Large-Scale Data-Dependent Kernel Approximation
Appendix

This appendix presents the additional detail and proofs associated with the main paper [1].

1 Introduction

Letk : RPxRP — R, be a positive definite translation invariant function e.g. a Gaussian kernel k(z, y) = exp(—~||z—y||?).
By Bochner’s theorem there exists u a positive function such that

ka,y) = / e ) ()

Since i is positive we can use it to draw i.i.d. samples w; ~ pu which allows us to define a random feature map such that
d(z) = [p1(z) ... pa(z)], where ¢;(x) = cos(w, = + b;) (Where b; ~ Uniform[0,2n]). Let k(x,y) = sz ki(z,y) =
L5 6i(2)pi(y) T = Lo(x)p(y)T. This is a standard construction; see [2, 3] for more details.

Let X be a fixed data matrix N x p corresponding to /N data points in R? and let the matrix counterparts of the above
notation applied to X be K (i,7) = k(X (i,:), X(4,:)), as well as K, K;, ®;(= ¢;(X)) and &(= ¢(X)).

‘With this notation we have

d d
E=YK =) 03 =30" (1)

We notice that K ; are i.i.d. thus matrix concentration results apply to it.

To this end we want to use

Theorem 1 (Matrix Bernstein [4]) Let Z ... Z,, be independent n x n Hermitian random matrices with E|Z;] = 0 and
1 Zi|| < R. Let 0* = max{|| >, E[Z] Zi]||, || >, E[Z: Z," |||}, where | .|| is the operator norm. Then

E|l Z Zi|| < o+/3log(2n) + Rlog(2n) (2)

Theorem 2 (IA( convergence [3]) Let K be an d term random feature approximation of the kernel matrix K € RN*N

= 3N2log N 2Nlog N
BJIK - K| </ ==+ == ©

Proof EIThen K; are independent and we know that E[K] = K.

E=K-K=)Y E, E=~(K,—K) 4

Thus E[E;] = 0 and E; are i.i.d. as well.

First we must show that each are bounded

1 1 1 2B
1Bl = S[1P:®," — B[@ST]| < —(|®:]|* + E[[|@]*] < S (@] + [E[D]*) < =
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IThis is from [3]] reproduced for a self-contained understanding of our main results.



where we used first the definitions of & ; and K, followed by the triangle inequality, then Jensen for the expected value. B is
a finite bound for ||¢|| (||¢]|* < B). We know that such a bound exists, by the way ¢ is constructed.

Then the variance of F; is

B[] = SE(@27 - K)’) ©
= LEI(|0P0.0] — 80 K~ K&@] + K?) ™
< %[BK —2K* + K% < Z—f ()

where we unravel the square, then use E[K;] = E[®;®] = K. The second < is due to K being positive definite.
d
ELE2)) < | Y ELE2N < 5BIK] ©

where we first used Jensen’s inequality, then the semi-definite bound above with d terms.

Given these bounds on the variance and the norm of the random variables, we can apply (2) to get

~ 3B|| K|l log N 2Blog N
E|K - K|| < 1/ ” (ﬂog — (10)

2 Data-Dependent Kernel

Let L be the normalized Laplacian i.e. L = I — D~'/2WWD~'/2 with W again some fixed positive definite function of
the data and D a diagonal matrix with the sum of each row of W. Let M = L or some positive power of the Laplacian
M = aL°. Then we define B

K=K-KI+MK)"'MK (11)

as a new kernel, similarly to the one defined in [3].

So the goal is to obtain & with both some guarantees of consistency and a large deviation bound, in order to characterize the
speed of convergence.

To this end we define L N .
K=K-KI+MK)"'MK (12)

and )
K=0dI+o"Md) ‘o’ (13)

The Sherman-Morrison-Woodbury (SMW) identity in its simplest form states that if both 7 + UV " and I 4+ V' U are
invertible then

(I+uvvhHt=r—-va+v'o)~tv?’ (14)

Proposition 2 With the definitions above 5
K=K (15)

Proof

K=K-KI+MEK)"'MK (16)
=0T — PO (I 4+ MOPDT) T MIDT by (1) (17)
=0 -d'(I+M>DT) ' MP)DT (18)
=0 +d"'MD) o7 (19)
- K by (13) (20)

Where (T9) comes by applying (T4) with U = @ and V = &' M and using the symmetry of M.



So® = O(I 4+ T M®)~1/2 but given (T3) we can use K instead of K for the convergence proofs. Now the goal is to
obtain a bound on E||K — K]|.

Lemma 3 Let K and K defined as above and denoting E| KM (I + KM)™Y|| < Rand E||(I + MK)"'MK|| < T, with
R, T constants we have that

E|K — K| <E|K — K||(1+T + RT + R) Q1)

Proof
|IK-K|=|K-KI+MEK)"'"MK-K+K(I+MEK) 'MK| (22)
<|K-K|+|K(I+MEK)"'MEK - K(I+MK) 'MK| (23)

If we apply the triangle inequality for the second term in the right side of inequality (23) in the form of |4 + B+ C|| <
Al + I1B]| + [|C|| with,

A=EK(I+MK)"'"MK - K(I+ MK)"'MK (24)
B=K(I+MEK)"'"MK - K(I+MK) "MK (25)
C=K(I+MEK)""ME-KI+MEK)'MK (26)
we obtain the following,
|K(I+ME)" "MK — K(I+ MK) 'MK| < ||[K(I+ MK)""MK — K(I + MK)"'MK]|| 27)
+|K(I+ME)" "MK — K(I + MK) '"MK]|| (28)
+|K(I+ME)""MEK — K(I + MK) '"MK]|| (29)
For || A|| we obtain the following bound,
|IK(I+MK)"'"MK — K(I+MEK) '"MK| < |K - K||(I+MK)"'MK|| (30)
For || B|| we obtain the following bound,
|K(I+ME) "MK — K(I+MEK) "MK| = |K(I+MEK)"*M(K - K)(I+ MK)"'MK|| 31)
<K+ ME)"'M||K - K[[|(I + MK)"' MK]| (32)
= |KM — KM(I+ KM)"'KM|||K — K||||(I + MK)"'MK]||
(33)
= [[KM(I + KM)|K = K|||(I + MK)' MK]| (34)

In order to obtain eq. (31) we apply the identity XZ 1Y — XW™1Y = XZ-Y(W - Z)W-Y with W = [ + MK,
X =K,Y =MKand Z = I + MK. To reach (33) we apply the SMW identity; for eq. (34) we apply the identity
Q-QU+Q)'Q=QU+Q)*withQ =KM.

For ||C|| we have the following bound,

|IK(I+MEK)""MEK — K(I+ME)"'"MK|| <|K(I+MEK)"'M||K - K| (35)
= |KM —KM(I+KM)"'KM||K — K| (36)
= |[KM(I+KM)™'||K - K| (37)



For egs. (36) and (37) we follow the same proof as for egs. (33) and (34).
We will focus on the first term of the right side of (37).

IKM(I+ EM)7H| < | K[IM]II(T+ KM)~ (38)

We seek to provide a bound for || (I + K M)~ ||. We know that o paq (I + KM)™1) = m
Omin(.) being the maximum and minimum singular values, respectively. From [6] (with direct reference to their eq. 3.12)

we can write the following inequality (which is valid for any non-singular complex matrix of order NV, in our case [ + KM ),
with ||.|| r being the Frobenius norm

, With 0,42(.) and

N-1
~ ~ vN -1
Omin(l + KM) > |det(I + KM)| [ ————— (39)
1T+ KM|p
For | det(I + K M)| we have the following bound, where \;(.) is the i'" eigenvalue
|det(I + KM)| = |[[ MU + KM (40)
= |T]+x(EM)) 41)
>1 (42)
The last inequality results due to the fact that KM is positive semi-definite. Thus, (39) becomes
N1 N—-1
Tmin(I + KM) > | ————— (43)
1L+ KM|p
T+ RMmp
Umaz((IJF[A(M)il) < <|+N1|F> (44)

We know that the right hand side of (@4)) is bounded, as IV is the number of data samples, and KM is positive semi-definite.

Given the bounds of ||A[|, || B|| and ||C||, we substitute them in (23). Applying the expectations on both sides, leads to the
claim.

Proposition 3 Given the results before we can claim E|K — K|| < <\/ SN2 g’g N 2N lgg N) (1+T+RT+R)

Proof Given the bound for E[| K — K||, the claim for deviation is

E|K — K| <E||K — K||(1+T + RT + R) (45)
N2logN 2NlogN
g(w/g dog + C‘l’g >(1+T+RT+R) by @ (46)

Finally note that a convergence rate immediately follows once 7" and R are determined. However, these will depend on the
explicit forms of K and M, which is beyond the scope of this analysis.
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