Supplementary Material

Proofs

Proof of Theorem 1. Let us write SATT as

$$
\mathrm{SATT}=\frac{1}{n_{1}} \sum_{i \in \mathcal{T}_{1}} Y_{i}-\frac{1}{n_{1}} \sum_{i \in \mathcal{T}_{1}} Y_{i}(0)
$$

It is then clear that SATT differs from $\hat{\tau}_{W}$ only in the second term, that is,

$$
\begin{aligned}
\hat{\tau} & -\operatorname{SATT}=\frac{1}{n_{1}} \sum_{i \in \mathcal{T}_{1}} Y_{i}(0)-\sum_{i \in \mathcal{T}_{0}} W_{i} Y_{i}(0) \\
& =\sum_{i=1}^{n}(-1)^{T_{i}+1} W_{i} Y_{i}(0) \\
& =\sum_{i=1}^{n}(-1)^{T_{i}+1} W_{i} f_{0}\left(X_{i}\right)+\sum_{i=1}^{n}(-1)^{T_{i}+1} W_{i} \epsilon_{i}
\end{aligned}
$$

where we recognize the last term as E_{W}. For each term of E_{W} we have

$$
\begin{aligned}
\mathbb{E}\left[(-1)^{T_{i}+1}\right. & \left.W_{i} \epsilon_{i} \mid X, T\right] \\
& =(-1)^{T_{i}+1} W_{i}\left(\mathbb{E}\left[Y_{i}(0) \mid X, T\right]-f_{0}\left(X_{i}\right)\right) \\
& =(-1)^{T_{i}+1} W_{i}\left(\mathbb{E}\left[Y_{i}(0) \mid X\right]-f_{0}\left(X_{i}\right)\right)=0,
\end{aligned}
$$

where the first equality is by definition of ϵ_{i} and the fact that $W_{i}=W_{i}(X, T)$ and the second is by Assumption 1.

Proof of Theorem 2. Let D be the distance matrix $D_{i i^{\prime}}=\delta\left(X_{i}, X_{i^{\prime}}\right)$. For this choice of $(\mathcal{F},\|\cdot\|)$, by linear optimization duality we get

$$
\begin{array}{cll}
\mathfrak{E}(W ; \mathcal{F})=\frac{1}{n_{1}} & \sup _{v_{i}-v_{i^{\prime}} \leq D_{i i^{\prime}} \forall i, i^{\prime}}\left(\sum_{i \in \mathcal{T}_{1}} v_{i}-\sum_{i \in \mathcal{T}_{0}} n_{1} W_{i} v_{i}\right) \\
=\frac{1}{n_{1}} \min _{S} & \sum_{i, i^{\prime}} D_{i i^{\prime}} S_{i i^{\prime}} \\
\text { s.t. } & S \in \mathbb{R}_{+n}^{n \times n} & \\
& \sum_{i^{\prime}=1}^{n}\left(S_{i i^{\prime}}-S_{i^{\prime} i}\right)=1 & \forall i \in \mathcal{T}_{1} \\
& \sum_{i^{\prime}=1}^{n}\left(S_{i i^{\prime}}-S_{i^{\prime} i}\right)=-n_{1} W_{i} & \forall i \in \mathcal{T}_{0} .
\end{array}
$$

This describes a min-cost network flow problem with sources \mathcal{T}_{1} with inputs 1 , sinks \mathcal{T}_{0} with outputs W_{i}, edges between every two nodes with costs $D_{i i^{\prime}}$ and without capacities. Consider any source $i \in \mathcal{T}_{1}$ and any sink $i^{\prime} \in \mathcal{T}_{0}$ and any path $i, i_{1}, \ldots, i_{m}, i^{\prime}$. By the triangle inequality, $D_{i i^{\prime}} \leq D_{i i_{1}}+D_{i_{1} i_{2}}+\cdots+D_{i_{m} i^{\prime}}$. Therefore, as there are no capacities, it is always preferable to send the flow from the sources to the sinks along the direct edges from \mathcal{T}_{1} to \mathcal{T}_{0}. That is, we can eliminate all other edges and write

$$
\begin{array}{rll}
\mathfrak{E}(W ; \mathcal{F})=\frac{1}{n_{1}} \min _{S} & \sum_{i \in \mathcal{T}_{1}, i^{\prime} \in \mathcal{T}_{0}} D_{i i^{\prime}} S_{i i^{\prime}} & \\
\text { s.t. } & S \in \mathbb{R}_{+}^{\mathcal{T}_{1} \times \mathcal{T}_{0}} & \\
& \sum_{i^{\prime} \in \mathcal{T}_{0}} S_{i i^{\prime}}=1 & \forall i \in \mathcal{T}_{1} \\
& \sum_{i \in \mathcal{T}_{1}} S_{i i^{\prime}}=n_{1} W_{i} & \forall i^{\prime} \in \mathcal{T}_{0} .
\end{array}
$$

In the case of with replacement and $\mathcal{W}_{0}=\mathcal{W}_{0}^{\text {probability }}$,
using the transformation $W_{i}^{\prime}=n_{1} W_{i}$, we get

$$
\begin{array}{rll}
\min _{W \in \mathcal{W}} \mathfrak{E}(W ; \mathcal{F}) & & \\
=\frac{1}{n_{1}} \min _{S, W^{\prime}} & \sum_{i \in \mathcal{T}_{1}, i^{\prime} \in \mathcal{T}_{0}} D_{i i^{\prime}} S_{i i^{\prime}} & \\
\text { s.t. } & S \in \mathbb{R}_{+}^{\mathcal{T}_{1} \times \mathcal{T}_{0}} & \\
& W_{i}^{\prime} \in \mathbb{R}_{+}^{\mathcal{T}_{0}} & \\
& \sum_{i \in \mathcal{T}_{0}} W_{i}^{\prime}=n_{1} & \forall i \in \mathcal{T}_{1} \\
& \sum_{i^{\prime} \in \mathcal{T}_{0}} S_{i i^{\prime}}=1 & \forall i^{\prime} \in \mathcal{T}_{0}
\end{array}
$$

This describes a min-cost netwrok flow problem with sources \mathcal{T}_{1} with inputs 1 ; nodes \mathcal{T}_{0} with 0 exogenous flow; one sink with output n_{1}; edges from each $i \in \mathcal{T}_{1}$ to each $i^{\prime} \in \mathcal{T}_{0}$ with flow variable $S_{i i^{\prime}}$, cost $D_{i i^{\prime}}$, and without capacity; and edges from each $i \in \mathcal{T}_{0}$ to the sink with flow variable W_{i}^{\prime} and without cost or capacity. Because all data is integer, the optimal solution of $W^{\prime}=n_{1} W$ is integer [1]. Hence, since $\mathcal{W}_{0}^{n_{1} \text {-multisubset }} \subseteq \mathbb{Z} / n_{1}$, the solution is the same when we restrict to $\mathcal{W}_{0}=\mathcal{W}_{0}^{n_{1} \text {-multisubset }}$. This solution (in terms of W^{\prime}) is equal to sending the whole input 1 from each source in \mathcal{T}_{1} to the node in \mathcal{T}_{0} with smallest distance and from there routing this flow to the sink, which corresponds exactly to one-to-one matching with replacement.
In the case of no replacement and $\mathcal{W}_{0}=\mathcal{W}_{0}^{n_{1}^{-1}}$-bounded , using the transformation $W_{i}^{\prime}=n_{1} W_{i}$, we get

$$
\begin{array}{rll}
\min _{W \in \mathcal{W}} \mathfrak{E}(W ; \mathcal{F}) & & \\
=\frac{1}{n_{1}} \min _{S, W^{\prime}} & \sum_{i \in \mathcal{T}_{1}, i^{\prime} \in \mathcal{T}_{0}} D_{i i^{\prime}} S_{i i^{\prime}} \\
\text { s.t. } & S \in \mathbb{R}_{+}^{\mathcal{T}_{1} \times \mathcal{T}_{0}} \\
& W_{i}^{\prime} \in \mathbb{R}_{+}^{\mathcal{T}_{0}} & \\
& \sum_{i \in \mathcal{T}_{0}} W_{i}^{\prime}=n_{1} & \\
& W_{i}^{\prime} \leq 1 \quad \forall i \in \mathcal{T}_{0} & \forall i \in \mathcal{T}_{1} \\
& \sum_{i^{\prime} \in \mathcal{T}_{0}} S_{i i^{\prime}}=1 & \forall i=i^{\prime}=0 \quad \forall i^{\prime} \in \mathcal{T}_{0}
\end{array}
$$

This describes the same min-cost netwrok flow problem except that the edges from each $i \in \mathcal{T}_{0}$ to the sink have a capacity of 1 . Because all data is integer, the optimal solution of S and $W^{\prime}=n_{1} W$ is integer [1]. Hence, since $\mathcal{W}_{0}^{n_{1} \text {-subset }} \subseteq \mathbb{Z} / n_{1}$, the solution is the same when we restrict to $\mathcal{W}_{0}=\mathcal{W}_{0}^{n_{1} \text {-subset }}$. The optimal $S_{i i^{\prime}}$ is integer and so, by $\sum_{i^{\prime} \in \mathcal{T}_{0}} S_{i i^{\prime}}=1$, for each $i \in \mathcal{T}_{1}$ there is exactly one $i^{\prime} \in \mathcal{T}_{0}$ with $S_{i i^{\prime}}=1$ and all others are zero. $S_{i i^{\prime}}=1$ denotes matching i with i^{\prime}. The optimal W_{i}^{\prime} is integral and so, by $W_{i}^{\prime} \leq 1, W_{i}^{\prime} \in\{0,1\}$. Hence, for each $i \in \mathcal{T}_{0}$,
$\sum_{i^{\prime} \in \mathcal{T}_{1}} S_{i i^{\prime}} \in\{0,1\}$ so we only use node i at most once. The cost of S is exactly the sum of pairwise distances in the match. Hence, the optimal solution corresponds exactly to one-to-one matching without replacement.

Proof of Corollary 3. Apply Theorem 2 with the metric

$$
\delta^{\prime}\left(x, x^{\prime}\right)=\mathbb{I}_{\left[x \neq x^{\prime}\right]} \max \left\{\delta\left(x, x^{\prime}\right), \delta_{0}\right\} .
$$

Proof of Theorem 4. This choice of space leads to
$\mathfrak{E}(W ; \mathcal{F})=\sum_{j=1}^{M}\left|\frac{1}{n_{1}} \sum_{i \in \mathcal{T}_{1}} \mathbb{I}_{\left[C\left(X_{i}\right)=j\right]}-\sum_{i \in \mathcal{T}_{0}} W_{i} \mathbb{I}_{\left[C\left(X_{i}\right)=j\right]}\right|$.
That is, the worst-case f assigns ± 1 to each partition in order to make the difference of values in that partition be nonnegative. Then clearly the optimal choice of $W \in \mathbb{R}^{\mathcal{T}_{0}}$ is to make each of these absolute values equal zero. This happens exactly when, for each $i \in \mathcal{T}_{0}$,

$$
\begin{aligned}
W_{i} & =\frac{1}{n_{1}} \frac{\left|i^{\prime} \in \mathcal{T}_{1}: C\left(X_{i^{\prime}}\right)=C\left(X_{i}\right)\right|}{\left|i^{\prime} \in \mathcal{T}_{0}: C\left(X_{i^{\prime}}\right)=C\left(X_{i}\right)\right|} \\
& =\frac{1}{n_{1}} \frac{\text { num treatment subjects in same partition as } i}{\text { num control subjects in same partition as } i},
\end{aligned}
$$

where $0 / 0=0$ and we never encounter dividing a positive integer by 0 due to the no-extrapolation assumption. Because the weight is nonnegative, the solution is unchanged when restricting to nonnegative weights.

Proof of Theorem 5. By duality of norms,

$$
\begin{aligned}
\mathfrak{E}(W ; \mathcal{F}) & =\sup _{\beta^{T} V \beta \leq 1} \beta^{T}\left(\frac{1}{n_{1}} \sum_{i \in \mathcal{T}_{1}} X_{i}-\sum_{i \in \mathcal{T}_{0}} W_{i} X_{i}\right) \\
& =M_{V}(W) .
\end{aligned}
$$

The optimal W minimizes this discrepancy over subsamples from control with the allowable size.

Proof of Theorem 6. We have

$$
\begin{aligned}
& \mathfrak{E}^{2}(W ; \mathcal{F})=\max _{\|f\| \leq 1}\left(\sum_{i=1}^{n}(-1)^{T_{i}+1} W_{i} f\left(X_{i}\right)\right)^{2} \\
& =\left\langle\sum_{i=1}^{n}(-1)^{T_{i}+1} W_{i} \mathcal{K}\left(X_{i}, \cdot\right), \sum_{i=1}^{n}(-1)^{T_{i}+1} W_{i} \mathcal{K}\left(X_{i}, \cdot\right)\right\rangle \\
& =\sum_{i, j=1}^{n}(-1)^{T_{i}+T_{j}} W_{i} W_{j} K_{i j},
\end{aligned}
$$

which when written in block form gives rise to the result.

Proof of Theorem 7. First we show $\mathfrak{E}_{\min }(\mathcal{F}) \rightarrow 0$ a.s. by showing that we can construct a feasible \tilde{W} such that $\mathfrak{E}(\tilde{W} ; \mathcal{F}) \rightarrow 0$ a.s. Let $p(x)=\mathbb{P}(T=1 \mid X=x)$. By Assumption $1,0<p(X)<1$ a.s. So there exists $\alpha>0$ such that $q(x) \underset{\tilde{\sim}}{=} \alpha p(x) /(1-p(x))$ is a.s. in $(0,1)$. For each i, let $\tilde{W}_{i}^{\prime} \in\{0,1\}$ be Bernoulli with probability $q\left(X_{i}\right)$. Then we have that $X_{i} \mid T=0, \tilde{W}_{i}^{\prime}=$ 1 is distributed as $X_{i} \mid T=1$. Let $n_{0}^{\prime}=\sum_{j \in \mathcal{T}_{0}} \tilde{W}_{j}^{\prime}$ and
note that $n_{0}^{\prime} \geq \underline{n}_{0}^{\prime}$ eventually a.s. For each $i \in \mathcal{T}_{0}$, set $\tilde{W}_{i}=\tilde{W}_{i}^{\prime} / n_{0}^{\prime}$. Let $\zeta(f)=\mathbb{E}\left[f\left(X_{1}\right) \mid T=1\right], \xi_{i}(f)=$ $\left(T_{i}+\tilde{W}_{i}^{\prime}\right)\left(f\left(X_{i}\right)-\zeta(f)\right)$. Let $A_{0}=\frac{1}{n_{0}} \sum_{i \in \mathcal{T}_{0}} \xi_{i}$ and $A_{1}=\frac{1}{n_{1}} \sum_{i \in \mathcal{T}_{1}} \xi_{i}$. Adding and subtracting ζ, we see $\mathcal{E}(\tilde{W} ; f)=A_{1}(f)-\left(n_{0} / n_{0}^{\prime}\right) A_{0}(f)$. By construction of \tilde{W}_{i}^{\prime}, we see that $\mathbb{E}\left[\xi_{i}\right]=0$ (i.e., Bochner integral). By (5), $\|\xi\|_{*}$ has (a) second or (b) first moment. By (1), each ξ_{i} is independent. Therefore, by [2] for (5)(a) (since B-convexity of \mathcal{F} implies B-convexity of \mathcal{F}^{*}; see [20]) or by [6] for (5)(b), a law of large numbers holds yielding, a.s., $\left\|A_{0}\right\|_{*} \rightarrow 0$ and $\left\|A_{1}\right\|_{*} \rightarrow 0$. Since $\left(n_{0} / n_{0}^{\prime}\right) \rightarrow \alpha \mathbb{E}\left[p\left(X_{1}\right)\right]_{\tilde{W}}<\infty$ a.s., we have that $\|\mathcal{E}(\tilde{W} ; \cdot)\|_{*} \rightarrow 0$ a.s. By (3) \tilde{W} is feasible, so, a.s.

$$
\mathfrak{E}_{\min }(\mathcal{F})=\mathfrak{E}(W ; \mathcal{F}) \leq \mathfrak{E}(\tilde{W} ; \mathcal{F})=\|\mathcal{E}(\tilde{W} ; \cdot)\|_{*} \rightarrow 0
$$

Fix $\epsilon>0$. By (4), theres is a $g_{0} \in \mathcal{F}$ such that $\sup _{x}\left|f_{0}(x)-g_{0}(x)\right| \leq \epsilon / 2$. Hence,

$$
\begin{aligned}
\left|\mathcal{E}\left(W ; f_{0}\right)\right| & \leq\left|\mathcal{E}\left(W ; g_{0}\right)\right|+2 \sup _{i=1, \ldots, n}\left|f_{0}\left(X_{i}\right)-g_{0}\left(X_{i}\right)\right| \\
& \leq\left\|g_{0}\right\| \mathfrak{E}(W ; \mathcal{F})+\epsilon=\left\|g_{0}\right\| \mathfrak{E}_{\min }+\epsilon \rightarrow \epsilon .
\end{aligned}
$$

Since true for any $\epsilon>0,\left|\mathcal{E}\left(W ; f_{0}\right)\right| \rightarrow 0$ a.s.

