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Abstract

Approximate inference via information projec-
tion has been recently introduced as a general-
purpose technique for efÞcient probabilistic in-
ference given sparse variables. This manuscript
goes beyond classical sparsity by proposing ef-
Þcient algorithms for approximate inference via
information projection that are applicable to any
structure on the set of variables that admits enu-
meration using matroid or knapsack constraints.
Further, leveraging recent advances in submodu-
lar optimization, we provide an efÞcient greedy
algorithm with strong optimization-theoretic guar-
antees. The class of probabilistic models that
can be expressed in this way is quite broad and,
as we show, includes group sparse regression,
group sparse principal components analysis and
sparse collective matrix factorization, among oth-
ers. Empirical results on simulated data and high
dimensional neuroimaging data highlight the su-
perior performance of the information projection
approach as compared to established baselines for
a range of probabilistic models.

1 Introduction

Parsimonious Bayesian models are being increasingly used
for improving both robustness and generalization perfor-
mance in applications involve large amounts of data and
variables. They are especially well-suited to incorporating
domain knowledge by attuning the prior design to apriori
knowledge and constraints at hand. For instance, sparsity
constraints and associated models have gained eminence
in several Þelds where apriori knowledge corresponding to
these constraints may be incorporated via the use of sparsity
inducing priors.
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A natural extension to the classical notion of sparsity is
structuredsparsity Ð where the sparse selection of variable
dimensions includes additional information. Some exam-
ples of structured sparsity includesmoothness[Koyejo et al.,
2014, Khanna et al., 2015], group sparsity [Witten et al.,
2009, Jenatton et al., 2010, Liu et al., 2010, Simon et al.,
2013], tree/graph sparsity [Hegde et al., 2015] and so on.
While there is a signiÞcant body of literature on classically
sparse probabilistic models, including [Archambeau and
Bach, 2009, Koyejo et al., 2014, Wipf and Nagarajan, 2007,
Sheikh et al., 2012, Khanna et al., 2015] probabilistic mod-
els for structured sparsity have been far less studied. Our
work seeks to bridge this gap for a large family of informa-
tion projection based techniques.

The information projection of a distribution to a constraint
set is given by the argument that minimizes the Kullback-
Leibler (KL) divergence while satisfying the constraints.
The use of information projection for probabilistic inference
with structured variables was recently proposed by Koyejo
et al. [2014]. While information projection is a general
approach, its application requires the design of efÞcient
algorithms that are speciÞc to pre-stipulated structural con-
straints of interest. Koyejo et al. [2014] focused on the case
of sparsity, where the constraint structure is given by the
union of sparse supports. For this case, they proposed ap-
proximate inference by information projection to the support
that captures the largest probability mass. They showed that
the resulting KL minimization can be reduced to a combina-
torial submodular optimization problem, and then applied a
greedy algorithm for efÞcient approximate inference. Sub-
sequently, a similar mechanism was developed for sparse
principal components analysis (sparse PCA) [Khanna et al.,
2015].

This manuscript goes beyond sparsity by proposing efÞcient
algorithms for approximate inference via information pro-
jection that are applicable to anystructured sparsevariable
settings which admits enumeration using amatroid. The
class of probabilistic models that can be expressed in this
way is quite broad, and as we show, includes group sparse
regression, group sparse principal components analysis and
sparse collective matrix factorization, among others. The
generalized framework introduced in this paper is not a sim-
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ple extension, but rather involves discovery of non-trivial
connections between sparse probabilistic inference and dis-
crete submodular optimization.

SpeciÞcally, our main contributions are as follows:

¥ we present a framework for approximate inference via
information projection for any constraint that can be
enumerated as a matroid.

¥ we present an efÞcient scheme for this inference using
a greedy algorithm. For general matroids, an approxi-
mation solution of1/ 2 to the best possible approxima-
tion is guaranteed. However, for some special cases
such as cardinality constraints (classical sparsity), and
group sparsity, stronger guarantees of1! 1/e are avail-
able.

¥ we show that the special cases of information projec-
tion under group sparsity and multi-view sparsity are
submodular with knapsack constraint and partition ma-
troid constraints respectively. These constraints are
applied to develop new algorithms for group sparse re-
gression, sparse principal components analysis (PCA),
and sparse collective matrix factorization (CMF).

Further, we present empirical results on simulated data and
real high dimensional neuroimaging data that highlight the
performance of the information projection approach as com-
pared to established baselines for a range of probabilistic
models.

2 Notation and Background

We begin by outlining some notation. We represent vectors
as small letter bolds e.g.u. Matrices are represented by
capital bolds e.g.X , T . Matrix transposes are represented
by superscript(á)! . Identity matrices of sizes are repre-
sented byI s. 1(0) is a column vector of all ones (zeroes).
The i th row of a matrixM is indexed asMi, á, while j th

column isMá,j . We usep(á), q(á) to represent probability
densities over random variables which may be scalar, vector,
or matrix valued which shall be clear from context. Sets
are represented by sans serif fonts e.g.S, complement of
a setS is Sc. For a vectoru " Rd, and a setS of support
dimensions with|S| = k, k # d, uS " Rk denotes subvec-
tor of u supported onS. Similarly, for a matrixX " Rn " d,
X S " Rk" k denotes the submatrix supported onS. We
denote{ 1, 2, . . . , d} as[d]. Let p(d) be the power set of[d].

Relative Entropy: Let X be a measurable set, andp(á) be
a probability density deÞned onX. Let EX # p [f ] is the
expectation of the functionf with respect top. The relative
entropy, or Kullback-Leibler (KL) divergence between the
densityq andp is given byKL( q$p) = E q [logq ! logp].
The relative entropy is jointly convex in both arguments.

Information Projection: Let FS be the set of all densities
supported onS % X. The information projection of a base

densityp(á) onto a constraint (measurable) setS % X is
deÞned as:

q$ = argmin
q%FS

KL( q$p)

FS is closed and bounded for all cases of interest in this
manuscript, so thatq$ exists.

Submodular functions: Let f : p(d) & R be a set func-
tion. f is a submodularfunction if for all setsx, y in its
domainf (x ' y) + f (x ( y) # f (x) + f (y). Further,f
is normalizedif f () ) = 0 . f is monotone if forx % y,
f (x) # f (y). Submodular functions are of special interest
because greedy algorithm and its simple variants achieve
provable approximation guarantees for several otherwise
NP-Hard combinatorial optimization problems [Nemhauser
et al., 1978, Sviridenko, 2004, Calinescu et al., 2011].

Matroids: A matroid is a structure(N, E), whereN is the
ground set, andE % p(N) is a family of independentsets
that satisÞes: (i)B " E, A % B =* A " E, and, (ii)
A " E, B " E, |A| < |B| =* + x " B ! A s.t. A ' x " E.
A uniform matroid hasE as the set of all possiblek and
lesser sized subsets ofN, and thus induces thek-cardinality
constraint. Apartition matroid partitionsN into subsets
{ X1, X2, . . . , Xr } , with E = { A | A % N, |A ( Xi | # ki , i "
[r ]} for given{ k1, k2, . . . , kr } .

Knapsack: A knapsack constraint also imposes a combi-
natorial structure Ð each candidate solution inE as a set of
possible groups, each with an associated cost, such that the
total cost of each candidate solution inE is less than or equal
to the knapsack value. A knapsack constraint in general is
not a matroid, unless all maximal groupings are of the same
size.

2.1 Information Projection for Sparse Variables

A d dimensional variablex is k-sparse if it is non-zero on
at mostk dimensions. The support of the variablex " Rd

is deÞned assupp(x) := { i " [d]|x i -= 0 } . Similarly, ad
dimensional probability densityp is k-sparse if all random
variablesx . p arek-sparse. LetA be the set of all d!

k !( d& k )!
k-sparse support sets. The information projection ofp onto
FA is equivalent to restriction ofp ontoA [Koyejo et al.,
2014], which is a natural approach for constructing a sparse
prior. Unfortunately, this information projection is gener-
ally intractable. Instead, Koyejo et al. [2014] propose the
following approximation:

min
S' A

min
q%FS

KL( q$p). (1)

This information projection searches for the subsetS
that captures most of the mass ofp as measured by
minq%FS KL( q$p). The inner optimization overFS

can be solved in closed form asminq%FS KL( q$p) =
! logp(xSc = 0) . DeÞne the functionJ : p(d) & R
asJ (S) := log p(xSc = 0) , and the function÷J : p(d) & R
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as ÷J (S) := J (S) ! J () ). The optimization problem(1) is
equivalent to

max
|S|( k

÷J (S) (2)

Note that the cardinality constraint is a uniform matroid con-
straint. While(2) is combinatorial, the following theorem
ensures a good approximation by greedy support selection.

Theorem 1 (Koyejo et al. [2014]). ÷J (S) is normalized
monotone submodular.

Thus, a simple greedy algorithm achieves a(1 ! 1
e ) approx-

imate solution [Nemhauser et al., 1978].

3 Approximate Inference via Information
Projection for Structured Sparse
Variables

In this section, we generalize the cardinality constrained
information projection in two ways. First, we consider
information projection subject togroupsparsity, and show
that the resulting combinatorial problem of selecting the
most relevantgroups is monotone submodular subject to a
knapsack constraint. Secondly, we consider general matroid
constraints for structured sparsity, and present an algorithm
that greedily selects from the enumeration of the matroid
constraint. We consider the special case of partition matroid
constraint where sets of variables are pre-grouped intoviews,
and seek to select variables subject to constraints on the
maximum number of variables selected from each view. We
leverage the research in submodular optimization to present
the respective variants of the greedy algorithm that provably
guarantee constant factor approximations.

Approximate Inference: Let p0 be the prior distribution
and l be the likelihood, and letA represent a structured
subset of the domain ofp0. Restriction of the priorp0 to
the subsetA given bypA,0 / p0(X )1[X %A]is an effective
approach for constructing a prior for the structured subset
A. Unfortuntely, this restriction is generally intractable. We
consider approximate inference by Þxingp as the posterior
distributionp(X ) / p0(X )l(X ). Let A = { Si } be the set
of subsets satisfying the constraint structure. e.g. for clas-
sical sparse modeling withd variables, eachSi " [d] is a
k-sparse subset, andA is the set of all such

! d
k

"
subsets. In

this case, the information projection to a subsetS " A is
designed to approximate Bayesian inference with respect
to intractable restricted prior aspA(X ) / pA,0(X )l(X ).
We note that just as in standard variational inference, the
posterior projection can be implemented usingp0 andl(á)
without explicitly computing the unrestricted posteriorp
(useful when thep is itself intractable). The proposed ap-
proach for approximate inference differs from standard ap-
proaches such as mean Þeld variational inference, as we
take advantage of the combinatorial nature of the desired
structure. As such, the proposed approximate inference is

most accurate when the posterior mass is well captured by
the optimal subsetS$ " A. The approximate posterior is
given by the information projection ofp ontoFS! , and is in
fact equivalent to the projection of the restricted posterior
pA ontoFS! . We refer the interested reader to [Koyejo et al.,
2014] for additional details.

3.1 General Structured Sparsity Constraints

Structured sparsity extends classic sparsity constraints with
additional information on the sparse subsets. For example,
the sparsity could be constrained by a tree structure so that
selection of a parent node implicitly selects all its children as
well. The structural constraint can be encoded as a matroid
(N, E) whereN are the base set of dimensions, andE rep-
resents the set of all possible candidate solutions under the
given constraint. General structured sparsity is challenging
to model using standard prior design techniques. Instead,
one may consider Bayesian inference using the structured
prior distribution recovered by restricting the base prior
to the union of all possible structured subsets. As in the
classic sparsity case, we consider an approximation of the
resulting posterior based on the variable set which captures
the maximum posterior mass. The resulting (N, E)-matroid
constrained information projection of a densityp is simply
given by:

min
S%E

min
supp (q)%S

KL( q$p) (3)

A simple greedy algorithm on the enumeration of the ma-
troid as outlined in Algorithm 1 can be used for sup-
port selection under general matroid constraints. Note
that the greedy selection algorithm for the classic sparsity
case [Koyejo et al., 2014] is a special case of Algorithm 1
with a uniform matroid. For the more general matroid con-
straints, greedy selection on the enumeration admits slightly
weaker guarantees. Improved approximation guarantees
can be achieved by randomized algorithms [Calinescu et al.,
2011].

Theorem 2(Calinescu et al. [2011]). Algorithm 1 guaran-
tees a constant factor approximation of1/ 2 for (3).

Multi view sparsity. A special case of structured spar-
sity is the multi view sparsity. The base set of dimensions
are divided intov views/groups. Also given is a set of
maximum number of allowed selections from each view
{ k1, k2, . . . , kv } . In other words, no more thanki selec-
tions can be made from thei th view/group. It should be
straightforward to see that the multi view sparsity constraint
induces a partition matroid structure deÞned in Section 2,
and as such Algorithm 1 is applicable. Algorithm 1 can
be easily re-written for the partition sparsity constraint to
avoid exhaustive enumeration of the setE as Algorithm 2.
The 1/ 2 factor approximation guarantee carries over for
Algorithm 2. We shall see in the sequel that this particular
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algorithm leads to an efÞcient inference algorithm for sparse
probabilistic CMF.

Algorithm 1: GreedyMatroid(N, E)

1: Input: Matroid(N, E)
2: A 0 )
3: while N is not emptydo
4: s$ 0 arg maxs%N J (A ' { s} ) ! J (A)
5: if A ' { s$} " E then
6: A = A ' { s$}
7: end if
8: N = N ! { s$}
9: end while

10: Return A

Algorithm 2: GreedyMultiView(k1, k2, . . . , kv , m(á))

1: Input : N, Sparsities{ k1, k2, . . . , kv } , mapping
functionm : [d] & [v].

2: A 0 )
3: selected[i]=0,, i " [v]
4: while N is not emptydo
5: s$ 0 arg maxs%N J (A ' { s} ) ! J (A)
6: if selected[m(s$)] < k i then
7: A = A ' { s$}
8: selected[m(s$)] +=1
9: end if

10: N = N ! { s$}
11: end while
12: Return A

3.2 Group Sparsity Constraints

Group sparsity involves selecting variables fromr groups
subject to the constraint that if a group is selected, all
the variables within the group must be selected, but no
more thank variables can be selected in all. LetG =
{ G1, G2, . . . , Gr } represent the set ofr groups, so that
, i, Gi % [d] and , i -= j, Gi ( Gj = ) . As in the clas-
sic sparse case, information projection to the set of all group
sparse subsets of[d] is intractable in general. Instead, we
propose approximate inference by seeking the projection
to the set which maximizes the captured mass ofp. The
resulting group sparsity constrained information projection
of a densityp is given by:

min
S' [r ]

min
{ q | supp (q) '

!
i " S Gi ,

"
i " S |Gi |( k}

KL( q$p) (4)

Theorem 3. The group selection problem(4) is equivalent
to a normalized monotone submodular maximization prob-
lem with a knapsack constraint.

The proof is provided in the supplement. We present a
re-weighted greedy algorithm with partial enumeration in

Algorithm 3 to solve(4). The re-weighting is ensures that
the greedy step chooses the best possible myopic marginal
gain. However, with the re-weighting alone the approxima-
tion factor can be arbitrarily bad. To bound it to a constant
factor, partial enumeration is required. We also note that Al-
gorithm 3 isnot a special case of Algorithm 1, as it exploits
the special structure of group sparsity to construct a scheme
with improved optimization-theoretic guarantees. The fol-
lowing theorem establishes the optimization guarantee of
Algorithm 3.

Theorem 4(Sviridenko [2004]). Algorithm 3 withb = 3
guarantees a constant factor approximation of(1 ! 1

e ) for
(4).

Algorithm 3: GreedyPartialEnum (G, k, c(á))
1: Input: Set of groupsG, Total max sparsityk, parameter

b, cost functionc(á)
2: S1 0 arg maxs' G,|s|<b,c (s) ( k

÷J (s)
3: S2 0 )
4: for all s % G, |s| = b, c(s) # k do
5: S3 0 ReweightedGreedy(G, k ! b! 1, c(á), s)
6: if ÷J (S2) # ÷J (S3) then
7: S2 0 S3

8: end if
9: end for

10: Return arg max{ ÷J (S1), ÷J (S2)}

Algorithm 4: ReweightedGreedy (øG, øk,c(á), øS2)

1: Input: Set of groupsøG, Total max sparsityøk, cost
functionc(á), Init groupsøS2

2: A 0 øS2

3: while øG\ A -= ) do
4: s$ 0 maxs%øG\ A

J (A) s)& J (A)
c(s)

5: if c(A ' s$) # k then
6: A = A ' s$

7: end if
8: øG = øG! s$

9: end while
10: Return A

3.3 Other constraints

The submodular framework allows for constraints more
general than what are induced by matroids. Note that by
deÞnition matroids are restricted to have all maximal sets of
the same size. e.g. classic sparsity constraint (uniform ma-
troid) of support size being less than equal tok has maximal
size to bek. Thep-systemconstraints allow generalization
to constraint sets which do not have the same maximal sizes.
The integerp refers to the ratio of biggest and smallest
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maximal sets. The p-systems guarantee a1
p+1 approxima-

tion [Calinescu et al., 2011]. Matroids are special cases of
p-systems withp = 1 . Thus, greedy selection can be used
for other constraints, more complicated constraints, but with
weaker approximation guarantees.

4 Applications: Probabilistic Models with
Matroid Constrained Variables

While the class of probabilistic models that admit a repre-
sentation via matroid constraints is quite broad, we consider
special cases in detail (i) group sparse regression (ii) group
sparse principal components analysis, (iii) sparse collective
matrix factorization. The framework developed in Section 3
readily yields efÞcient greedy solutions for feature selection
for all three cases.

4.1 Group Sparse Linear Regression

Consider a generative model forn samples given by a linear
model and an additive Gaussian noise:y = Z! + !, , where
y " Rn is the response,Z " Rn " d is the feature matrix, and
! " Rd is the vector of regression weights. The weights
have an associated normal prior,! . N (0, C) for a known
C " Rd" d. The noise! is drawn from a Gaussian! .
N (0, " 2). The posterior distribution of# is also a Gaussian,
p(! |y ) . N (µ , ! ) and can be written in closed form by
standard Bayes theorem with! & 1 = C& 1 + 1

! 2 Z! Z, and,
µ = 1

! 2 !Z ! y .

Let G = { G1, G2, . . . , Gr } be the given set of groups so
that , i " [r ], Gi % [d], and, i -= j, Gi ( Gj = ) . The
optimization problem for sparse group selection is then
given by(4). For the spacial case wherep is Gaussian, the
information projection to any structured subset remains in
the Gaussian family [Koyejo and Ghosh, 2013]. Thus, the
search for q in(4) can be restricted to Gaussians. DeÞne
r = 1

! 2 Z! y . It is easy to show by expanding the KL
that(4) for group sparse linear regression is equivalent to
the submodular maximization problem:

max
{ S' [r ], S=

!
i " S Gi , |S|( k}

r !
s [! & 1]sr s! log det[! & 1]s. (5)

Once the supports is selected, the respective approximate
posteriorq$ can be obtained as the respective conditional
q$(x) = p(x|xSc = 0) .

4.2 Group Sparse Probabilistic Principal
Components Analysis

Probabilistic PCA aims to factorize a matrixT " Rn "

asT 1 xw ! , wherex " Rn is a deterministic vector,
and w " Rd is a random variable. For simplicity, we
only consider the rank 1 case i.e. wherex, w are vectors.
The general matrix case follows using standard deßation

techniques for multiple factors [Khanna et al., 2017], or by
a joint estimation procedure within using our framework
(details are in the supplement). The generative model for the
observed data matrix isT = xw ! + ! , where! . N (0, " 2).
We consider the case where the priorw . N (0, C), and in
addition,w is assumed be sparse. Let$ = { x, " } represent
the set of deterministic parameters.

The underlyingx, w may be estimated by maximizing the
log likelihood using Expectation Maximization (EM), which
optimizes forx andw in an alternating manner in the M-
step and the E-step respectively. The algorithm can be
interpreted as minimizingfree energycost function Neal
and Hinton [1998] given by:

F (q(w), $) = ! KL( q(w)$p(w|T ; $)) + log p(T ; $),

wherelogp(T ; $) is the marginal log-likelihood. The M-
step is a search over the parameter space, keeping the latent
random variablew Þxed. Similarly, the E-step is the search
over the space of distributionq of the latent variablesw,
keeping the parameters$ Þxed

M-step: max
"

F (q(w), $), E-step: max
q

F (q(w), $).

This view of the EM algorithm provides the ßexibility to de-
sign algorithms with any E and M steps that monotonically
increaseF . When the search space of q in the E-step is
unconstrained, E-step outputs the posterior p(w |T ; $). Con-
straining the search space of q leads to avariational E-step.
In this section, we consider a restriction which approximates
the combinatorial space of group sparse distributions using
the framework developed in Section 3.2.

We now derive the explicit equations to apply Algorithm 3.
The posterior p(w |T ; $) is Gaussian with p. N (µ , ! ),

where! & 1 = C& 1 + * x * 2
2

! 2 , andµ = 1
! 2 !T ! x . DeÞne

r := ! & 1µ . Expanding the KL divergence for information
projection from(4) yields that the support selection requires
the following submodular maximization problem:

max
{ S' [r ], S=

!
i " S Gi , |S|( k}

r !
s [! & 1]sr s ! log det[! & 1]s.

The resulting approximate posterior is given by the respec-
tive conditionalq$(w) = p(w|wSc = 0) (c.f. [Khanna
et al., 2015]). Detailed derivations are presented in the
supplement for the more general case of multiple factors.

4.3 Sparse Probabilistic Collective Matrix
Factorization (Sparse PCMF)

Collective Matrix Factorization [Singh and Gordon, 2008,
Klami et al., 2013a] is a multiview generalization of PCA. It
is typically used to learn joint low rank factorizations with
shared entities. The model is closely related to CCA [Witten
et al., 2009], and its probabilistic counterpart [Bach and
Jordan, 2005, Archambeau and Bach, 2008]. The models



Information Projection and Approximate Inference for Structured Sparse Variables

are often used interchangeably, though there is a subtle
difference. In their probabilistic counterparts CCA assumes
full covariance matrix across dimensions while the CMF
makes a simpler assumption of an isotropic Gaussian as
noise [Klami et al., 2013b]. Both the models are used for
studying cross relational effects. We chose to model sparse
CMF over sparse CCA to illustrate the application of our
framework under another matroidal constraint, namely the
partition matroid. We note that sparse probabilistic CCA is
within the purview of our framework, albeit it requires a bit
more complicated constraint set and algorithm.

We describe the setup for CMF next. Instead of observing
single view as ann 2 d matrix, or a singleview, multi-
ple views of the same entities are observed. Hence, we
observen samples of dimensionsd1, d2, . . . , dv as matri-
cesT 1, T 2, . . . , T v each of which are one of thev views
of the observed. The generative model assumes an un-
derlying parameterx " Rn shared among all the views,
and the random variables{ w i " Rdi , , i " [v]} . As in
Section 4.2, we note thatx, { w i } can be matrices in gen-
eral. To emphasize the proposed greedy information projec-
tion, we focus on modeling for the top-1 component. The
random variables are drawn from Gaussian distribution as
wi . N (0

ø
, C i ), i " [v], and each of the view is generated

asT i = xw i + ! , where the noise is! . N (0, " 2) For
our experiments,C i is set from domain knowledge (see
Section 5), and" 2 allows for additional isotropic variation
to capture residuals from the cross correlation. We wish
to infer sparsewi so that, i " [v], |supp(wi )| # ki for
the suppliedki . The parameters are optimized using an
EM algorithm. The variational E-step can be formulated to
honor the sparsity constraints on the random variables. We
next that show that the variational E-step solves a submodu-
lar maximization problem subject to a partition matroidal
constraint.

We now map the sparse PCMF problem to the par-
tition matroidal constrained optimization. LetT =
[T 1, T 2, . . . , T v ] be the matrix of sizen 2 (

#
i di ) con-

structed by stacking all the observed views column-wise.
Similarly, w = [ w1; w2; . . . ; wv ] be the vector obtained
by end-to-end concatenation of random variable vectors of
all views. DeÞneC " R(

"
i di ) " (

"
i di ) as the block diag-

onal matrix withCi as its block. The generative model of
PCMF can now be equivalently and succinctly encoded as
T = xw ! + ! wherew . N (0, C), and,! . N (0, " 2).
Further, the partition matroid is easy to construct with
N = [

#
i di ], andAi to to be the respective index set of

w i in w. Again, proceeding as in Section 4.2, the submodu-
lar maximization problem can be written as:

max
{ S%E, Matroid(N,E)}

r !
s [! & 1]sr s ! log det[! & 1]s.

Hence, Algorithm 1 or equivalently Algorithm 2 can be
used for sparse inference. We focus on sparse PCMF for
this manuscript. However, it should be easy to the see that

further extension to group sparse PCMF is straightforward
by modifying the constraining partition matroid appropri-
ately.

5 Experiments

We now present empirical results comparing the proposed
information projection based support selection technique to
state of the art baselines. We begin by experiments on simu-
lated data for group regression for model veriÞcation. We
then present experiments for 2 applications for real world
datasets, namely group sparse PCA, and sparse CMF. We
implement our method in Python using Numpy and Scipy
libraries. The greedy selection is parallelized by Message
Passing Interface usingmpi4py . We make use of Wood-
bury matrix inversion identity in the cost function to greedily
build up the cost function. This avoids taking explicit in-
verses.

5.1 Experiment: Simulated data

We compare the proposed approach for group sparsity spar-
sity against the sparse-group lasso [Simon et al., 2013] im-
plemented in the package SLEP [Liu et al., 2010] which
is used in practice as state of the art. We Þx the ambi-
ent dimension to bed = 1000. We generate an arbitrary
Þxed weight vector! " Rd with all but k = 20 dimen-
sions zeroed out, arbitrarily separated into 5 groups of 4
each. We sample from thed-variate normal distribution
with identity covariancen = 1000 times to get the feature
matrix X " Rn " d. Finally we obtain the response vector
y = X ! + ! , where! . N (0, " 2) with " 2 being set with
varying values of the Signal-to-Noise ratio (SNR) so that
SNR={ 10000, 1000, 100, 10, 1, 0.1} to generate 6 datasets.
Note that SNR< 1 implies variance of the noise is more
than that of the signal. We split the data50! 10! 40 into
training, validation and test sets. We compare performance
of GroupGreedyKL (group selection based on KL projec-
tion) and GroupLasso [Simon et al., 2013] on two metrics
- the AUC of the support recovered, andR2 on test data.
We use Bayes Factor to estimatek for GroupGreedyKL.
For GroupLasso, we do a parameter sweep to get the best
performing numbers. For each of the 6 different SNRs, data
is generated 10 different times randomly and the average
results are reported. The results are presented in Figure 1.
GroupGreedyKL performs consistently better than Grou-
pLasso, and degrades more gracefully as SNR decreases.

5.2 fMRI data

Neurovault data A key question in functional neuroimag-
ing is the extent to which task brain measurements incorpo-
rate distributed regions in the brain. One way to tackle this
hypothesis is to decompose a collection of task statistical
maps and examine the shared factors. Smith et al. [2009]
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Figure 1: Group Sparse Regression performance on simulated data.

considered a similar question using the brain map database
decomposed via ICA, showing correspondence between
task activation factors and resting state factors. Following
their approach, we downloaded 1669 fMRI task statistical
maps from neurovault [Gorgolewski et al., 2015]. Each
image in the collection represents a standardized statisti-
cal map of univariate brain voxel activation in response to
an experimental manipulation. The statistical maps were
downsampled from2mm3 voxels to3mm3 voxels using
the nilearn python package1. We then applied the standard
brain mask, removing voxels outsize of the grey matter, re-
sulting ind=65598 variables. We incorporate smoothness
via spatial precision matrixC& 1 on the prior onW which
is generated by using the adjacency matrix of the three di-
mensional brain image voxels. This directly corresponds
to the observation that nearby voxels tend to have similar
functional behavior.

While our greedy algorithm can easily scale to dimension-
ality of size 65598, the matlab implementation of the base-
line is not as scalable. We cluster the original set of di-
mensions tod = 10000 dimensions using the spatially con-
strained Ward hierarchical clustering approach of Michel
et al. [2012]. We further apply the same hierarchical clus-
tering to group the dimensions into 500 groups, with group
sizes ranging from 1 to 1500 with average group size close
to 20. We apply our information projection based Group
Sparse PCA algorithm (GroupPCAKL) developed in Sec-
tion 4.2. The group sparse constraint speciÞes that each
group can be either wholly included or completely discarded
from the model. Our algorithm adheres to this speciÞcation.
It is possible to have a soft version of the constraint which
allows for sparsity within each chosen group. This is typi-
cally imposed as a regularization trade-off between sparsity
across and within groups. We compare against the Struc-
tured Sparse PCA algorithm (GroupPCA) of Jenatton et al.
[2010], which is considered state of the art algorithm for
group sparse PCA. We report the ratio of variance explained

1http://nilearn.github.io/

by the topk-sparse eigenvector at different values ofk and
show superior performance of GroupPCAKL in Figure 2a.
The GroupPCAKL provides signiÞcant lifts (about times
the variance explained) over groupPCA consistently across
different sparsity levels.

Human Connectome ProjectAnother interesting question
that the neuroscientists are interested to address is about
the association of human brain function to human behavior.
The brain function and the human behavior can be thought
of as twoviewsof underlying latent traits. This intuition
suggests possible application of the cross correlation based
approaches (Section 4.3). We make use of the Human Con-
nectome Project data (HCP) [Essen et al., 2013] for this
purpose. It consists of large number of samples of high
quality brain imaging and behavioral information collected
from several healthy adults. We speciÞcally use two datasets
of different tasks - 2K (2 Back vs 0 Back contrast, measures
working memory), and REL-match (REL vs MATCH con-
trast, measures relational processing)2. We download and
extract brain statistical maps (a statistical map is a summary
of each voxel in the brain in response to externally applied
controlled stimulus) and respective behavioral variances
from 497 adult subjects. Each subject has 380 behavioral
variables, 27000 downsampled voxels. Further details on the
task are available in the HCP documentation [Essen et al.,
2013]. On the extracted maps, we perform the standard
preprocessing for motion correction, and image registration
to the MNI template for consistency of comparisons across
subjects. The resulting maps we downsampled in the similar
way as the Neurosynth data.

As before, to incorporate smoothness we use the spatial
correlation matrix as the prior on the factors of view of
statistical map. For the view of behavioral data, we use an
identity matrix as the respective prior covariance matrix. We
apply our Information Projection based Sparse CMF (Spar-
seCMFKL) approach and compare it against the Sparse

2https://wiki.humanconnectome.org/display/PublicData/
Task+fMRI+Contrasts
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(b) Cross-Correlation on n-back Human Connectome data

Figure 3: The Þrst factor from 2-back task. Neural support
is seen in a number of frontal and parietal regions and cere-
bellum, consistent with cognitive control systems usually
engaged by the task. Behavioral correlates including both
reaction time and accuracy on the task, showing greater
neural engagement associated with slower and less accurate
performance.

CCA algorithm developed by Witten et al. [2009] (pmd-
CCA) which is used in its original or slightly modiÞed form
as state of the art in many neuroscience and biomedical ap-
plications. For quantitative comparison, we use the n-back
task dataset to report the cross-variance explained which is
deÞned as follows. IfX , Y are the two views, andu, v are
the respective (possible sparse) factors, the cross-variance is
deÞned as : u # X # Yv

|u # Xu |1/ 2 |v # Yv |1/ 2 . Note that the normalization
ensures that the results are not driven by over estimating
the within-view variance. We present strong performance
of SparseCMFKL on the metric in Figure 2b. For lower
sparsity (around 60-sparse) we obtain gains of the order
of more than 4 times over pmdCCA. For higher sparsity
levels, the order of the gap decreases a bit, but SparseCM-
FKL maintains a much stronger performance. We also show
qualitative performance on the 2-back and relational task in
Figure 3, 4 respectively. We note that applying pmdCCA on
the same datasets yields inconsistent brainmaps.

6 Conclusion and Future Work

This manuscript proposes efÞcient algorithms for approxi-
mate inference via information projection that are applicable
to any structure on the set of variables which admits enumer-
ation using a matroid. The class of probabilistic models that

Figure 4: The Þrst factor from relational reasoning task.
Neural support is observed in frontal, parietal, and occipital
cortex. Behavioral correlates captured both performance on
this particular task, as well as independent measures related
to higher cognitive functions including working memory
capacity, vocabulary, and reading.

can be expressed in this way is quite broad. In particular, we
highlight the special cases of group sparse regression, group
sparse principal components analysis and sparse canonical
correlation analysis. We also presented empirical evidence
of strong performance compared to established baselines of
respective models on simulated and two real world fMRI
datasets. Our strong results motivates us to further study the
theoretical properties of the information projection frame-
work, including sparsistency and robustness.
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