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Proofs

Proof of Theorem 1. Let us write SATT as
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where we recognize the last term as E
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where the first equality is by definition of ✏
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sumption 1.
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This describes a min-cost network flow problem with
sources T
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with outputs W
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Therefore, as there are no capacities, it is always
preferable to send the flow from the sources to the
sinks along the direct edges from T
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to T
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. That is, we
can eliminate all other edges and write
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In the case of with replacement and W
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This describes a min-cost netwrok flow problem with
sources T

1

with inputs 1; nodes T
0

with 0 exogenous
flow; one sink with output n

1

; edges from each i 2 T
1

to each i

0 2 T
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with flow variable S
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sink, which corresponds exactly to one-to-one match-
ing with replacement.
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This describes the same min-cost netwrok flow prob-
lem except that the edges from each i 2 T

0

to the
sink have a capacity of 1. Because all data is integer,
the optimal solution of S and W

0 = n
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W is integer
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0 2 {0, 1} so we only use node i at most
once. The cost of S is exactly the sum of pairwise
distances in the match. Hence, the optimal solution
corresponds exactly to one-to-one matching without
replacement.

Proof of Corollary 3. Apply Theorem 2 with the met-
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That is, the worst-case f assigns ±1 to each partition
in order to make the di↵erence of values in that parti-
tion be nonnegative. Then clearly the optimal choice
of W 2 RT
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where 0/0 = 0 and we never encounter dividing a
positive integer by 0 due to the no-extrapolation as-
sumption. Because the weight is nonnegative, the so-
lution is unchanged when restricting to nonnegative
weights.

Proof of Theorem 5. By duality of norms,

E(W ;F) = sup
�

T
V �1

�

T

 

1

n

1

P

i2T
1

X

i

�
P

i2T
0

W

i

X

i

!

= M

V

(W ).

The optimal W minimizes this discrepancy over sub-
samples from control with the allowable size.

Proof of Theorem 6. We have
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which when written in block form gives rise to the
result.

Proof of Theorem 7. First we show E
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