
Large-Scale Data-Dependent Kernel Approximation
Appendix

This appendix presents the additional detail and proofs associated with the main paper [1].

1 Introduction

Let k : Rp×Rp → R+ be a positive definite translation invariant function e.g. a Gaussian kernel k(x, y) = exp(−γ‖x−y‖2).
By Bochner’s theorem there exists µ a positive function such that

k(x, y) =

∫
ω

eiω
>(x−y)µ(ω)

Since µ is positive we can use it to draw i.i.d. samples ωi ∼ µ which allows us to define a random feature map such that
φ(x) = [φ1(x) . . . φd(x)], where φi(x) = cos(ω>i x + bi) (where bi ∼ Uniform[0, 2π]). Let k̂(x, y) =

∑d
i k̂i(x, y) =

1
d

∑d
i φi(x)φi(y)> = 1

dφ(x)φ(y)>. This is a standard construction; see [2, 3] for more details.

Let X be a fixed data matrix N × p corresponding to N data points in Rp and let the matrix counterparts of the above
notation applied to X be K(i, j) = k(X(i, :), X(j, :)), as well as K̂, K̂i, Φi(= φi(X)) and Φ(= φ(X)).

With this notation we have

K̂ =

d∑
i

K̂i =

d∑
i

ΦiΦ
>
i = ΦΦ> (1)

We notice that K̂i are i.i.d. thus matrix concentration results apply to it.

To this end we want to use

Theorem 1 (Matrix Bernstein [4]) Let Z1 . . . Zm be independent n× n Hermitian random matrices with E[Zi] = 0 and
‖Zi‖ ≤ R. Let σ2 = max{‖

∑
i E[Z>i Zi]‖, ‖

∑
i E[ZiZ

>
i ]‖}, where ‖.‖ is the operator norm. Then

E‖
∑
i

Zi‖ ≤ σ
√

3 log(2n) +R log(2n) (2)

Theorem 2 (K̂ convergence [3]) Let K̂ be an d term random feature approximation of the kernel matrix K ∈ RN×N

E‖K̂ −K‖ ≤
√

3N2 logN

d
+

2N logN

d
(3)

Proof 1 Then K̂i are independent and we know that E[K̂] = K.

E = K̂ −K =

d∑
i

Ei, Ei =
1

d
(K̂i −K) (4)

Thus E[Ei] = 0 and Ei are i.i.d. as well.

First we must show that each are bounded

‖Ei‖ =
1

d
‖ΦiΦ>i − E[ΦΦ>]‖ ≤ 1

d
(‖Φi‖2 + E[‖Φ‖2] ≤ 1

d
(‖Φi‖2 + ‖E[Φ]‖2) ≤ 2B

d
(5)

1This is from [3] reproduced for a self-contained understanding of our main results.



where we used first the definitions of K̂i and K, followed by the triangle inequality, then Jensen for the expected value. B is
a finite bound for ‖φ‖ (‖φ‖2 ≤ B). We know that such a bound exists, by the way φ is constructed.

Then the variance of Ei is

E[E2
i ] =

1

d2
E[(ΦiΦ

> −K)2] (6)

=
1

d2
E[(‖Φi‖2ΦiΦ

>
i − ΦiΦ

>
i K −KΦiΦ

>
i +K2)] (7)

4
1

d2
[BK − 2K2 +K2] 4

BK

d2
(8)

where we unravel the square, then use E[K̂i] = E[ΦiΦ
>
i ] = K. The second 4 is due to K being positive definite.

‖E[E2]‖ ≤ ‖
d∑
i

E[E2
i ]‖ ≤ 1

d
B‖K‖ (9)

where we first used Jensen’s inequality, then the semi-definite bound above with d terms.

Given these bounds on the variance and the norm of the random variables, we can apply (2) to get

E‖K̂ −K‖ ≤
√

3B‖K‖ logN

d
+

2B logN

d
(10)

2 Data-Dependent Kernel

Let L be the normalized Laplacian i.e. L = I −D−1/2WD−1/2 with W again some fixed positive definite function of
the data and D a diagonal matrix with the sum of each row of W . Let M = L or some positive power of the Laplacian
M = αLc. Then we define

K̃ = K −K(I +MK)−1MK (11)

as a new kernel, similarly to the one defined in [5].

So the goal is to obtain Φ̃ with both some guarantees of consistency and a large deviation bound, in order to characterize the
speed of convergence.

To this end we define
K = K̂ − K̂(I +MK̂)−1MK̂ (12)

and
K̆ = Φ(I + Φ>MΦ)−1Φ> (13)

The Sherman-Morrison-Woodbury (SMW) identity in its simplest form states that if both I + UV > and I + V >U are
invertible then

(I + UV >)−1 = I − U(I + V >U)−1V > (14)

Proposition 2 With the definitions above
K = K̆ (15)

Proof

K = K̂ − K̂(I +MK̂)−1MK̂ (16)

= ΦΦ> − ΦΦ>(I +MΦΦ>)−1MΦΦ> by (1) (17)

= Φ(I − Φ>(I +MΦΦ>)−1MΦ)Φ> (18)

= Φ(I + Φ>MΦ)−1Φ> (19)

= K̆ by (13) (20)

Where (19) comes by applying (14) with U = Φ> and V = Φ>M and using the symmetry of M .



So Φ̃ = Φ(I + Φ>MΦ)−1/2 but given (15) we can use K instead of K̆ for the convergence proofs. Now the goal is to
obtain a bound on E‖K − K̃‖.

Lemma 3 Let K and K̃ defined as above and denoting E‖K̂M(I + K̂M)−1‖ ≤ R and E‖(I +MK)−1MK‖ ≤ T , with
R, T constants we have that

E‖K − K̃‖ ≤ E‖K − K̂‖(1 + T +RT +R) (21)

Proof

‖K − K̃‖ = ‖K̂ − K̂(I +MK̂)−1MK̂ −K +K(I +MK)−1MK‖ (22)

≤ ‖K̂ −K‖+ ‖K̂(I +MK̂)−1MK̂ −K(I +MK)−1MK‖ (23)

If we apply the triangle inequality for the second term in the right side of inequality (23) in the form of ‖A+B + C‖ ≤
‖A‖+ ‖B‖+ ‖C‖ with,

A = K̂(I +MK)−1MK −K(I +MK)−1MK (24)

B = K̂(I +MK̂)−1MK − K̂(I +MK)−1MK (25)

C = K̂(I +MK̂)−1MK̂ − K̂(I +MK̂)−1MK (26)

we obtain the following,

‖K̂(I +MK̂)−1MK̂ −K(I +MK)−1MK‖ ≤ ‖K̂(I +MK)−1MK −K(I +MK)−1MK‖ (27)

+ ‖K̂(I +MK̂)−1MK − K̂(I +MK)−1MK‖ (28)

+ ‖K̂(I +MK̂)−1MK̂ − K̂(I +MK̂)−1MK‖ (29)

For ‖A‖ we obtain the following bound,

‖K̂(I +MK)−1MK −K(I +MK)−1MK‖ ≤ ‖K̂ −K‖‖(I +MK)−1MK‖ (30)

For ‖B‖ we obtain the following bound,

‖K̂(I +MK̂)−1MK − K̂(I +MK)−1MK‖ = ‖K̂(I +MK̂)−1M(K̂ −K)(I +MK)−1MK‖ (31)

≤ ‖K̂(I +MK̂)−1M‖‖K̂ −K‖‖(I +MK)−1MK‖ (32)

= ‖K̂M − K̂M(I + K̂M)−1K̂M‖‖K̂ −K‖‖(I +MK)−1MK‖
(33)

= ‖K̂M(I + K̂M)−1‖‖K̂ −K‖‖(I +MK)−1MK‖ (34)

In order to obtain eq. (31) we apply the identity XZ−1Y − XW−1Y = XZ−1(W − Z)W−1Y with W = I + MK,
X = K̂, Y = MK and Z = I + MK̂. To reach (33) we apply the SMW identity; for eq. (34) we apply the identity
Q−Q(I +Q)−1Q = Q(I +Q)−1 with Q = K̂M .

For ‖C‖ we have the following bound,

‖K̂(I +MK̂)−1MK̂ − K̂(I +MK̂)−1MK‖ ≤ ‖K̂(I +MK̂)−1M‖‖K − K̂‖ (35)

= ‖K̂M − K̂M(I + K̂M)−1K̂M‖‖K − K̂‖ (36)

= ‖K̂M(I + K̂M)−1‖‖K − K̂‖ (37)



For eqs. (36) and (37) we follow the same proof as for eqs. (33) and (34).

We will focus on the first term of the right side of (37).

‖K̂M(I + K̂M)−1‖ ≤ ‖K̂‖‖M‖‖(I + K̂M)−1‖ (38)

We seek to provide a bound for ‖(I + K̂M)−1‖. We know that σmax((I + K̂M)−1) = 1

σmin(I+K̂M)
, with σmax(.) and

σmin(.) being the maximum and minimum singular values, respectively. From [6] (with direct reference to their eq. 3.12)
we can write the following inequality (which is valid for any non-singular complex matrix of order N , in our case I + K̂M ),
with ‖.‖F being the Frobenius norm

σmin(I + K̂M) ≥
∣∣det(I + K̂M)

∣∣( √
N − 1

‖I + K̂M‖F

)N−1
(39)

For |det(I + K̂M)| we have the following bound, where λi(.) is the ith eigenvalue

∣∣ det(I + K̂M)
∣∣ =

∣∣∏
i

λi(I + K̂M)
∣∣ (40)

=
∣∣∏
i

(1 + λi(K̂M))
∣∣ (41)

≥ 1 (42)

The last inequality results due to the fact that K̂M is positive semi-definite. Thus, (39) becomes

σmin(I + K̂M) ≥

( √
N − 1

‖I + K̂M‖F

)N−1
(43)

σmax((I + K̂M)−1) ≤

(
‖I + K̂M‖F√

N − 1

)N−1
(44)

We know that the right hand side of (44) is bounded, as N is the number of data samples, and K̂M is positive semi-definite.

Given the bounds of ‖A‖, ‖B‖ and ‖C‖, we substitute them in (23). Applying the expectations on both sides, leads to the
claim.

Proposition 3 Given the results before we can claim E‖K − K̃‖ ≤
(√

3N2 logN
d + 2N logN

d

)
(1 + T +RT +R)

Proof Given the bound for E‖K̂ −K‖, the claim for deviation is

E‖K − K̃‖ ≤ E‖K̂ −K‖(1 + T +RT +R) (45)

≤

(√
3N2 logN

d
+

2N logN

d

)
(1 + T +RT +R) by (3) (46)

Finally note that a convergence rate immediately follows once T and R are determined. However, these will depend on the
explicit forms of K and M , which is beyond the scope of this analysis.
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