Appendix A. Proof of Theorem 1

In this appendix, we first derive a canonical form of the pencil $L_{G}-\lambda L_{H}$, and then prove the variational principle in Theorem 1. For the simplicity of notation, in this appendix, we denote $A=L_{G}$ and $B=L_{H}$. We begin with the following lemma.

Lemma 1. If $A-\lambda B$ is a symmetric matrix pencil of order n with $A \succeq 0$ and $B \succeq 0$, then there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that

$$
\begin{align*}
& Q^{T} A Q=\begin{array}{c}
r \\
n_{1}
\end{array} \quad\left[\begin{array}{ccc}
\widehat{A}_{11} & \widehat{A}_{12} & m \\
\widehat{A}_{12}^{T} & \widehat{A}_{22} & \\
& & 0
\end{array}\right] \equiv{ }_{m}^{r+n_{1}}\left[\begin{array}{cc}
r+n_{1} & m \\
\widehat{A} & \\
& 0
\end{array}\right], \tag{1}\\
& Q^{T} B Q=\begin{array}{c}
r \\
n_{1} \\
m
\end{array}\left[\begin{array}{ccc}
\widehat{B}_{11} & n_{1} & m \\
& 0 & \\
& & 0
\end{array}\right] \equiv{ }_{m}^{r+n_{1}}\left[\begin{array}{cc}
r+n_{1} & m \\
\widehat{B} & \\
& 0
\end{array}\right], \tag{2}
\end{align*}
$$

where $\widehat{A}_{22} \succ 0$ and $\widehat{B}_{11} \succ 0$. Furthermore, the sub-pencil $\widehat{A}-\lambda \widehat{B}$ is regular and $\widehat{A} \succeq 0$ and $\widehat{B} \succeq 0$.
Proof. Since $B \succeq 0$, there exists an orthogonal matrix $Q_{1} \in \mathbb{R}^{n \times n}$ such that

$$
B^{(0)} \equiv Q_{1}^{T} B Q_{1}={ }_{d}^{r}\left[\begin{array}{cc}
r & d \tag{3}\\
\widehat{B}_{11} & \\
& 0
\end{array}\right]
$$

where $\widehat{B}_{11} \succ 0$. Applying transformation Q_{1} to matrix A, we have

$$
A^{(0)} \equiv Q_{1}^{T} A Q_{1}={ }_{d}{ }_{d}^{r}\left[\begin{array}{cc}
{ }^{r} & d \\
A_{11} & A_{12} \\
A_{12}^{T} & A_{22}
\end{array}\right]
$$

Note that $A_{22} \succeq 0$ due to the fact that $A \succeq 0$.
For the $d \times \bar{d}$ block matrix A_{22}, there exists an orthogonal matrix $Q_{22} \in \mathbb{R}^{d \times d}$ such that

$$
Q_{22}^{T} A_{22} Q_{22}={ }_{m}{ }_{m}\left[\begin{array}{cc}
\widehat{A}_{1} & m \\
& 0
\end{array}\right],
$$

where $\widehat{A}_{22} \succ 0$.
Let $Q_{2}=\operatorname{diag}\left(I_{r}, Q_{22}\right)$. Then we have

$$
\begin{aligned}
A^{(1)} \equiv Q_{2}^{T} A^{(0)} Q_{2}=\begin{array}{c}
r \\
n_{1} \\
m
\end{array}\left[\begin{array}{ccc}
r & n_{1} & m \\
\widehat{A}_{11} & \widehat{A}_{12} & \widehat{A}_{13} \\
\widehat{A}_{12}^{T} & \widehat{A}_{22} & \\
\widehat{A}_{13}^{T} & & 0
\end{array}\right], \\
B^{(1)} \equiv Q_{2}^{T} B^{(0)} Q_{2}=\begin{array}{c}
r \\
n_{1} \\
m
\end{array}\left[\begin{array}{cccc}
\widehat{B}_{11} & n_{1} & m \\
& 0 & \\
& & 0
\end{array}\right]
\end{aligned}
$$

where $\left[\widehat{A}_{12}, \widehat{A}_{13}\right]=A_{12} Q_{22}$. Note that since $A^{(1)} \succeq 0$, we must have $\widehat{A}_{13}=0$. Otherwise, if there exists an element $a_{i j} \neq 0$ in \widehat{A}_{13}, then the 2 by 2 sub-matrix $\left[\begin{array}{cc}\widehat{a}_{i i} & a_{i j} \\ a_{i j} & 0\end{array}\right]$ of $A^{(1)}$ is indefinite, where $\widehat{a}_{i i}$ is the i-th diagonal element of \widehat{A}_{11}. This contradicts to the positive semi-definiteness of $A^{(1)} \succeq 0$.

Denote $Q=Q_{1} Q_{2}$. Then Q is orthogonal, and $Q^{T} A Q, Q^{T} B Q$ have the form (1).
Finally, we show the pencil $\widehat{A}-\lambda \widehat{B}$ is regular. For any $\lambda \in \mathbb{C}$, straightforward calculation gives that

$$
\begin{aligned}
\operatorname{det}(\widehat{A}-\lambda \widehat{B}) & =\operatorname{det}\left(\begin{array}{cc}
\widehat{A}_{11}-\lambda \widehat{B}_{11} & \widehat{A}_{12} \\
\widehat{A}_{12}^{T} & \widehat{A}_{22}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
\widehat{A}_{11}-\widehat{A}_{12} \widehat{A}_{22}^{-1} \widehat{A}_{12}^{T}-\lambda \widehat{B}_{11} & \\
& \widehat{A}_{12}^{T}
\end{array}\right) \\
& =\operatorname{det}\left(\widehat{A}_{22}\right) \operatorname{det}\left(\widehat{A}_{11}-\widehat{A}_{12} \widehat{A}_{22}^{-1} \widehat{A}_{12}^{T}-\lambda \widehat{B}_{11}\right) .
\end{aligned}
$$

Recall that $\widehat{A}_{22} \succ 0$. Furthermore, since $\widehat{B}_{11} \succ 0$, $\operatorname{det}\left(\widehat{A}_{11}-\widehat{A}_{12} \widehat{A}_{22}^{-1} \widehat{A}_{12}^{T}-\lambda \widehat{B}_{11}\right) \not \equiv 0$. Hence, $\operatorname{det}(\widehat{A}-\lambda \widehat{B}) \not \equiv 0$. This means the pencil $\widehat{A}-\lambda \widehat{B}$ is regular.

By Lemma 1, we have the following canonical form of the matrix pair $\{A, B\}$ to show that the matrices A and B are simultaneously diagonalizable with a congruence transformation.

Lemma 2. If $A-\lambda B$ is a symmetric matrix pencil of order n with $A \succeq 0$ and $B \succeq 0$, then there exists a nonsingular matrix $X \in \mathbb{R}^{n \times n}$ such that

$$
X^{T} A X=\begin{gather*}
r \tag{4}\\
n_{1} \\
m
\end{gathered}\left[\begin{array}{ccc}
r & n_{1} & m \\
\Lambda_{r} & & \\
& I & \\
& & 0
\end{array}\right], \quad X^{T} B X=\begin{gathered}
r \\
n_{1} \\
m
\end{gather*}\left[\begin{array}{ccc}
r & n_{1} & m \\
I & & \\
& 0 & \\
& & 0
\end{array}\right]
$$

where Λ_{r} is a diagonal matrix of non-negative diagonal elements $\lambda_{1}, \ldots, \lambda_{r}, r=\operatorname{rank}(B), m=\operatorname{dim}(\mathcal{N}(A) \cap \mathcal{N}(B))$ and $n_{1}=\operatorname{dim}(\mathcal{N}(B))-m$.

Proof. By Lemma 1, there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that

$$
A^{(1)} \equiv Q^{T} A Q=\begin{gathered}
r \\
n_{1} \\
m
\end{gathered}\left[\begin{array}{ccc}
\widehat{A}_{11} & \widehat{n}_{1} & m \\
\widehat{A}_{12} & \\
\widehat{A}_{12}^{T} & \widehat{A}_{22} & \\
& & 0
\end{array}\right] \quad \text { and } \quad B^{(1)} \equiv Q^{T} B Q=\begin{gathered}
r \\
n_{1} \\
m
\end{gathered}\left[\begin{array}{ccc}
\widehat{B}_{11} & n_{1} & m \\
& 0 & \\
& & 0
\end{array}\right]
$$

Let

$$
X_{1}=\left[\begin{array}{ccc}
I_{r} & & \\
-\widehat{A}_{22}^{-1} \widehat{A}_{12}^{T} & \widehat{A}_{22}^{-1 / 2} & \\
& & I_{s}
\end{array}\right]
$$

Then

$$
A^{(2)} \equiv X_{1}^{T} A^{(1)} X_{1}=\left[\begin{array}{cccc}
\widehat{A}_{11}-\widehat{A}_{12}^{(1)} \widehat{A}_{22}^{-1} \widehat{A}_{12}^{T} & & \\
& I_{n_{1}} & \\
& & 0_{s}
\end{array}\right] \quad \text { and } \quad B^{(2)} \equiv X_{1}^{T} B^{(1)} X_{1}=\left[\begin{array}{ccc}
\widehat{B}_{11} & & \\
& 0_{n_{1}} & \\
& & 0_{s}
\end{array}\right]
$$

Since $\widehat{B}_{11} \succ 0$, there exists a nonsingular matrix \widehat{X}_{2} such that

$$
\widehat{X}_{2}^{T}\left[\widehat{A}_{11}-\widehat{A}_{12}^{(1)} \widehat{A}_{22}^{-1} \widehat{A}_{12}^{T}\right] \widehat{X}_{2}=\Lambda, \quad \widehat{X}_{2}^{T} \widehat{B}_{11} \widehat{X}_{2}=I_{r}
$$

Let $X_{2}=\operatorname{diag}\left(\widehat{X}_{2}, I_{n_{1}}, I_{s}\right)$. Then we have

$$
X_{2}^{T} A^{(2)} X_{2}=\operatorname{diag}\left(\Lambda, I_{n_{1}}, 0_{s}\right), X_{2}^{T} B^{(2)} X_{2}=\operatorname{diag}\left(I_{r}, 0_{n_{1}}, 0_{s}\right)
$$

Denote $X=Q X_{1} X_{2}$. Then we obtain (4). The remaining results are eaily obtained from the canonical form (2).

The following remarks are in order:

1. By Lemma 2, we know (i) there are $r=\operatorname{rank}(B)$ finite eigenvalues of the pencil $A-\lambda B$ and all finite eigenvalues are real, nonnegative and non-defective. and (ii) there are $n_{1}=\operatorname{dim}(\mathcal{N}(B))-\operatorname{dim}(\mathcal{N}(A) \cap \mathcal{N}(B))$ non-defective infinite eigenvalues.
2. The canonical form (4) has been derived in [Newcomb, 1961]. Here we give the values of indices r, n_{1}, m in (4) and our proof seems more compact.
3. Lemma 3.8 in [Liang et al., 2013] deals with the canonical form of a general positive semi-definite pencil. Obviously, the pencil $A-\lambda B$ considered here is a special case of positive semi-definite pencil. So Lemma 3.8 is applicable here. Our proof is constructive based on Fix-Heiberger's reduction [Fix and Heiberger, 1972].
We now provide a proof of the variational principle in Theorem 1. Without loss of generality, we assume that pencil $A-\lambda B$ is in the canonical form (4), i.e.,

$$
A=\begin{gather*}
 \tag{5}\\
r \\
n_{1} \\
m
\end{gather*}\left[\begin{array}{ccc}
r & n_{1} & m \\
\Lambda_{r} & & \\
& I & \\
& & 0
\end{array}\right], \quad \begin{array}{ccc}
r \\
n_{1} \\
m
\end{array}\left[\begin{array}{ccc}
r & n_{1} & m \\
& 0 & \\
& & 0
\end{array}\right]
$$

Let $\mathcal{X} \subseteq \mathbb{R}^{n}$ be a subspace of dimension $n+1-i$, where $1 \leqslant i \leqslant r$ and $x \in \mathcal{X}$ be partitioned into $x=\left[x_{1}^{T}, x_{2}^{T}, x_{3}^{T}\right]^{T}$ conformally with the form (5), then

$$
\begin{equation*}
\inf _{\substack{x \in \mathcal{X} \\ x^{T} B x>0}} \frac{x^{T} A x}{x^{T} B x}=\inf _{\substack{x \in \mathcal{X} \\ x_{1}^{T} x_{1}>0}} \frac{x_{1}^{T} \Lambda_{r} x_{1}+x_{2}^{T} x_{2}}{x_{1}^{T} x_{1}}=\inf _{\substack{x \in \mathcal{X} \\ x_{1}^{T} x_{1}>0}} \frac{x_{1}^{T} \Lambda_{r} x_{1}}{x_{1}^{T} x_{1}} . \tag{6}
\end{equation*}
$$

Let $\mathcal{X}^{(1)}=\left\{\left[I_{r}, 0_{n-r}\right] x \mid x \in \mathcal{X}\right\}$. Evidently, $\mathcal{X}^{(1)}$ is a subspace of \mathbb{R}^{r}. Moreover,

$$
n+1-i \geqslant \operatorname{dim}\left(\mathcal{X}^{(1)}\right) \geqslant n+1-i-n_{1}-s=r+1-i
$$

Then there exists a subspace $\widetilde{\mathcal{X}} \subseteq \mathbb{R}^{r}$ of dimension $r+1-i$ such that $\widetilde{\mathcal{X}} \subseteq \mathcal{X}^{(1)}$. For the matrix Λ_{r}, by Courant-Fischer min-max principle, we have

$$
\left.\inf _{\substack{x \in \mathcal{X} \\ x_{1}^{T} x_{1}>0}} \frac{x_{1}^{T} \Lambda_{r} x_{1}}{x_{1}^{T} x_{1}}=\min _{\substack{x_{1} \in \mathcal{X}^{(1)} \\ x_{1}^{T} x_{1}>0}} \frac{x_{1}^{T} \Lambda_{r} x_{1}}{x_{1}^{T} x_{1}} \leqslant \min _{\substack{x_{1} \in \widetilde{\mathcal{X}} \\ x_{1}^{T} x_{1}>0}} \frac{x_{1}^{T} \Lambda_{r} x_{1}}{x_{1}^{T} x_{1}} \leqslant \max _{\operatorname{dim}(\mathcal{S})=r+1-i}^{\mathcal{S} \subseteq \mathbb{R}^{r}} \right\rvert\, \min _{\substack{x_{1} \in \mathcal{S} \\ x_{1}^{T} x_{1}>0}} \frac{x_{1}^{T} \Lambda_{r} x_{1}}{x_{1}^{T} x_{1}}=\lambda_{i}
$$

Combining above equation with (6), we know that for any subspace $\mathcal{X} \subseteq \mathbb{R}^{n}$ with dimension $n+1-i$,

$$
\begin{equation*}
\min _{\substack{x \in \mathcal{X} \\ x^{T} B x>0}} \frac{x^{T} A x}{x^{T} B x} \leqslant \lambda_{i} \tag{7}
\end{equation*}
$$

On the other hand, let us consider a special choice of the subspace \mathcal{X} :

$$
\mathcal{S}_{i}=\mathcal{R}\left(S_{i}\right)
$$

where

$$
S_{i}=\underset{\substack{i-1 \\
n-1-i}}{ }\left[\begin{array}{cc}
r+1-i & n-r \\
0 & \\
I & 0 \\
& I
\end{array}\right]
$$

Then $\operatorname{dim}\left(\mathcal{S}_{i}\right)=n+1-i$, and

$$
S_{i}^{T} A S_{i}=\operatorname{diag}\left(\widetilde{\Lambda}_{i}, I_{n_{1}}, 0_{s}\right), \quad S_{i}^{T} B S_{i}=\operatorname{diag}\left(I_{r+1-i}, 0_{n_{1}}, 0_{s}\right)
$$

where $\widetilde{\Lambda}_{i}=\operatorname{diag}\left(\lambda_{i}, \cdots, \lambda_{r}\right)$. Let $x_{*}=S_{i} e_{1} \in \mathcal{S}_{i}$, where e_{1} is a unit vector of dimension $n+r-i$, then

$$
\frac{x_{*}^{T} A x_{*}}{x_{*}^{T} B x_{*}}=\lambda_{i}
$$

Consequently, Eq. 17 (Sec.4) follows from above equation and (7). Taking $i=1$ in (7), we get Eq. 18 (Sec.4).

Appendix B. Proof of Theorem 2

Similar to Appendix A, for the simplicity of notation, we denote $A=L_{G}$ and $B=L_{H}$. By the definitions of K and M in Theorem 2, we have

$$
K=-B, \quad M=A+\mu B+Z S Z^{T}
$$

By Lemma 1, there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ such that

$$
Q^{T} A Q=\begin{gather*}
n-m \tag{8}\\
m
\end{gather*}\left[\begin{array}{cc}
\left.\begin{array}{cc}
n-m & m \\
A & \\
& 0
\end{array}\right], \quad Q^{T} B Q=\begin{array}{cc}
n-m \\
m
\end{array}\left[\begin{array}{cc}
\widehat{B} & \\
& 0
\end{array}\right], ~
\end{array}\right.
$$

where the $(n-m) \times(n-m)$ sub-pencil $\widehat{A}-\lambda \widehat{B}$ is regular and $\widehat{A} \succeq 0$ and $\widehat{B} \succeq 0$.
Let Q in (8) be conformally partitioned in the form $Q=\left[Q_{1}, Q_{2}\right]$, where $Q_{2} \in \mathbb{R}^{n \times m}$. Then Q_{2} is also an orthonormal basis of $\mathcal{N}(A) \cap \mathcal{N}(B)$, i.e.,

$$
\begin{equation*}
Z=Q_{2} G \tag{9}
\end{equation*}
$$

for some orthogonal matrix G.
For the regular pair $\{\widehat{A}, \widehat{B}\}$, by Lemma 2, there exists a nonsingular matrix $\widetilde{X} \in \mathbb{R}^{(n-m) \times(n-m)}$ such that

$$
\begin{equation*}
\widetilde{X}^{T} \widehat{A} \tilde{X}=\operatorname{diag}\left(\Lambda_{r}, I_{n_{1}}\right), \tilde{X}^{T} \widehat{B} \tilde{X}=\operatorname{diag}\left(I_{r}, 0_{n_{1}}\right) \tag{10}
\end{equation*}
$$

where $\Lambda_{r}=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{r}\right) \succeq 0$.
Let $X=Q \operatorname{diag}\left(\widetilde{X}, I_{m}\right)$. Then

$$
\begin{aligned}
X^{T} K X & =\operatorname{diag}\left(\tilde{X}^{T}, I_{m}\right) Q^{T}(-B) Q \operatorname{diag}\left(\tilde{X}, I_{m}\right) \\
& =\operatorname{diag}\left(\widetilde{X}^{T}, I_{m}\right) \operatorname{diag}\left(-\widehat{B}, 0_{m}\right) \operatorname{diag}\left(\widetilde{X}^{T}, I_{m}\right) \quad \text { by }(8) \\
& =\operatorname{diag}\left(-I_{r}, 0_{n_{1}}, 0_{m}\right) \quad \text { by }(10),
\end{aligned}
$$

and

$$
\begin{aligned}
X^{T} M X & =\operatorname{diag}\left(\widetilde{X}^{T}, I_{m}\right) Q^{T}\left(A+\mu B+Z S Z^{T}\right) Q \operatorname{diag}\left(\tilde{X}, I_{m}\right) \\
& =\operatorname{diag}\left(\widetilde{X}^{T}, I_{m}\right) \operatorname{diag}\left(\widehat{A}+\mu \widehat{B}, G S G^{T}\right) \operatorname{diag}\left(\widetilde{X}, I_{m}\right) \quad \text { by }(8) \text { and }(9) \\
& =\operatorname{diag}\left(\Lambda_{r}+\mu I_{r}, I_{n_{1}}, G S G^{T}\right) \quad \text { by }(10)
\end{aligned}
$$

Since $\Lambda_{r} \succeq 0, S>0$ and $\mu>0, M \succ 0$. The nonzero eigenvalues of the pencil $K-\sigma M$ are $\sigma_{i}=-1 /\left(\lambda_{i}+\mu\right)$ for $i=1, \ldots, r$.

References

[Fix and Heiberger, 1972] Fix, G. and Heiberger, R. (1972). An algorithm for the ill-conditioned generalized eigenvalue problem. SIAM Journal on Numerical Analysis, 9:78-88.
[Liang et al., 2013] Liang, X., Li, R.-C., and Bai, Z. (2013). Trace minimization principles for positive semidefinite pencils. Linear Algebra and its Applications, 438:3085-3106.
[Newcomb, 1961] Newcomb, R. W. (1961). On the simultaneous diagonalization of two semi-definite matrices. Quarterly of Applied Mathematics, 19:144-146.

