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Appendix A. Proof of Theorem 1

In this appendix, we first derive a canonical form of the pencil LG − λLH , and then prove the variational
principle in Theorem 1. For the simplicity of notation, in this appendix, we denote A = LG and B = LH . We
begin with the following lemma.

Lemma 1. If A − λB is a symmetric matrix pencil of order n with A � 0 and B � 0, then there exists an
orthogonal matrix Q ∈ Rn×n such that

QTAQ =


r n1 m

r Â11 Â12

n1 ÂT
12 Â22

m 0

 ≡ [ r+n1 m

r+n1 Â
m 0

]
, (1)

QTBQ =


r n1 m

r B̂11

n1 0
m 0

 ≡ [ r+n1 m

r+n1 B̂
m 0

]
, (2)

where Â22 � 0 and B̂11 � 0. Furthermore, the sub-pencil Â− λB̂ is regular and Â � 0 and B̂ � 0.

Proof. Since B � 0, there exists an orthogonal matrix Q1 ∈ Rn×n such that

B(0) ≡ QT
1 BQ1 =

[ r d

r B̂11

d 0

]
, (3)

where B̂11 � 0. Applying transformation Q1 to matrix A, we have

A(0) ≡ QT
1 AQ1 =

[ r d

r Â11 A12

d AT
12 A22

]
.

Note that A22 � 0 due to the fact that A � 0.
For the d× d block matrix A22, there exists an orthogonal matrix Q22 ∈ Rd×d such that

QT
22A22Q22 =

[ n1 m

n1 Â22

m 0

]
,

where Â22 � 0.
Let Q2 = diag(Ir, Q22). Then we have

A(1) ≡ QT
2 A

(0)Q2 =


r n1 m

r Â11 Â12 Â13

n1 ÂT
12 Â22

m ÂT
13 0

,

B(1) ≡ QT
2 B

(0)Q2 =


r n1 m

r B̂11

n1 0
m 0

,
where

[
Â12, Â13

]
= A12Q22. Note that since A(1) � 0, we must have Â13 = 0. Otherwise, if there exists an

element aij 6= 0 in Â13, then the 2 by 2 sub-matrix

[
âii aij
aij 0

]
of A(1) is indefinite, where âii is the i-th diagonal

element of Â11. This contradicts to the positive semi-definiteness of A(1) � 0.
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Denote Q = Q1Q2. Then Q is orthogonal, and QTAQ, QTBQ have the form (1).

Finally, we show the pencil Â− λB̂ is regular. For any λ ∈ C, straightforward calculation gives that

det(Â− λB̂) = det

(
Â11 − λB̂11 Â12

ÂT
12 Â22

)

= det

(
Â11 − Â12Â

−1
22 Â

T
12 − λB̂11

ÂT
12 Â22

)
= det(Â22) det(Â11 − Â12Â

−1
22 Â

T
12 − λB̂11).

Recall that Â22 � 0. Furthermore, since B̂11 � 0, det(Â11 − Â12Â
−1
22 Â

T
12 − λB̂11) 6≡ 0. Hence, det(Â− λB̂) 6≡ 0.

This means the pencil Â− λB̂ is regular.

By Lemma 1, we have the following canonical form of the matrix pair {A,B} to show that the matrices A
and B are simultaneously diagonalizable with a congruence transformation.

Lemma 2. If A − λB is a symmetric matrix pencil of order n with A � 0 and B � 0, then there exists a
nonsingular matrix X ∈ Rn×n such that

XTAX =


r n1 m

r Λr

n1 I
m 0

, XTBX =


r n1 m

r I
n1 0
m 0

, (4)

where Λr is a diagonal matrix of non-negative diagonal elements λ1, . . . , λr, r = rank(B), m = dim(N (A)∩N (B))
and n1 = dim(N (B))−m.

Proof. By Lemma 1, there exists an orthogonal matrix Q ∈ Rn×n such that

A(1) ≡ QTAQ =


r n1 m

r Â11 Â12

n1 ÂT
12 Â22

m 0

 and B(1) ≡ QTBQ =


r n1 m

r B̂11

n1 0
m 0

.
Let

X1 =

 Ir

−Â−122 Â
T
12 Â

−1/2
22

Is

 .
Then

A(2) ≡ XT
1 A

(1)X1 =

 Â11 − Â(1)
12 Â

−1
22 Â

T
12

In1

0s

 and B(2) ≡ XT
1 B

(1)X1 =

 B̂11

0n1

0s

 .
Since B̂11 � 0, there exists a nonsingular matrix X̂2 such that

X̂T
2 [Â11 − Â(1)

12 Â
−1
22 Â

T
12]X̂2 = Λ, X̂T

2 B̂11X̂2 = Ir.

Let X2 = diag(X̂2, In1 , Is). Then we have

XT
2 A

(2)X2 = diag(Λ, In1
, 0s), X

T
2 B

(2)X2 = diag(Ir, 0n1
, 0s).

Denote X = QX1X2. Then we obtain (4). The remaining results are eaily obtained from the canonical form
(2).

The following remarks are in order:
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1. By Lemma 2, we know (i) there are r = rank(B) finite eigenvalues of the pencil A − λB and all finite
eigenvalues are real, nonnegative and non-defective. and (ii) there are n1 = dim(N (B))−dim(N (A)∩N (B))
non-defective infinite eigenvalues.

2. The canonical form (4) has been derived in [Newcomb, 1961]. Here we give the values of indices r, n1, m
in (4) and our proof seems more compact.

3. Lemma 3.8 in [Liang et al., 2013] deals with the canonical form of a general positive semi-definite pencil.
Obviously, the pencil A−λB considered here is a special case of positive semi-definite pencil. So Lemma 3.8
is applicable here. Our proof is constructive based on Fix-Heiberger’s reduction [Fix and Heiberger, 1972].

We now provide a proof of the variational principle in Theorem 1. Without loss of generality, we assume that
pencil A− λB is in the canonical form (4), i.e.,

A =


r n1 m

r Λr

n1 I
m 0

, B =


r n1 m

r I
n1 0
m 0

. (5)

Let X ⊆ Rn be a subspace of dimension n+1−i, where 1 6 i 6 r and x ∈ X be partitioned into x = [xT1 , x
T
2 , x

T
3 ]T

conformally with the form (5), then

inf
x∈X

xTBx>0

xTAx

xTBx
= inf

x∈X
xT
1 x1>0

xT1 Λrx1 + xT2 x2
xT1 x1

= inf
x∈X

xT
1 x1>0

xT1 Λrx1
xT1 x1

. (6)

Let X (1) = {[Ir, 0n−r]x | x ∈ X}. Evidently, X (1) is a subspace of Rr. Moreover,

n+ 1− i > dim(X (1)) > n+ 1− i− n1 − s = r + 1− i.

Then there exists a subspace X̃ ⊆ Rr of dimension r + 1 − i such that X̃ ⊆ X (1). For the matrix Λr, by
Courant-Fischer min-max principle, we have

inf
x∈X

xT
1 x1>0

xT1 Λrx1
xT1 x1

= min
x1∈X (1)

xT
1 x1>0

xT1 Λrx1
xT1 x1

6 min
x1∈X̃

xT
1 x1>0

xT1 Λrx1
xT1 x1

6 max
dim(S)=r+1−i

S⊆Rr

min
x1∈S

xT
1 x1>0

xT1 Λrx1
xT1 x1

= λi.

Combining above equation with (6), we know that for any subspace X ⊆ Rn with dimension n+ 1− i,

min
x∈X

xTBx>0

xTAx

xTBx
6 λi. (7)

On the other hand, let us consider a special choice of the subspace X :

Si = R(Si),

where

Si =


r+1−i n−r

i−1 0
r+1−i I 0
n−r I

.
Then dim(Si) = n+ 1− i, and

ST
i ASi = diag(Λ̃i, In1

, 0s), ST
i BSi = diag(Ir+1−i, 0n1

, 0s),

where Λ̃i = diag(λi, · · · , λr). Let x∗ = Sie1 ∈ Si, where e1 is a unit vector of dimension n+ r − i, then

xT∗Ax∗
xT∗Bx∗

= λi.

Consequently, Eq.17 (Sec.4) follows from above equation and (7). Taking i = 1 in (7), we get Eq.18 (Sec.4).
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Appendix B. Proof of Theorem 2

Similar to Appendix A, for the simplicity of notation, we denote A = LG and B = LH . By the definitions of
K and M in Theorem 2, we have

K = −B, M = A+ µB + ZSZT .

By Lemma 1, there exists an orthogonal matrix Q ∈ Rn×n such that

QTAQ =

[ n−m m

n−m Â
m 0

]
, QTBQ =

[ n−m m

n−m B̂
m 0

]
, (8)

where the (n−m)× (n−m) sub-pencil Â− λB̂ is regular and Â � 0 and B̂ � 0.
Let Q in (8) be conformally partitioned in the form Q = [Q1, Q2], where Q2 ∈ Rn×m. Then Q2 is also an

orthonormal basis of N (A) ∩N (B), i.e.,
Z = Q2G (9)

for some orthogonal matrix G.
For the regular pair {Â, B̂}, by Lemma 2, there exists a nonsingular matrix X̃ ∈ R(n−m)×(n−m) such that

X̃T ÂX̃ = diag(Λr, In1), X̃T B̂X̃ = diag(Ir, 0n1), (10)

where Λr = diag(λ1, · · · , λr) � 0.

Let X = Qdiag(X̃, Im). Then

XTKX = diag(X̃T , Im)QT (−B)Qdiag(X̃, Im)

= diag(X̃T , Im) diag(−B̂, 0m) diag(X̃T , Im) by (8)

= diag(−Ir, 0n1
, 0m) by (10),

and

XTMX = diag(X̃T , Im)QT (A+ µB + ZSZT )Qdiag(X̃, Im)

= diag(X̃T , Im) diag(Â+ µB̂,GSGT ) diag(X̃, Im) by (8) and (9)

= diag(Λr + µIr, In1 , GSG
T ) by (10).

Since Λr � 0, S > 0 and µ > 0, M � 0. The nonzero eigenvalues of the pencil K − σM are σi = −1/(λi +µ)
for i = 1, . . . , r.
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