Large-Scale Data-Dependent Kernel Approximation

Appendix

This appendix presents the additional detail and proofs associated with the main paper [1].

1 Introduction

Let \(k : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}_+ \) be a positive definite translation invariant function e.g. a Gaussian kernel \(k(x, y) = \exp(-\gamma \|x-y\|^2) \).

By Bochner’s theorem there exists \(\mu \) a positive function such that

\[
k(x, y) = \int e^{i\omega^\top (x-y)} \mu(\omega)
\]

Since \(\mu \) is positive we can use it to draw i.i.d. samples \(\omega_i \sim \mu \) which allows us to define a random feature map such that \(\phi(x) = [\phi_1(x) \ldots \phi_d(x)] \), where \(\phi_i(x) = \cos(\omega_i^\top x + b_i) \) (where \(b_i \sim \text{Uniform}[0, 2\pi] \)). Let \(\tilde{k}(x, y) = \sum_i \tilde{k}_i(x, y) = \frac{1}{d} \sum_i \phi_i(x)\phi_i(y)^\top = \frac{1}{d} \phi(x)\phi(y)^\top \). This is a standard construction; see [2, 3] for more details.

Let \(X \) be a fixed data matrix \(N \times p \) corresponding to \(N \) data points in \(\mathbb{R}^p \) and let the matrix counterparts of the above notation applied to \(X \) be \(K(i, j) = k(X(i, :), X(j, :)) \), as well as \(\tilde{K}, \tilde{K}_i, \tilde{\Phi}_i(= \phi_i(X)) \) and \(\Phi(= \phi(X)) \).

With this notation we have

\[
\tilde{K} = \sum_i \tilde{K}_i = \sum_i \tilde{\Phi}_i\tilde{\Phi}_i^\top = \Phi\Phi^\top
\]

We notice that \(\tilde{K}_i \) are i.i.d. thus matrix concentration results apply to it.

To this end we want to use

Theorem 1 (Matrix Bernstein [4]) Let \(Z_1 \ldots Z_m \) be independent \(n \times n \) Hermitian random matrices with \(\mathbb{E}[Z_i] = 0 \) and \(\|Z_i\| \leq R \). Let \(\sigma^2 = \max\{\|\sum_i \mathbb{E}[Z_i^* Z_i]\|, \|\sum_i \mathbb{E}[Z_i Z_i^*]\|\} \), where \(\|\cdot\| \) is the operator norm. Then

\[
\mathbb{E}\left\| \sum_i Z_i \right\| \leq \sigma \sqrt{3\log(2n)} + R \log(2n)
\]

Theorem 2 (\(\tilde{K} \) convergence [3]) Let \(\tilde{K} \) be an \(d \) term random feature approximation of the kernel matrix \(K \in \mathbb{R}^{N \times N} \)

\[
\mathbb{E}\|\tilde{K} - K\| \leq \sqrt{\frac{3N^2 \log N}{d}} + \frac{2N \log N}{d}
\]

Proof Then \(\tilde{K}_i \) are independent and we know that \(\mathbb{E}[\tilde{K}] = K \).

\[
E = \tilde{K} - K = \sum_i E_i, \ E_i = \frac{1}{d}(\tilde{K}_i - K)
\]

Thus \(\mathbb{E}[E_i] = 0 \) and \(E_i \) are i.i.d. as well.

First we must show that each are bounded

\[
\|E_i\| = \frac{1}{d} \left\| \tilde{\Phi}_i\tilde{\Phi}_i^\top - \mathbb{E}[\Phi\Phi^\top] \right\| \leq \frac{1}{d} (\|\tilde{\Phi}_i\|^2 + \mathbb{E}[\|\Phi\|^2]) \leq \frac{1}{d} (\|\Phi_i\|^2 + \|\mathbb{E}[\Phi]\|^2) \leq \frac{2B}{d}
\]

\[1\]This is from [3] reproduced for a self-contained understanding of our main results.
where we used first the definitions of \hat{K}_i and K_i, followed by the triangle inequality, then Jensen for the expected value. B is a finite bound for $\|\phi\| (\|\phi\|^2 \leq B)$. We know that such a bound exists, by the way ϕ is constructed.

Then the variance of E_i is

$$E[E_i^2] = \frac{1}{d^2} E[(\Phi_i\Phi_i^T - K)^2]$$

(6)

$$= \frac{1}{d^2} E[(\|\Phi_i\|^2 \Phi_i\Phi_i^T - K\Phi_i\Phi_i^T + K^2)]$$

(7)

$$\approx \frac{1}{d^2} [BK - 2K^2 + K^2] \leq BK$$

(8)

where we unravel the square, then use $E[\hat{K}_i] = E[\Phi_i\Phi_i^T] = K$. The second \approx is due to K being positive definite.

Then the variance of E_i is

$$E[E_i^2] = \frac{1}{d^2} \sum_i E[E_i^2] \leq \frac{1}{d} B\|K\|$$

(9)

where we first used Jensen’s inequality, then the semi-definite bound above with d terms.

Given these bounds on the variance and the norm of the random variables, we can apply (2) to get

$$E\|\hat{K} - K\| \leq \sqrt{\frac{3B\|K\| \log N}{d}} + \frac{2B \log N}{d}$$

(10)

2 Data-Dependent Kernel

Let L be the normalized Laplacian i.e. $L = I - D^{-1/2}WD^{-1/2}$ with W again some fixed positive definite function of the data and D a diagonal matrix with the sum of each row of W. Let $M = L$ or some positive power of the Laplacian $M = \alpha L^c$. Then we define

$$\hat{K} = K - K(I + MK)^{-1}MK$$

(11)

as a new kernel, similarly to the one defined in [5].

So the goal is to obtain Φ with both some guarantees of consistency and a large deviation bound, in order to characterize the speed of convergence.

To this end we define

$$\mathcal{K} = \hat{K} - \hat{K}(I + M\hat{K})^{-1}M\hat{K}$$

(12)

and

$$\tilde{K} = \Phi(I + \Phi^T M\Phi)^{-1}\Phi^T$$

(13)

The Sherman-Morrison-Woodbury (SMW) identity in its simplest form states that if both $I + UV^T$ and $I + V^TU$ are invertible then

$$(I + UV^T)^{-1} = I - U(I + V^TU)^{-1}V^T$$

(14)

Proposition 2 With the definitions above

$$\mathcal{K} = \tilde{K}$$

(15)

Proof

$$\mathcal{K} = \hat{K} - \hat{K}(I + M\hat{K})^{-1}M\hat{K}$$

(16)

$$= \Phi\Phi^T - \Phi\Phi^T (I + M\Phi\Phi^T)^{-1}M\Phi\Phi^T$$

(17)

$$= \Phi(I - \Phi^T (I + M\Phi\Phi^T)^{-1}M\Phi)\Phi^T$$

(18)

$$= \Phi(I + \Phi^T M\Phi)^{-1}\Phi^T$$

(19)

$$= \tilde{K}$$

(20)

Where (19) comes by applying (14) with $U = \Phi^T$ and $V = \Phi^T M$ and using the symmetry of M.
So \(\hat{\Phi} = \Phi(I + \Phi^T M \Phi)^{-1/2} \) but given [15] we can use \(\hat{K} \) instead of \(\hat{K} \) for the convergence proofs. Now the goal is to obtain a bound on \(\mathbb{E}||\hat{K} - \hat{K}|| \).

Lemma 3 Let \(\hat{K} \) and \(\hat{K} \) defined as above and denoting \(\mathbb{E}||\hat{K} M (I + \hat{K} M)^{-1}|| \leq R \) and \(\mathbb{E}||(I + MK)^{-1} MK|| \leq T \), with \(R, T \) constants we have that

\[
\mathbb{E}||\hat{K} - \hat{K}|| \leq \mathbb{E}||K - \hat{K}||(1 + TR + R) \tag{21}
\]

Proof

\[
||\hat{K} - \hat{K}|| = ||\hat{K} - \hat{K}(I + M\hat{K})^{-1} MK - K + (I + MK)^{-1} MK|| \tag{22}
\]

\[
\leq ||\hat{K} - K|| + ||\hat{K}(I + M\hat{K})^{-1} MK - K + (I + MK)^{-1} MK|| \tag{23}
\]

If we apply the triangle inequality for the second term in the right side of inequality (23) in the form of \(||A + B + C|| \leq ||A|| + ||B|| + ||C|| \) with,

\[
A = \hat{K}(I + MK)^{-1} MK - K(I + MK)^{-1} MK \tag{24}
\]

\[
B = \hat{K}(I + MK)^{-1} MK - \hat{K}(I + MK)^{-1} MK \tag{25}
\]

\[
C = \hat{K}(I + MK)^{-1} MK - \hat{K}(I + MK)^{-1} MK \tag{26}
\]

we obtain the following,

\[
||\hat{K}(I + MK)^{-1} MK - K(I + MK)^{-1} MK|| \leq ||\hat{K}(I + MK)^{-1} MK - K(I + MK)^{-1} MK|| + ||\hat{K}(I + MK)^{-1} MK - \hat{K}(I + MK)^{-1} MK|| + ||\hat{K}(I + MK)^{-1} MK - \hat{K}(I + MK)^{-1} MK|| \tag{27}
\]

For \(||A|| \) we obtain the following bound,

\[
||\hat{K}(I + MK)^{-1} MK - K(I + MK)^{-1} MK|| \leq ||\hat{K} - K||(I + MK)^{-1} MK|| \tag{30}
\]

For \(||B|| \) we obtain the following bound,

\[
||\hat{K}(I + MK)^{-1} MK - \hat{K}(I + MK)^{-1} MK|| = ||\hat{K}(I + MK)^{-1} MK - K(I + MK)^{-1} MK|| \tag{31}
\]

\[
\leq ||\hat{K}(I + MK)^{-1} MK - K(I + MK)^{-1} MK|| \tag{32}
\]

\[
= ||\hat{K}M - \hat{K}M(I + \hat{K} M)^{-1} \hat{K}M|| ||\hat{K} - K||(I + MK)^{-1} MK|| \tag{33}
\]

In order to obtain eq. (31) we apply the identity \(XYZ^{-1} Y = XW^{-1} Y = XZ^{-1}(W - Z)W^{-1} Y \) with \(W = I + MK, X = \hat{K}, Y = MK \) and \(Z = I + M\hat{K} \). To reach (33) we apply the SMW identity; for eq. (34) we apply the identity \(Q - Q(I + Q)^{-1} Q = Q(I + Q)^{-1} \) with \(Q = \hat{K}M \).

For \(||C|| \) we have the following bound,

\[
||\hat{K}(I + MK)^{-1} MK - \hat{K}(I + MK)^{-1} MK|| \leq ||\hat{K}(I + MK)^{-1} MK - \hat{K}|| \tag{35}
\]

\[
= ||\hat{K}M - \hat{K}M(I + \hat{K}M)^{-1} \hat{K}M|| ||\hat{K} - \hat{K}|| \tag{36}
\]

\[
= ||\hat{K}M(I + \hat{K}M)^{-1}|| ||\hat{K}|| \tag{37}
\]
For eqs. (36) and (37) we follow the same proof as for eqs. (33) and (34). We will focus on the first term of the right side of (37).

\[\| \tilde{K} M (I + \tilde{K} M)^{-1} \| \leq \| \tilde{K} \| \| M \| \| (I + \tilde{K} M)^{-1} \| \] (38)

We seek to provide a bound for \(\| (I + \tilde{K} M)^{-1} \| \). We know that \(\sigma_{\text{max}}((I + \tilde{K} M)^{-1}) = \frac{1}{\sigma_{\text{min}}(I + \tilde{K} M)} \), with \(\sigma_{\text{max}}(.) \) and \(\sigma_{\text{min}}(.) \) being the maximum and minimum singular values, respectively. From [6] (with direct reference to their eq. 3.12) we can write the following inequality (which is valid for any non-singular complex matrix of order \(N \), in our case \(I + \tilde{K} M \)), with \(\| . \|_F \) being the Frobenius norm

\[\sigma_{\text{min}}(I + \tilde{K} M) \geq | \det(I + \tilde{K} M) | \left(\frac{\sqrt{N - 1}}{\| I + \tilde{K} M \|_F} \right)^{N-1} \] (39)

For \(| \det(I + \tilde{K} M) | \) we have the following bound, where \(\lambda_i(.) \) is the \(i^{th} \) eigenvalue

\[| \det(I + \tilde{K} M) | = | \prod_i \lambda_i(I + \tilde{K} M) | \] (40)
\[= | \prod_i (1 + \lambda_i(\tilde{K} M)) | \] (41)
\[\geq 1 \] (42)

The last inequality results due to the fact that \(\tilde{K} M \) is positive semi-definite. Thus, (39) becomes

\[\sigma_{\text{min}}(I + \tilde{K} M) \geq \left(\frac{\sqrt{N - 1}}{\| I + \tilde{K} M \|_F} \right)^{N-1} \] (43)
\[\sigma_{\text{max}}((I + \tilde{K} M)^{-1}) \leq \left(\frac{\sqrt{N - 1}}{\| I + \tilde{K} M \|_F} \right)^{N-1} \] (44)

We know that the right hand side of (44) is bounded, as \(N \) is the number of data samples, and \(\tilde{K} M \) is positive semi-definite. Given the bounds of \(\| A \|, \| B \| \) and \(\| C \| \), we substitute them in (23). Applying the expectations on both sides, leads to the claim.

Proposition 3 Given the results before we can claim \(\mathbb{E} \| \tilde{K} - \tilde{K} \| \) \(\leq \left(\sqrt{\frac{3N^2 \log N}{d}} + \frac{2N \log N}{d} \right) (1 + T + RT + R) \)

Proof Given the bound for \(\mathbb{E} \| \tilde{K} - \tilde{K} \| \), the claim for deviation is

\[\mathbb{E} \| \tilde{K} - \tilde{K} \| \leq \mathbb{E} \| \tilde{K} - K \| (1 + T + RT + R) \] (45)
\[\leq \left(\sqrt{\frac{3N^2 \log N}{d}} + \frac{2N \log N}{d} \right) (1 + T + RT + R) \] by (3) (46)

Finally note that a convergence rate immediately follows once \(T \) and \(R \) are determined. However, these will depend on the explicit forms of \(K \) and \(M \), which is beyond the scope of this analysis.
References

