
Improved Strongly Adaptive Online Learning using Coin Betting

Kwang-Sung Jun Francesco Orabona Stephen Wright Rebecca Willett
UW-Madison Stony Brook University UW-Madison UW-Madison

Abstract
This paper describes a new parameter-free
online learning algorithm for changing envi-
ronments. In comparing against algorithms
with the same time complexity as ours, we
obtain a strongly adaptive regret bound that
is a factor of at least

log(T) better, where

T is the time horizon. Empirical results show
that our algorithm outperforms state-of-the-
art methods in learning with expert advice
and metric learning scenarios.

1 Introduction
Machine learning has made heavy use of the i.i.d. as-
sumption, but this assumption does not hold in many
applications. For example, in online portfolio manage-
ment, stock price trends can vary unexpectedly, and
the ability to track changing trends and adapt to them
are crucial in maximizing one’s profit. Another exam-
ple is seen in product reviews, where words describing
product quality may change over time as products and
customer’s taste evolve. Keeping track of the changes
in the metric describing the relationship between re-
view text and rating is crucial for improving analysis
and quality of recommendations.

We consider the problem of adapting to a changing
environment in the online learning context. Let D
be the decision space, L be loss functions that map
D to R, and T be the target time horizon. Let A
be an online learning algorithm and W ™ D be the
set of comparator decisions. (Often, W = D.) We
define the online learning problem in Figure 1. The
usual goal of online learning is to find a strategy
that compares favorably with the best fixed compara-
tor in W, in hindsight. Specifically, we seek a low
value of the following (cumulative) static regret objec-
tive: RegretA

T

:=
q

T

t=1

f
t

(xA
t

) ≠ minwœW
q

T

t=1

f
t

(w).

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copy-
right 2017 by the author(s).

At each time t = 1, 2, . . . , T ,
• The learner A picks a decision xA

t

œ D.
• The environment reveals a loss function f

t

œ L.
• The learner A su�ers loss f

t

(xA
t

).

Figure 1: Online learning protocol

When the environment is changing, static regret is
not a suitable measure, since it compares the learn-
ing strategy against a decision that is fixed. We need
to make use of stronger notions of regret that allow
for comparators to change over time. To define such
notions, we introduce the notation [T] := {1, . . . , T}
and [A..B] = {A, A + 1, . . . , B}. Daniely et al. [5]
defined strongly adaptive regret (SA-Regret), which re-
quires an algorithm to have low (cumulative) regret
over any contiguous time interval I = [I

1

..I
2

] ™ [T].1
Another notion, m-shift regret [10], measures instead
the regret w.r.t. a comparator that changes at most
m times in T time steps. Note that the SA-Regret
is a stronger notion than the m-shift regret since the
latter can be derived directly from the former [12, 5],
as we show in our supplementary material. We define
SA-Regret and m-shift regret precisely in Section 1.1.

Several generic online algorithms that adapt to a
changing environment have been proposed recently.
Rather than being designed for a specific learning
problem, these are “meta algorithms” that take any
online learning algorithm as a black-box and turn it
into an adaptive one. We summarize the SA-Regret
of existing meta algorithms in Table 2. In particular,
the pioneering work of Hazan et al. [9] introduced the
adaptive regret, that is a slightly weaker notion than
the SA-Regret, and proposed two meta algorithms
called FLH and AFLH. However, their SA-Regret de-
pends on T rather than |I|. The SAOL approach of [5]

improves the SA-Regret to O

3Ò
(I

2

≠ I
1

) log2(I
2

)
4

.

In this paper, we propose a new meta algorithm called
Coin Betting for Changing Environment (CBCE) that

1 Strongly adaptive regret is similar to the notion of
adaptive regret introduced by [9], but emphasizes the de-
pendency on the interval length |I|.

Improved Strongly Adaptive Online Learning using Coin Betting

Algorithm m-shift regret Time Agnostic to m

Fixed Share [10, 3]

mT (log N + log T) NT 7
m2T (log N + log T) NT 3

GeneralTrackingÈEXPÍ [8]

mT (log N + m log2 T) NT log T 3
mT (log N + log2 T) NT log T 7

(“ œ (0, 1))
Ò

1
“ mT (log N + m log T) NT 1+“ log T 3

Ò
1
“ mT (log N + log T) NT 1+“ log T 7

ATV [12]

mT (log N + log T) NT 2 3

SAOLÈMWÍ [5]

mT (log N + log2 T) NT log T 3

CBCEÈCBÍ (ours)

mT (log N + log T) NT log T 3

Table 1: m-shift regret bounds of LEA algorithms. Our proposed algorithm achieves the best regret among those
with the same time complexity and does not need to know m. Each quantity omits constant factors. Agnostic
to m means that an algorithm does not need to know the number m of switches in the best expert.

Algorithm SA-Regret order Time factor
FLH [9]

Ô
T log T T

AFLH [9]
Ô

T log T log(I2 ≠ I1) log T

SAOL [5]

(I2 ≠ I1) log2(I2) log T

CBCE (ours)

(I2 ≠ I1) log(I2) log T

Table 2: SA-Regret bounds of meta algorithms on
I ™ [T]. Our proposed algorithm achieves the best
SA-Regret. We show the part of the regret due to the
meta algorithm only, not the black-box. The last col-
umn is the multiplicative factor in the time complexity
introduced by the meta algorithm.

combines the sleeping bandits idea [2, 6] with the Coin
Betting (CB) algorithm [13]. The SA-Regret of CBCE
is better by a factor

log(I

2

) than that of SAOL, as
shown in Table 2. We present our extension of CB
to sleeping bandits and prove its regret bound in Sec-
tion 3. This result leads to the improved SA-Regret
bound of CBCE in Section 4.

Our improved bound yields a number of improve-
ments in various online learning problems. In describ-
ing these improvements, we denote by MÈBÍ a com-
plete algorithm assembled from meta algorithm M
and black-box B.

Consider the learning with expert advice (LEA) prob-
lem with N experts. CBCE with black-box CB
(CBCEÈCBÍ, in our notation) has the m-shift regret

O

mT (log N + log T)

and time complexity O(NT log T). This regret is
a factor

Ô
log T better than those algorithms with

the same time complexity. Although AdaNormal-
Hedge.TV (ATV) and Fixed Share achieve the same
regret, the former has larger time complexity, and the
latter requires prior knowledge of the number of shifts
m. We summarize the m-shift regret bounds of various
algorithms in Table 1.

In Online Convex Optimization (OCO) with G-
Lipschitz loss functions over a convex set D œ

Rd of diameter B, online gradient descent has
regret O(BG

Ô
T). CBCE with black-box OGD

(CBCEÈOGDÍ) then has the following SA-Regret:
O((BG +

log(I

2

))

|I|) ,

which improves by a factor

log(I
2

) over
SAOLÈOGDÍ.

In Section 5, we compare CBCE empirically to a num-
ber of meta algorithms within a changing environment
in two online learning problems: (i) LEA and (ii) Ma-
halanobis metric learning. We observe that CBCE out-
performs the state-of-the-art methods in both tasks,
thus confirming our theoretical findings.
1.1 Preliminaries
In this section we define some concepts that will be
used in the rest of the paper.

A learner’s SA-Regret is obtained by evaluating static
regret on all (contiguous) time intervals I = [I

1

..I
2

] ™
[T] of a given length · . Specifically, the SA-Regret of
an algorithm A at time T for length · is

SA-RegretA
T

(·)

:= max
I™[T]:|I|=·

A
ÿ

tœI

f
t

(xA
t

) ≠ min
wœW

ÿ

tœI

f
t

(w)
B

. (1)

We call an algorithm strongly adaptive if it has a low
value of SA-Regret. We call w

1:T

:= {w
1

, . . . , w
T

} an
m-shift sequence if it changes at most m times, that
is,

q
T ≠1

j=1

1{w
j

”= w
j+1

} Æ m. We define

m-Shift-RegretA
T

:=
Tÿ

t=1

f
t

(xA
t

) ≠ min
w1:T œWT

: m-shift seq.

Tÿ

t=1

f
t

(w
t

) .

2 A Meta Algorithm for Changing
Environments

Let B be a black-box online learning algorithm follow-
ing the protocol in Figure 1. A trick commonly used in

Kwang-Sung Jun, Francesco Orabona, Stephen Wright, Rebecca Willett

designing a meta algorithm M for changing environ-
ments is to initiate a new instance of B at every time
step [9, 8, 1]. That is, we run B independently for each
interval J in {[t..Œ] | t = 1, 2, . . .}. Denote by B

J

the
run of black-box B on interval J . A meta algorithm at
time t combines the decisions from the runs {B

J

}
J–t

by weighted average. The key idea is that at time t,
some of the outputs B œ {B

J

}
J–t

are not based on
any data prior to time tÕ < t, so that if the environ-
ment changes at time tÕ, those outputs may be given
a larger weight by the meta algorithm, allowing it to
adapt more quickly to the change. This trick requires
updating of t instances of the black-box algorithm at
each time step t, leading to a factor-of-t increase in
the time complexity. This factor can be reduced to
O(log t) by restarting black-box algorithms on a care-
fully designed set of intervals such as the geometric
covering intervals [5] (GC) or the data streaming tech-
nique [9, 8] (DS) that is a special case of a more general
set of intervals considered in [14]. While both GC and
DS achieve the same goal as we show in our supple-
mentary material,2 we use the former as our starting
point for ease of exposition.
Geometric Covering Intervals. Define J

k

:=
{[

!
i · 2k

"
..

!
(i + 1) · 2k ≠ 1

"
] : i œ N}, ’k œ {0, 1, . . .}

to be the collection of intervals of length 2k. The geo-
metric covering intervals [5] are

J :=
€

kœ{0,1,...}

J
k

.

That is, J is the set of intervals of doubling length,
with intervals of size 2k exactly partitioning the set
N\{1, . . . , 2k ≠ 1}, see Figure 2.

Define the set of intervals that includes time t as
Active(t) := {J œ J : t œ J}. One can easily
show that |Active(t)| = Âlog

2

(t)Ê + 1. Since at most
O(log(t)) intervals contain any given time point t,
the time complexity of the meta algorithm is a fac-
tor O(log(t)) larger than that of the black-box B.

The key result of the geometric covering intervals
strategy is the following Lemma from [5], which shows
that an arbitrary interval I can be partitioned into a
sequence of smaller blocks whose lengths successively
double, then successively halve.

Lemma 1. ([5, Lemma 5]) Any interval I ™ N
can be partitioned into two finite sequences
of disjoint and consecutive intervals, denoted
{J (≠a), J (≠a+1), . . . , J (0)} and {J (1), J (2), . . . , J (b)}
where ’i œ [(≠a)..b], we have J (i) œ J and J (i) µ I,
such that

|J (≠i)|/|J (≠i+1)| Æ 1/2, i = 1, 2, . . . , a;
2Except for a subtle case, which we also discuss in our

supplementary material.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ...
J0[][][][][][][][][][][][][][][][][][]...
J1 [][][][][][][][][...
J2 [][][][...
J3 [][...

Figure 2: Geometric covering intervals. Each interval
is denoted by [].

|J (i+1)|/|J (i)| Æ 1/2, i = 1, 2, . . . , b ≠ 1 .

Regret Decomposition. We show now how to use
the geometric covering intervals to decompose the SA-
Regret of a complete algorithm MÈBÍ. We use the
notation

RA
I

(w) :=
ÿ

tœI

f
t

(xA
t

) ≠
ÿ

tœI

f
t

(w) ,

and from (1) we see that SA-RegretA
T

(·) =
max

I™[T]:|I|=·

maxwœW RA
I

(w).

Denote by xBJ
t

the decision from black-box B
J

at time
t and by xMÈBÍ

t

the combined decision of the meta
algorithm. Since MÈBÍ is a combination of a meta
M and a black-box B, its regret depends on both M
and B. Perhaps surprisingly, we can decompose the
two sources of regret additively through the geometric
covering J , as we now describe. Choose some I ™ [T],
and let

t
b

i=≠a

J (i) be the partition of I obtained from
Lemma 1. Then, the regret of MÈBÍ on I can be
decomposed as follows:

R
MÈBÍ
I

(w) =
ÿ

tœI

1
f

t

(xMÈBÍ
t

) ≠ f
t

(w)
2

=
bÿ

i=≠a

A
ÿ

tœJ

(i)

f
t

(xMÈBÍ
t

) ≠ f
t

(xB
J(i)

t

)+

f
t

(xB
J(i)

t

) ≠ f
t

(w)
B

=
bÿ

i=≠a

ÿ

tœJ

(i)

1
f

t

(xMÈBÍ
t

) ≠ f
t

(xB
J(i)

t

)
2

¸ ˚˙ ˝
=:(meta regret on J(i))

¸ ˚˙ ˝
=:(meta regret on I)

+

bÿ

i=≠a

ÿ

tœJ

(i)

1
f

t

(xB
J(i)

t

) ≠ f
t

(w)
2

¸ ˚˙ ˝
=:(black-box regret on J(i))

. (2)

(We purposely use symbol J for intervals in J and
I for a generic interval that is not necessarily in J .)
The black-box regret on J = [J

1

..J
2

] œ J is exactly
the standard regret for T = |J |, since the black-box
run B

J

was started from time J
1

. Thus, in order to
prove that a meta algorithm M su�ers low SA-Regret,
we must show two things.

Improved Strongly Adaptive Online Learning using Coin Betting

1. M has low regret on interval J œ J .
2. The outer sum over i in (2) is small for both the

meta and the black-box.

Daniely et al. [5] address the second issue above e�-
ciently in their analysis. They show that if the black-
box regret on J (i) scales like Õ(

|J (i)|) (where Õ

ignores logarithmic factors), then the second double
summation of (2) is3 Õ(

|I|), which is perhaps the

best one can hope for. The same holds true for the
meta algorithm. Thus, it remains to focus on the first
issue above, which is our main contribution.

In the next two sections, we show how to design our
meta algorithm. In Section 3 we propose a novel
method that incorporates sleeping bandits and the
coin betting framework. Section 4 describes how our
method can be used as a meta algorithm with strongly
adaptive regret guarantees.

3 Coin Betting Meets Sleeping
Experts

Our meta algorithm is an extension of the coin-betting
framework [13] based on sleeping experts [2, 6]. It is
parameter-free (there is no explicit learning rate) and
has near-optimal regret. Our construction, described
below, might also be of independent interest.

Sleeping Experts. In the learning with expert ad-
vice (LEA) framework, the decision set is D = �N , an
N -dimensional probability simplex of weights assigned
to the experts. To distinguish LEA from the general
online learning problem, we use notation p

t

in place of
x

t

and h
t

in place of f
t

. Let ¸
t

:= (¸
t,1

, . . . , ¸
t,N

)€ œ
[0, 1]N be the vector of loss values of experts at time
t that is provided by the environment. The learner’s
loss function is h

t

(p) := p€¸
t

.

Since p œ D is a probability vector, the learner’s de-
cision can be viewed as hedging between the N alter-
natives. Let e

i

be an indicator vector for dimension i;
e.g., e

2

= (0, 1, 0, . . . , 0)€. In this notation, the com-
parator set W is {e

1

, . . . , e
N

}. Thus, the learner aims
to compete with a strategy that commits to a single
expert for the entire time [1..T].

The decision set may be nonconvex, for example, when
D = {e

1

, . . . , e
N

} [4, Section 3]. In this case, no hedg-
ing is allowed; the learner must pick an expert. To
choose an element of this set, one could first choose an
element p

t

from �N , then make a decision e
i

œ D with
probability p

t,i

. For such a scheme, the regret guar-
antee is the same as in the standard LEA, but with
expected regret.

3 This is essentially the same argument as the “doubling
trick” described in [4, Section 2.3]

Recall that each black-box run B
J

is on a di�erent
interval J . The meta algorithm’s role is to hedge bets
over multiple black-box runs. Thus, it is natural to
treat each run B

J

as an expert and use an existing
LEA algorithm to combine decisions from each expert
B

J

. The loss incurred on run B
J

is ¸
t,BJ := f

t

(xBJ
t

).

The challenge is that each expert B
J

may not output
decisions at time steps outside the interval J . This
problem can be reduced to the sleeping experts prob-
lem studied in [2, 6], where experts are not required to
provide decisions at every time step; see [12] for detail.
We introduce a binary indicator variable I

t,i

œ {0, 1},
which is set to 1 if expert i is awake (that is, out-
putting a decision) at time t, and zero otherwise. De-
fine I

t

:= [I
t,1

, I
t,2

, . . . , I
t,N

]€ where N can be count-
ably infinite. Note that the algorithm is aware of I

t

and must assign zero weight to the experts that are
sleeping: I

t,i

= 0 =∆ p
t,i

= 0. We would like to have
a guarantee on the regret w.r.t. expert i, but only for
the time steps where expert i is awake. Following [12],
we aim to have a regret bound w.r.t. u œ �N as fol-
lows:

Regret
T

(u) :=
Tÿ

t=1

Nÿ

i=1

I
t,i

u
i

(È¸
t

, p
t

Í ≠ ¸
t,i

) . (3)

If we set u = e
j

for some j, the above is simply regret
w.r.t. expert j while that expert is awake. Further-
more, if I

t,j

= 1 for all t œ [T], then it recovers the
standard static regret in LEA.

Coin Betting for LEA. We consider the coin bet-
ting framework of Orabona and Pál [13], where one
can construct an LEA algorithm based on the so-called
coin betting potential function F

t

. A player starts from
the initial endowment 1. At each time step, the adver-
sary tosses a coin arbitrarily, with the player deciding
upon which side to bet (heads or tails). Then the out-
come is revealed. The adversary can manipulate the
weight of the coin in [0, 1] as well, in a manner not
known to the player before betting.

We encode a coin flip at iteration t as Âg
t

œ [≠1, 1]
where positive (negative) means heads (tails), and
|Âg

t

| indicates the weight. Let Wealth
t≠1

be the to-
tal money the player possesses after time step t ≠ 1.
The player decides which side and how much money
to bet. We encode the player’s decision as the signed
betting fraction —

t

œ (≠1, 1), where the positive
(negative) sign indicates head (tail) and the abso-
lute value |—

t

| œ [0, 1) indicates the fraction of his
money to bet. Thus, the actual amount of betting
is w

t

:= —
t

Wealth
t≠1

. Once the weighted coin flip Âg
t

is revealed, the player’s wealth changes: Wealth
t

=
Wealth

t≠1

+ Âg
t

—
t

Wealth
t≠1

. The player makes (loses)
money when the betted side is correct (wrong), and
the amount of wealth change depends on both the flip

Kwang-Sung Jun, Francesco Orabona, Stephen Wright, Rebecca Willett

weight |Âg
t

| and his betting amount |—
t

|.

In the coin betting framework, the betting fraction —
t

is determined by a potential function F
t

, and we can
simplify w

t

as follows:

z
t

:=
t≠1ÿ

·=1

Âg
·

—
t

(z
t

) := F
t

(z
t

+ 1) ≠ F
t

(z
t

≠ 1)
F

t

(z
t

+ 1) + F
t

(z
t

≠ 1) (4)

w
t

= —
t

(z
t

) ·
A

1 +
t≠1ÿ

·=1

Âg
·

w
·

B
.

We use —
t

in place of —
t

(
q

t≠1

·=1

Âg
·

) when it is clear
from the context. A sequence of coin betting po-
tentials F

1

, F
2

, . . . satisfies the following key condition
(the complete list of conditions can be found in [13]):
F

t

must lower-bound the wealth of a player who bets
by (4):

’t, F
t

A
tÿ

·=1

Âg
·

B
Æ 1 +

tÿ

·=1

Âg
·

w
·

. (5)

This bound becomes useful in regret analysis. We em-
phasize that the term w

t

is decided before Âg
t

is re-
vealed, yet the inequality (5) holds for any Âg

t

œ [≠1, 1].

Orabona and Pál [13] have devised a reduction of LEA
to the simple coin betting problem described above.
The idea is to instantiate a coin betting problem for
each expert i where the signed coin flip Âg

t,i

is set as a
conditionally truncated regret w.r.t. expert i, rather
than being set by an adversary. We denote by —

t,i

the
betting fraction for expert i and by w

t,i

the amount of
betting for expert i, ’i œ [N].

We apply the same treatment under the sleeping ex-
perts setting and propose a new algorithm Sleeping
CB. Since some experts may not output a decision at
time t, Sleeping CB requires a di�erent definition of
—

t

. We define S
t,i

:= 1 +
q

t≠1

·=1

I
·,i

and define the
following modifications of (4)

z
t,i

:=
t≠1ÿ

·=1

I
t,i

Âg
·,i

—
t,i

(z
t,i

) :=
F

St,i(zt,i

+ 1) ≠ F
St,i(zt,i

≠ 1)
F

St,i(zt,i

+ 1) + F
St,i(zt,i

≠ 1) .

Further, we denote by fiIt the prior fi restricted to
experts that are awake (I

t,i

= 1), and define [x]
+

:=
max{x, 0}. Algorithm 1 specifies the Sleeping CB al-
gorithm.

The regret of Sleeping CB is bounded in Theorem 1.
(All proofs appear as supplementary material.) Unlike
the standard CB, in which all the experts use F

t

at
time t, expert i in Sleeping CB uses F

St,i , which is

Algorithm 1 Sleeping CB
Input: Number of experts N , prior distribution fi œ �N

for t = 1, 2, . . . do
For each i œ Active(t), set

wt,i Ω —t,i(zt,i) · (1 +
qt≠1

·=1 z·,iw·,i).
For each i œ Active(t), set ‚pt,i Ω fiiIt,i[wt,i]+.

Predict with pt Ω
;

‚pt/||‚pt||1 if ||‚pt||1 > 0
fiIt if ||‚pt||1 = 0.

Receive loss vector ¸t œ [0, 1]N .
The learner su�ers loss ht(pt) = È¸t, ptÍIt

.
For each i œ Active(t), set

Âgt,i Ω
;

ht(pt) ≠ ¸t,i if wt,i > 0
[ht(pt) ≠ ¸t,i]+ if wt,i Æ 0.

end for

di�erent for each expert. For this reason, the proof of
the CB regret in [13] does not transfer easily to the
regret (3) of Sleeping CB, and a solution to it is the
cornerstone of an improved strongly adaptive regret
bound.
Theorem 1. (Regret of Sleeping CB) Let {F

t

}
tØ1

be
a sequence of potential functions that satisfies (5). As-
sume that F

t

is even (symmetric around zero) ’t Ø 1.
Suppose log F

ST,i(x) Ø h
ST,i(x) := c

1

x

2

ST,i
+ c

2,i

for
some c

1

> 0 and c
2,i

œ R for all i œ [N]. Then,
Algorithm 1 satisfies

Regret
T

(u)

Æ
ı̂ıÙc≠1

1

·
A

Nÿ

i=1

u
i

S
T,i

B
·
A

KL(u||fi) ≠
Nÿ

i=1

u
i

c
2,i

B
.

Note that if u = e
j

, then the regret scales with S
T,j

,
which is essentially the number of time steps at which
expert j is awake.

Among multiple choices for the potential, we use the
Krichevsky-Trofimov (KT) potential [13] that satis-
fies (5) (see [13] for the proof):

F
t

(x) =
2t · �(” + 1) · �(t+”+1

2

+ x

2

)�(t+”+1

2

≠ x

2

)
�(”+1

2

)2 · �(t + ” + 1)
,

where ” Ø 0 is a time shift parameter that we set to 0
in this work. One can show that the betting fraction
—

t

defined in (4) for KT potential exhibits a simpler

form: —
t

=
qt≠1

·=1
Âg·

t+”

[13] and, for Sleeping CB, —
t

=qt≠1
·=1

I·,iÂg·,i

St,i+”

. We present the regret of Algorithm 1
with the KT potential in Corollary 1.
Corollary 1. Let ” = 0. The regret of Algorithm 1
with the KT potential is

Regret
T

(u)

Improved Strongly Adaptive Online Learning using Coin Betting

Algorithm 2 Coin Betting for Changing Environment
(CBCE)

Input: A black-box algorithm B and a prior distribution
fi œ �|J | over {BJ | J œ J }.
for t = 1 to T do

For each J œ Active(t), set
wt,BJ Ω —t,BJ (zt,BJ) · (1 +

qt≠1
·=1 z·,BJ w·,BJ)

Set ‚pt,BJ Ω fiBJ It,BJ [wt,BJ]+ for J œ Active(t) and 0
for J ”œ Active(t).

Compute pt Ω
;

‚pt/||‚pt||1 if ||‚pt||1 > 0
[fiBJ]JœActive(t) if ||‚pt||1 = 0.

The black-box run BJ picks a decision xBJ
t œ D, ’J œ

Active(t).
The learner picks a decision xt =

q
JœJ pt,BJ xBJ

t .
Each black-box run BJ that is awake (J œ Active(t))
su�ers loss ¸t,BJ := ft(xBJ

t).
The learner su�ers loss ft(xt).
For each J œ Active(t), set

Âgt,BJ Ω
;

ft(xt) ≠ ¸t,BJ if wt,BJ > 0
[ft(xt) ≠ ¸t,BJ]+ if wt,BJ Æ 0.

end for

Æ
ı̂ıÙ2

A
Nÿ

i=1

u
i

S
T,i

B
·
3

KL(u||fi) + 1
2 ln(T) + 2

4
.

4 Coping with a Changing
Environment by Sleeping CB

In this section, we synthesize the results in Sections 2
and 3 to specify and analyze our algorithm. Recall
that a meta algorithm must e�ciently aggregate de-
cisions from multiple black-box runs that are active
at time t. We treat each black-box run as an expert.
Since we run a black-box instance for each interval
J œ J , there are a countably infinite number of ex-
perts. Thus, one can use Sleeping CB (Algorithm 1)
as the meta algorithm, with geometric covering inter-
vals. The complete algorithm, which we call Coin
Betting for Changing Environment (CBCE), is
shown in Algorithm 2.

We make use of the following assumption.
Assumption A1. The loss function f

t

is convex and
maps to [0, 1], ’t œ N.

Nonconvex loss functions can be accommodated by
randomized decisions: We choose the decision xBJ

t

from black-box B
J

with probability p
t,BJ . It is not

di�cult to show that the same regret bound holds,
but now in expectation. When loss functions are un-
bounded, they can be scaled and restricted to [0, 1].
Although this leads to possible nonconvexity, we can
still obtain an expected regret bound from the ran-
domized decision process just described.

We define our choice of prior fī œ �|J | as follows:

fīBJ := Z≠1

3
1

J2

1

(1 + Âlog
2

J
1

Ê)

4
, ’J œ J , (6)

where Z is a normalization factor. Note that Z < fi2/6
since there exist at most 1+Âlog

2

J
1

Ê distinct intervals
starting at time J

1

, so Z is less than
qŒ

t=1

t≠2 = fi2/6.

We bound the meta regret w.r.t. a black-box run B
J

as follows.
Lemma 2. (Meta regret of CBCE) Assume A1. Sup-
pose we run CBCE (Algorithm 2) with a black-box al-
gorithm B, prior fī, and ” = 0. The meta regret of
CBCEÈBÍ on interval J = [J

1

..J
2

] œ J is
ÿ

tœJ

f
t

(xCBCEÈBÍ
t

) ≠ f
t

(xBJ
t

)

Æ

|J | (7 ln(J
2

) + 5) = O(

|J | log J
2

) .

We now present the bound on the SA-Regret
R

CBCEÈBÍ
I

(w) w.r.t. w œ W on intervals I ™ [T] that
are not necessarily in J .

Theorem 2. (SA-Regret of CBCEÈBÍ) Assume A1
and that the black-box algorithm B has regret RB

T

bounded by cT –, where – œ (0, 1). Let I = [I
1

..I
2

].
The SA-Regret of CBCE with black-box B on the in-
terval I w.r.t. any w œ W is bounded as follows:

R
CBCEÈBÍ
I

(w) Æ 4
2– ≠ 1c|I|– + 8

|I|(7 ln(I

2

) + 5)

= O(c|I|– +

|I| ln I
2

) .

For the standard LEA problem, one can run the algo-
rithm CB with KT potential (equivalent to Sleeping
CB with I

t,i

= 1, ’t, i), which achieves static regret
O(

T log(NT)) [13]. Using CB as the black-box algo-

rithm, the regret of CBCEÈBÍ on I is R
CBCEÈCBÍ
I

(w) =
O(

|I| log(NI

2

)), and so SA-RegretCBCEÈCBÍ
T

(|I|) =
O(

|I| log(NT)). It follows that the m-shift regret of

CBCEÈCBÍ is O(

mT log(NT)) using the technique
presented our supplementary material.

As said above, our bound improves over the best
known result with the same time complexity in [5].
The key ingredient that allows us to get a better bound
is the Sleeping CB Algorithm 1, that achieves a better
SA-Regret than the one of [5]. In the next section, we
will show that the empirical results also confirm the
theoretical gap of these two algorithms.

Discussion. Note that one can obtain the same re-
sult using the data streaming intervals (DS) [9, 8] in
place of the geometric covering intervals (GC). Sec-
tion F of our supplementary material elaborates on

Kwang-Sung Jun, Francesco Orabona, Stephen Wright, Rebecca Willett

this with a Lemma stating that DS induces a parti-
tion of an interval I in a very similar way to GC (a
sequence of intervals of doubling lengths).

Our improved bound has another interesting im-
plication. In designing strongly adaptive algo-
rithms for LEA, there is a well known technique
called “restarts” or “sleeping experts” that has time
complexity O(NT 2) [9, 12], and several studies
used DS or GC to reduce the time complexity to
O(NT log T) [9, 8, 5]. However, it was unclear whether
it is possible to achieve both an m-shift regret of
O(

mT (log N + log T)) and a time complexity of

O(NT log T) without knowing m. Indeed, every study
on m-shift regret with time O(NT log T) results in sub-
optimal m-shift regret bounds [5, 8, 9], to our knowl-
edge. Furthermore, some studies (e.g., [12, Section 5])
speculated that perhaps applying the data streaming
technique would increase its SA-Regret by a logarith-
mic factor. Our analysis implies that one can reduce
the overall time complexity to O(NT log T) without
sacrificing the order of SA-Regret and m-shift regret.

5 Experiments
We now turn to an empirical evaluation of algorithms
for changing environments. We compare the perfor-
mance of the meta algorithms under two online learn-
ing problems: (i) learning with expert advice (LEA)
and (ii) metric learning (ML). We compare CBCE
with SAOL [5] and AdaNormalHedge.TV (ATV) [12].
Although ATV was originally designed for LEA only, it
is not hard to extend it to a meta algorithm and show
that it has the same order of SA-Regret as CBCE using
the same techniques.

For our empirical study, we replace the geometric cov-
ering intervals (GC) with the data streaming intervals
(DS) [9, 8]. Let u(t) be a number such that 2u(t) is the
largest power of 2 that divides t; e.g., u(12) = 2. The
data streaming intervals are J = {[t..(t+g ·2u(t) ≠1)] :
t = 1, 2, . . .} for some g Ø 1. DS is an attractive alter-
native, unlike GC, (i) DS initiates one and only one
black-box run at each time, and (ii) it is more flex-
ible in that the parameter g can be increased to en-
joy smaller regret in practice while increasing the time
complexity by a constant factor.

For both ATV and CBCE, we set the prior fi over the
black-box runs as the uniform distribution. Note that
this does not break the theoretical guarantees since the
number of black-box runs are never actually infinite;
we used fī (6) in Section 4 for ease of exposition.

5.1 Learning with Expert Advice (LEA)
We consider LEA with linear loss. That is, the loss
function at time t is h

t

(p) = ¸€
t

p. We draw linear loss

¸
t

œ [0, 1]N , ’t = 1, . . . , 600 for N = 1000 experts from
Uniform(0, 1) distribution. Then, for time t œ [1, 200],
we reduce loss of expert 1 by subtracting 1/2 from its
loss: ¸

t,1

Ω [¸
t,1

≠ 1/2]
+

. For time t œ [201, 400] and
t œ [401, 600], we perform the same for expert 2 and
3, respectively. Thus, the best expert is 1, 2, and 3 for
time segment [1,200], [201,400], and [401,600], respec-
tively. We use the data streaming intervals with g = 2.
In all our experiments, DS with g = 2 outperforms GC
while spending roughly the same time.

For each meta algorithm, we use the CB with KT po-
tential [13] as the black-box algorithm. We warm-start
each black-box run at time t Ø 2 by setting its prior
to the decision p

t≠1

chosen by the meta algorithm at
time step t ≠ 1. We repeat the experiment 50 times
and plot their average loss by computing moving mean
with window size 10 in Figure 3(a). Overall, we ob-
serve that CBCE (i) catches up with the environmen-
tal shift faster than any other algorithms and (ii) has
the lowest loss when the shift has settled down. ATV
is the second best, outperforming SAOL. Note that
SAOL with GC (SAOL-GC) tends to incur larger loss
than the SAOL with DS. We observe that this is true
for every meta algorithm, so we omit the result here to
avoid clutter. We also run Fixed Share using the pa-
rameters recommended by Corollary 5.1 of [4], which
requires to know the target time horizon T = 600 and
the true number of switches m = 2. Such a strong as-
sumption is often unrealistic in practice. We observe
that Fixed Share is the slowest in adapting to the envi-
ronmental changes. Nevertheless, Fixed Share remains
attractive since (i) after the switch has settled down
its loss is competitive to CBCE, and (ii) its time com-
plexity is lower than other algorithms (O(NT) rather
than O(NT log T)).

5.2 Metric Learning
We consider the problem of learning squared Maha-
lanobis distance from pairwise comparisons using the
mirror descent algorithm [11]. The data point at time t

is (z(1)

t

, z(2)

t

, y
t

), where y
t

œ {1, ≠1} indicates whether
or not z(1)

t

œ Rd and z(2)

t

œ Rd belongs to the same
class. The goal is to learn a squared Mahalanobis dis-
tance parameterized by a positive semi-definite matrix
M and a bias µ that have small loss f

t

([M; µ]) :=

[1 ≠ y
t

(µ ≠ (z(1)

t

≠ z(2)

t

)€M(z(1)

t

≠ z(2)

t

))]
+

+ fl||M||ú ,

where µ is the bias parameter and || · ||ú is the trace
norm. Such a formulation encourages predicting y

t

with large margin and low rank in M. A learned ma-
trix M that has low rank can be useful in a number
of machine learning tasks; e.g., distance-based classifi-
cations, clusterings, and low-dimensional embeddings.
We refer to [11] for details.

Improved Strongly Adaptive Online Learning using Coin Betting

(a) Learning with expert advice

(b) Metric learning
Figure 3: Experiment results: Our method CBCE outperforms several baseline methods.

We create a scenario that exhibits shifts in the met-
ric, which is inspired by [7]. Specifically, we create
a mixture of three Gaussians in R3 whose means are
well-separated, and mixture weights are .5, .3, and .2.
We draw 2000 points from it while keeping a record
of their memberships. We repeat this three times in-
dependently and concatenate these three vectors to
have 2000 9-dimensional vectors. Finally, we append
to each point a 16-dimensional vector filled with Gaus-
sian noise to have 25-dimensional vectors. Such a con-
struction implies that for each point there are three
independent cluster memberships. We run each al-
gorithm for 1500 time steps. For time 1 to 500, we
randomly pick a pair of points from the data pool and
assign y

t

= 1 (y
t

= ≠1) if the pair belongs to the
same (di�erent) cluster under the first clustering. For
time 501 to 1000 (1001 to 1500), we perform the same
but under the second (third) clustering. In this way, a
learner faces tracking the change in metric, especially
the important low-dimensional subspaces for each time
segment.

Since the loss of the metric learning is unbounded, we
scale the loss by multiplying 1/5 and then capping it
above at 1 as in [7]. Although the randomized deci-
sion discussed in Section 4 can be used to maintain
the theoretical guarantee, we stick to the weighted av-
erage since the event that the loss being capped at 1 is
rare in our experiments. As in our LEA experiment,
we use the data streaming intervals with g = 2 and

initialize each black-box algorithm with the decision
of the meta algorithm at the previous time step. We
repeat the experiment 50 times and plot their aver-
age loss in Figure 3(b) by moving mean with window
size 20. We observe that CBCE and ATV both outper-
forms SAOL. This confirms the improved regret bound
of CBCE and ATV.

6 Future Work
Among a number of interesting directions, we are in-
terested in reducing the time complexity in the online
learning within a changing environment. For LEA,
Fixed Share has the best time complexity. However,
Fixed Share is inherently not parameter-free; espe-
cially, it requires the knowledge of the number of shifts
m. Achieving the best m-shift regret bound with-
out knowing m or the best SA-Regret bound in time
O(NT) would be an interesting future work. The same
direction is interesting for the online convex optimiza-
tion (OCO) problem. It would be interesting if an
OCO algorithm such as online gradient descent can
have the same SA-Regret as CBCEÈOGDÍ without
paying extra order of computation.
Acknowledgements
This work was supported by NSF Award IIS-1447449
and NIH Award 1 U54 AI117924-01. The authors
thank András György for providing constructive feed-
back and Kristjan Greenewald for providing the metric
learning code.

Kwang-Sung Jun, Francesco Orabona, Stephen Wright, Rebecca Willett

References

[1] D. Adamskiy, W. M. Koolen, A. Chernov, and
V. Vovk, “A Closer Look at Adaptive Regret,”
in Proceedings of the International Conference on
Algorithmic Learning Theory (ALT), 2012, pp.
290–304.

[2] A. Blum and A. Blum, “Empirical Support for
Winnow and Weighted-Majority Algorithms: Re-
sults on a Calendar Scheduling Domain,” Ma-
chine Learning, vol. 26, no. 1, pp. 5–23, 1997.

[3] N. Cesa-Bianchi, P. Gaillard, G. Lugosi, and
G. Stoltz, “Mirror descent meets fixed share (and
feels no regret),” in Advances in Neural Informa-
tion Processing Systems (NIPS), 2012, pp. 980–
988.

[4] N. Cesa-Bianchi and G. Lugosi, Prediction,
Learning, and Games. Cambridge University
Press, 2006.

[5] A. Daniely, A. Gonen, and S. Shalev-Shwartz,
“Strongly Adaptive Online Learning,” Proceed-
ings of the International Conference on Machine
Learning (ICML), pp. 1–18, 2015.

[6] Y. Freund, R. E. Schapire, Y. Singer, and M. K.
Warmuth, “Using and combining predictors that
specialize,” Proceedings of the ACM symposium
on Theory of computing (STOC), vol. 37, no. 3,
pp. 334–343, 1997.

[7] K. Greenewald, S. Kelley, and A. O. Hero, “Dy-
namic metric learning from pairwise compar-
isons,” 54th Annual Allerton Conference on Com-
munication, Control, and Computing (Allerton),
2016.

[8] A. György, T. Linder, and G. Lugosi, “E�cient
tracking of large classes of experts,” IEEE Trans-
actions on Information Theory, vol. 58, no. 11,
pp. 6709–6725, 2012.

[9] E. Hazan and C. Seshadhri, “Adaptive Algo-
rithms for Online Decision Problems,” IBM Re-
search Report, vol. 10418, pp. 1–19, 2007.

[10] M. Herbster and M. K. Warmuth, “Tracking the
Best Expert,” Mach. Learn., vol. 32, no. 2, pp.
151–178, 1998.

[11] G. Kunapuli and J. Shavlik, “Mirror descent for
metric learning: A unified approach,” in Pro-
ceedings of the European Conference on Machine
Learning and Principles and Practice of Knowl-
edge Discovery in Database (ECML/PKDD),
2012, pp. 859–874.

[12] H. Luo and R. E. Schapire, “Achieving All
with No Parameters: AdaNormalHedge,” in Pro-
ceedings of the Conference on Learning Theory
(COLT), 2015, pp. 1286–1304.

[13] F. Orabona and D. Pal, “Coin betting and
parameter-free online learning,” in Advances in
Neural Information Processing Systems (NIPS),
2016, pp. 577–585.

[14] J. Veness, M. White, M. Bowling, and A. György,
“Partition tree weighting,” in Proceedings of the
2013 Data Compression Conference. IEEE Com-
puter Society, 2013, pp. 321–330.

