is positive semi-definite. Thus, (39) becomes

$$
\begin{align*}
\sigma_{\min }(I+\widehat{K} M) & \geq\left(\frac{\sqrt{N-1}}{\|I+\widehat{K} M\|_{F}}\right)^{N-1}  \tag{43}\\
\sigma_{\max }\left((I+\widehat{K} M)^{-1}\right) & \leq\left(\frac{\|I+\widehat{K} M\|_{F}}{\sqrt{N-1}}\right)^{N-1} \tag{44}
\end{align*}
$$

We know that the right hand side of (44) is bounded, as $N$ is the number of data samples, and $\widehat{K} M$ is positive semi-definite. Given the bounds of $\|A\|,\|B\|$ and $\|C\|$, we substitute them in 23 . Applying the expectations on both sides, leads to the claim.

Proposition 3 Given the results before we can claim $\mathbb{E}\|\bar{K}-\widetilde{K}\| \leq\left(\sqrt{\frac{3 N^{2} \log N}{d}}+\frac{2 N \log N}{d}\right)(1+T+R T+R)$
Proof Given the bound for $\mathbb{E}\|\widehat{K}-K\|$, the claim for deviation is

$$
\begin{align*}
\mathbb{E}\|\bar{K}-\widetilde{K}\| & \leq \mathbb{E}\|\widehat{K}-K\|(1+T+R T+R)  \tag{45}\\
& \leq\left(\sqrt{\frac{3 N^{2} \log N}{d}}+\frac{2 N \log N}{d}\right)(1+T+R T+R) \quad \text { by (3) } \tag{46}
\end{align*}
$$

Finally note that a convergence rate immediately follows once $T$ and $R$ are determined. However, these will depend on the explicit forms of $K$ and $M$, which is beyond the scope of this analysis.

## References

[1] C. Ionescu, A.-I. Popa, and C. Sminchisescu, "Large-scale data-dependent kernel approximation," in AISTATS, 2017.
[2] A. Rahimi and B. Recht, "Random features for large-scale kernel machines," in NIPS, 2007.
[3] D. Lopez-Paz, S. Sra, A. Smola, Z. Ghahramani, and B. Schölkopf, "Randomized nonlinear component analysis," arXiv preprint arXiv:1402.0119, 2014.
[4] L. Mackey, M. I. Jordan, R. Y. Chen, B. Farrell, J. A. Tropp, et al., "Matrix concentration inequalities via the method of exchangeable pairs," The Annals of Probability, vol. 42, no. 3, pp. 906-945, 2014.
[5] V. Sindhwani, P. Niyogi, and M. Belkin, "Beyond the point cloud: from transductive to semi-supervised learning," in ICML, 2005.
[6] H.-B. Li, T.-Z. Huang, and H. Li, "Some new results on determinantal inequalities and applications," Journal of Inequalities and Applications, vol. 2010, no. 1, p. 1, 2010.


[^0]:    ${ }^{1}$ This is from [3] reproduced for a self-contained understanding of our main results.

