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Abstract

Approximate inference via information projec-
tion has been recently introduced as a general-
purpose technique for efpcient probabilistic in-
ference given sparse variables. This manuscript
goes beyond classical sparsity by proposing ef-
bcient algorithms for approximate inference via
information projection that are applicable to any
structure on the set of variables that admits enu-
meration using matroid or knapsack constraints.
Further, leveraging recent advances in submodu-
lar optimization, we provide an efbcient greedy
algorithm with strong optimization-theoretic guar-
antees. The class of probabilistic models that
can be expressed in this way is quite broad and,
as we show, includes group sparse regression,
group sparse principal components analysis and
sparse collective matrix factorization, among oth-
ers. Empirical results on simulated data and high
dimensional neuroimaging data highlight the su-
perior performance of the information projection
approach as compared to established baselines for
a range of probabilistic models.
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A natural extension to the classical notion of sparsity is
structuredsparsity B where the sparse selection of variable
dimensions includes additional information. Some exam-
ples of structured sparsity includenoothnesfKoyejo et al.,
2014, Khanna et al., 2015], group sparsity [Witten et al.,
2009, Jenatton et al., 2010, Liu et al., 2010, Simon et al.,
2013], tree/graph sparsity [Hegde et al., 2015] and so on.
While there is a signibcant body of literature on classically
sparse probabilistic models, including [Archambeau and
Bach, 2009, Koyejo et al., 2014, Wipf and Nagarajan, 2007,
Sheikh et al., 2012, Khanna et al., 2015] probabilistic mod-
els for structured sparsity have been far less studied. Our
work seeks to bridge this gap for a large family of informa-
tion projection based techniques.

The information projection of a distribution to a constraint
set is given by the argument that minimizes the Kullback-
Leibler (KL) divergence while satisfying the constraints.
The use of information projection for probabilistic inference
with structured variables was recently proposed by Koyejo
et al. [2014]. While information projection is a general
approach, its application requires the design of efpcient
algorithms that are specibc to pre-stipulated structural con-
straints of interest. Koyejo et al. [2014] focused on the case
of sparsity, where the constraint structure is given by the
union of sparse supports. For this case, they proposed ap-
proximate inference by information projection to the support
that captures the largest probability mass. They showed that
the resulting KL minimization can be reduced to a combina-

Parsimonious Bayesian models are being increasingly usdgnal S”bmo‘?‘“'af optimize_ltion problem, and_ then applied a
for improving both robustness and generalization perford"€€dy algorithm for efbcient approximate inference. Sub-

mance in applications involve large amounts of data anF€duently, a similar mechanism was developed for sparse

variables. They are especially well-suited to incorporatingPfincipal components analysis (sparse PCA) [Khanna et al.,
domain knowledge by attuning the prior design to apriori2015]-

knowledge and constraints at hand. For instance, sparsitshis manuscript goes beyond sparsity by proposing efbcient
constraints and associated models have gained eminenggorithms for approximate inference via information pro-
in several Pelds where apriori knowledge corresponding tgection that are applicable to asjructured sparseariable
these constraints may be incorporated via the use of sparsiettings which admits enumeration usingatroid The
inducing priors. class of probabilistic models that can be expressed in this
way is quite broad, and as we show, includes group sparse
regression, group sparse principal components analysis and
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ple extension, but rather involves discovery of non-trivialdensityp(§ onto a constraint (measurable) &6 X is
connections between sparse probabilistic inference and didebned as:

crete submodular optimization. gg = argminKL( gq$p)
q%F

Specibcally, our main contributions are as follows: ) ) , N

Fs is closed and bounded for all cases of interest in this

¥ we present a framework for approximate inference viamanuscript, so thaj exists.
information projection for any constraint that can be _
enumerated as a matroid. Submoc_iular functions: Let f K p(d) & Rbea se_t fgnc—
¥ we present an efbcient scheme for this inference usin&on' f IS a:submodularfunctlon if for all setsx,y in its
a greedy algorithm. For general matroids, an approxid®mainf (x* y) + f(x( y) # f(x) + T(y). Furtherf

mation solution ofl/ 2 to the best possible approxima- S normalizedif f()) = 0. f is monotone if forx %y,
tion is guaranteed. However, for some special casel (¥ # f (y). Submodular functions are of special interest

such as cardinality constraints (classical sparsity), andecause greedy algorithm and its simple variants achieve

group sparsity, stronger guaranteed bfl/e are avail- provable approximation guarantees for several otherwise
able. NP-Hard combinatorial optimization problems [Nemhauser

¥ we show that the special cases of information projec€t @l 1978, Sviridenko, 2004, Calinescu et al., 2011].

tion under group sparsity and multi-view sparsity areMatroids: A matroid is a structuréN, E), whereN is the
submodular with knapsack constraint and partition maground setandE % p(N) is a family ofindependensets
troid constraints respectively. These constraints arg¢hat satispes: (iB * E,A % B =* A" E, and, (ii)
applied to develop new algorithms for group sparserea " E,B" E,|A| < |B] =* + x" B! AstA' x" E.
gression, sparse principal components analysis (PCAN uniform matroid hasE as the set of all possible and
and sparse collective matrix factorization (CMF). lesser sized subsets Nf and thus induces tHecardinality

Further, we present empirical results on simulated data anfinstraint. Apartition matroid partitionsN into subsets

real high dimensional neuroimaging data that highlight thet X1+ X2 - - -, Xr}, With E= {AJA %N, |A( Xi| # ki, i

performance of the information projection approach as coml I} for given{ky, kz, ... kr}.

pared to established baselines for a range of probabilistignapsack: A knapsack constraint also imposes a combi-

models. natorial structure b each candidate solutiok &s a set of
possible groups, each with an associated cost, such that the

. total cost of each candidate solutiorfiris less than or equal

2 Notation and Background to the knapsack value. A knapsack constraint in general is

not a matroid, unless all maximal groupings are of the same

We begin by outlining some notation. We represent vectorsize.

as small letter bolds e.gi. Matrices are represented by

capital bolds e.gX, T. Matrix transposes are represented2.1 Information Projection for Sparse Variables

by superscrip(a! . ldentity matrices of size are repre-

sented by s. 1(0) is a column vector of all ones (zeroes).A d dimensional variabl& is k-sparse if it is non-zero on
Thei™ row of a matrixM is indexed asvl; 5 while j at mostk dimensions. The support of the variablé RY
column isM4; . We usep(3, q(3 to represent probability 1S dePned asupp(x) := {i " [d]|x; = 0}. Similarly, ad
densities over random variables which may be scalar, vectofimensional probability densityis k-sparse if all random

or matrix valued which shall be clear from context. Setsvariables< . parek-sparse. LeA be the set of allfgror

are represented by sans serif fonts &gcomplement of ~ k-sparse support sets. The information projectiop ofito
asetSis S°. For avectou " RY, and a seS of support  Fa is equivalent to restriction g onto A [Koyejo et al.,
dimensions withS] = k,k # d, us" RX denotes subvec- 2014], which is a natural approach for constructing a sparse
tor of u supported or®. Similarly, for a matrixx " R"" 4, prior. Unfortunately, this information projection is gener-
Xs " RX' X denotes the submatrix supported 8nWe  ally intractable. Instead, Koyejo et al. [2014] propose the
denote{1,2,...,d} as[d]. Letp(d) be the power set dfi].  following approximation:

Relative Entropy: Let X be a measurable set, ap@ be min min KL( g$p). 1)
a probability density debPned ot Let Ex 4, [f] is the S A Q%Fs

expectation of the functiof with respect tg. The relative
entropy, or Kullback-Leibler (KL) divergence between the
densityq andp is given byKL( g$p) = E [logq! logp].
The relative entropy is jointly convex in both arguments.

This information projection searches for the subSet
that captures most of the mass pfas measured by
mingers KL(g$p). The inner optimization overFs
can be solved in closed form asingrs KL(q$p) =
Information Projection: Let Fg be the set of all densities ! logp(xss = 0). Debne the functiod : p(d) & R
supported o1 % X. The information projection of a base asJ(S) :=log p(xs = 0), and the functiod”: p(d) & R
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asJ(S) := J(S)! J()). The optimization problerfil)is  most accurate when the posterior mass is well captured by

equivalent to the optimal subse$® " A. The approximate posterior is
max J{(S) (2)  given by the information projection gfontoF s , and is in
ISIC k fact equivalent to the projection of the restricted posterior

Note that the cardinality constraint is a uniform matroid conPa ONtoFs . We refer the interested reader to [Koyejo etal.,
straint. While(2) is combinatorial, the following theorem 2014] for additional details.
ensures a good approximation by greedy support selection.

) . i i 3.1 General Structured Sparsity Constraints
Theorem 1 (Koyejo et al. [2014]) J(S) is normalized

monotone submodular. Structured sparsity extends classic sparsity constraints with
_ _ ) L additional information on the sparse subsets. For example,
Thus, a simple greedy algorithm achieveda ¢) approx-  the sparsity could be constrained by a tree structure so that

imate solution [Nemhauser et al., 1978]. selection of a parent node implicitly selects all its children as
well. The structural constraint can be encoded as a matroid
3 Approximate Inference via Information (N, E) whereN are the base set of dimensions, d&hikp-

resents the set of all possible candidate solutions under the
given constraint. General structured sparsity is challenging
to model using standard prior design techniques. Instead,
. . . o . one may consider Bayesian inference using the structured
In this section, we generalize the cardinality constrained, o gistribution recovered by restricting the base prior
information projection in two ways. First, we consider y, the ynion of all possible structured subsets. As in the
information projection subject tgroupsparsity, and Show  ¢|5ssic sparsity case, we consider an approximation of the
that the resulting combinatorial problem of selecting theggy,ting posterior based on the variable set which captures
most relevangroups is monotone submodular subject t0 &a maximum posterior mass. The resulting £)-matroid

knapsack constraint. Secondly, we consider general matroid,strained information projection of a dengitis simply
constraints for structured sparsity, and present an algorith(r]given by:

that greedily selects from the enumeration of the matroi
constraint. We consider the special case of partition matroid _ _
constraint where sets of variables are pre-groupediietos min _min _KL(q$p) (3)

. . . supp (a) %S
and seek to select variables subject to constraints on the
maximum number of V-a.riables selected from e.aCh view. W% Simp|e greedy a|gorithm on the enumeration of the ma-
leverage the research in submodular optimization to preseffojd as outlined in Algorithm 1 can be used for sup-
the respective variants of the greedy algorithm that provablyyort selection under general matroid constraints. Note
guarantee constant factor approximations. that the greedy selection algorithm for the classic sparsity

Approximate Inference: Let po be the prior distribution ~€aS€ [Koyejo etal., 2014] is a special case of Algorithm 1
and| be the likelihood, and leA represent a structured With @ uniform matroid. For the more general matroid con-
subset of the domain gf,. Restriction of the priopo to straints, greedy selection on the enumergtlon. admits slightly
the subse given bypao /' Po(X)1x wais an effective weaker guarantees. Improved approximation guarantees
approach for constructing a prior for the structured subset@n Pe achieved by randomized algorithms [Calinescu et al.,
A. Unfortuntely, this restriction is generally intractable. We 2011].

consider approximate inference by bximgs the posterior Theorem 2(Calinescu et al. [2011])Algorithm 1 guaran-
distributionp(X) / po(X)I(X). LetA = {S} be the set tees a constant factor approximationXf2 for (3).

of subsets satisfying the constraint structure. e.g. for clas-

sical sparse modeling witthvariables, egcls; " [d]isa  Multi view sparsity. A special case of structured spar-
k-sparse subset, adis the set of all suchg subsets. In  sity is the multi view sparsity. The base set of dimensions
this case, the information projection to a subSét Ais  are divided intov views/groups. Also given is a set of
designed to approximate Bayesian inference with respechaximum number of allowed selections from each view
to intractable restricted prior ga(X) / pao(X)(X).  {ki,kz,...,k¢}. In other words, no more thaq selec-
We note that just as in standard variational inference, théions can be made from tH& view/group. It should be
posterior projection can be implemented usgggandl(§  straightforward to see that the multi view sparsity constraint
without explicitly computing the unrestricted posterfpr induces a partition matroid structure debned in Section 2,
(useful when thep is itself intractable). The proposed ap- and as such Algorithm 1 is applicable. Algorithm 1 can
proach for approximate inference differs from standard apbe easily re-written for the partition sparsity constraint to
proaches such as mean Peld variational inference, as veoid exhaustive enumeration of the Eets Algorithm 2.
take advantage of the combinatorial nature of the desired@he 1/ 2 factor approximation guarantee carries over for
structure. As such, the proposed approximate inference islgorithm 2. We shall see in the sequel that this particular

Projection for Structured Sparse
Variables
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algorithm leads to an efbcient inference algorithm for sparsélgorithm 3 to solve(4). The re-weighting is ensures that
probabilistic CMF.

Algorithm 1: GreedyMatroid, E)

[EnY

: Input: Matroid(N, E)

the greedy step chooses the best possible myopic marginal
gain. However, with the re-weighting alone the approxima-
tion factor can be arbitrarily bad. To bound it to a constant
factor, partial enumeration is required. We also note that Al-
gorithm 3 isnot a special case of Algorithm 1, as it exploits

2: A0) . ‘

3: while N is not emptydo th't;:hs.peual st;uctlf[.re pf gt].roup:hsparstllty to cons:ruct aTichferlne
4. s¥0 argmaxemd(A'{ s})! J(A) with improved optimization-theoretic guarantees. The fol-
5. if A'{ " E then Iowmg theorem establishes the optimization guarantee of
6: A = A l{ S$} Algonthm 3

7:  endif Theorem 4 (Sviridenko [2004]) Algorithm 3 withb = 3

8 N=N!{ s% guarantees a constant factor approximation(bt ) for

9: end while (4).
10: Return A

Algorithm 3: GreedyPartialEnum@, k, c(§)
1: Input: Set of groupss, Total max sparsitk, parameter

Algorithm 2: GreedyMultiViewks, ks, ..., ky, m(3) b, cost functionc(3
1: Input: N, Sparsitied ki, ko, ..., ky} , mapping 2: $; 0 argmaxs g,|si<b.c (s)( k J(9)
functionm : [d] & [v]. 3: $0)
2: A0) 4: forall s%G,|9 = b,ds) # k do
3: selected[i]=0, i " [v] 5.  S30 ReweightedGreed@® k! b! 1,c(3,9)
4: while N is not emptydo 6: if J(S) # J(S3) then
5. s*0 argmaxsw J(A'{ s})! J(A) 7 S0 S3
6: if selectedn(s®)] <k; then 8 endif
7: A= A'{ s%} 9: end for
8: selectedin(s®)] +=1 10: Return arg max{ J(S,), J($)}
9: endif
100 N= N!{ s%}
11: end while
12: Return A

3.2 Group Sparsity Constraints

Algorithm 4: ReweightedGreedy&, R,c(3, %,)

1: Input: Set of group®, Total max sparsitf, cost
functionc(3, Init groups$,
A0 5

Group sparsity involves selecting variables fromroups

_ : _ : : while & A=) do
subject to the constraint that if a group is selected, all

gﬁ 0 MaXge A J(A) 9&JI(A)

2:
3
4:

. L c(s)
the variables w!thln the group must be.selected, Eut no 5 if (A" ) # kthen
more thank variables can be selected in all. L&t= o

6: A=A &
{G1,G,,...,G} represent the set af groups, so that +  endif
i, G %[dand,i = G ( G = ). Asinthe clas- 8: G- @81 &
sic sparse case, information projection to the set of all group o
L ; 9: end while
sparse subsets fd] is intractable in general. Instead, we 10- Return A

propose approximate inference by seeking the projection
to the set which maximizes the captured masp.of he
resulting group sparsity constrained information projection
of a densityp is given by:

3.3 Other constraints

min min .

! KL(ag$p) (4)
S I'l{alsupp (@)’ " ;. sGi. ;~slGil( k}

The submodular framework allows for constraints more
general than what are induced by matroids. Note that by

Theorem 3. The group selection problefd) is equivalent ~ dePnition matroids are restricted to have all maximal sets of

to a normalized monotone submodular maximization probthe same size. e.g. classic sparsity constraint (uniform ma-
lem with a knapsack constraint. troid) of support size being less than equak ieas maximal

size to bek. Thep-systentonstraints allow generalization
The proof is provided in the supplement. We present do constraint sets which do not have the same maximal sizes.
re-weighted greedy algorithm with partial enumeration inThe integerp refers to the ratio of biggest and smallest
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maximal sets. The p-systems guarant%éiaapproxima— techniques for multiple factors [Khanna et al., 2017], or by
tion [Calinescu et al., 2011]. Matroids are special cases o0& joint estimation procedure within using our framework
p-systems witlp = 1. Thus, greedy selection can be used(details are in the supplement). The generative model for the
for other constraints, more complicated constraints, but witrobserved data matrix & = xw' + !, where! . N (0,"?).
weaker approximation guarantees. We consider the case where the prior. N (0, C), and in
addition,w is assumed be sparse. 1%t {x,"} represent

4 Applications: Probabilistic Models with the set of deterministic parameters.

Matroid Constrained Variables The underlyings, w may be estimated by maximizing the
log likelihood using Expectation Maximization (EM), which

While the class of probabilistic models that admit a repre©Ptimizes forx andw in an alternating manner in the M-
sentation via matroid constraints is quite broad, we considefteP and the E-step respectively. The algorithm can be
special cases in detail (i) group sparse regression (ii) grouptterpreted as minimizingree energycost function Neal
sparse principal components analysis, (iii) sparse collectivénd Hinton [1998] given by:
matrix factorization. The framework developed in Section 3 — ) )
readily yields efpcient greedy solutions for feature selection F(g(w), $) = ! KL(q(w)3p(w[T;$)) +log p(T:$),

for all three cases. wherelogp(T ; $) is the marginal log-likelihood. The M-
step is a search over the parameter space, keeping the latent
4.1 Group Sparse Linear Regression random variablev bxed. Similarly, the E-step is the search

over the space of distribution of the latent variablegv,
Consider a generative model forsamples given by a linear keeping the parametegsbxed
model and an additive Gaussian noige= Z! + !,, where
y" R"istheresponsg " R"" 4is the feature matrix,and ~ M-step: maxF (q(w),$), E-step:maxF (q(w),$).
I " RY s the vector of regression weights. The weights a
have an associated normal pribr, N (0, C) for aknown  This view of the EM algorithm provides the Rexibility to de-
C " RY¥ 9, The noisé is drawn from a Gaussian . sign algorithms with any E and M steps that monotonically
N (0," 2). The posterior distribution ¢f is also a Gaussian, increaseF . When the search space of q in the E-step is
p(! ly) . N (p,! ) and can be written in closed form by unconstrained, E-step outputs the posteriar|3(; $). Con-
standard Bayes theorem with** = C&1 + L.Z' Z, and, straining the search space of q leads t@gational E-step
M= !%!Z Yy. In this section, we consider a restriction which approximates
the combinatorial space of group sparse distributions using

LetG = {G1, G, .., G} be the given set of groups so the framework developed in Section 3.2.

that,i " [r],G %[d], and,i = |, G ( G = ). The
optimization problem for sparse group selection is thenNe now derive the explicit equations to apply Algorithm 3.
given by(4). For the spacial case whepés Gaussian, the The posterior p¢|T ; $) is Gaussian with p N (u,! ),

information projection to any structured subset remains ifyherel &1 = c&1 + X2 andu = 1T ! x. Debne
the Gaussian family [Koyejo and Ghosh, 2013]. Thus, ther - &1 :

search for q in4) can be restricted to Gaussians. Deprleprojection from(4) yields that the support selection requires

— 17! ; .
r=Zy. Itis easy FO show by e.xpa.ndlng.the KL the following submodular maximization problem:
that(4) for group sparse linear regression is equivalent to

the submodular maximization problem: max r!s [l 41srs! logdet] &%
{s Irl.s=" . sG.ISI( k}

M. Expanding'the KL divergence for information

! &1 &1
ax re ! rs! logdet|! . 6
{s Ir]. s= 'm," sGi ISIC k} s | Jers! log det “e- () The resulting approximate posterior is given by the respec-

tive conditionalg®(w) = p(w|ws = 0) (c.f. [Khanna
Once the suppoxis selected, the respective approximateet al., 2015]). Detailed derivations are presented in the
posteriorg® can be obtained as the respective conditionakupplement for the more general case of multiple factors.
g*(x) = p(x|xs: = 0).

4.3 Sparse Probabilistic Collective Matrix
4.2 Group Sparse Probabilistic Principal Factorization (Sparse PCMF)

Components Analysis
Collective Matrix Factorization [Singh and Gordon, 2008,

Probabilistic PCA aims to factorize a matrix " R" Klami et al., 2013a] is a multiview generalization of PCA. It
asT 1 xw', wherex " R" is a deterministic vector, is typically used to learn joint low rank factorizations with
andw " RY is a random variable. For simplicity, we shared entities. The model is closely related to CCA [Witten
only consider the rank 1 case i.e. wherev are vectors. et al., 2009], and its probabilistic counterpart [Bach and
The general matrix case follows using standard del3atiodordan, 2005, Archambeau and Bach, 2008]. The models
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are often used interchangeably, though there is a subtleirther extension to group sparse PCMF is straightforward
difference. In their probabilistic counterparts CCA assumedy modifying the constraining partition matroid appropri-
full covariance matrix across dimensions while the CMFately.

makes a simpler assumption of an isotropic Gaussian as
noise [Klami et al., 2013b]. Both the models are used for5
studying cross relational effects. We chose to model sparse
CMF over sparse CCA to illustrate the application of our

framework under another matroidal constraint, namely th//& Now present empirical results comparing the proposed
partition matroid. We note that sparse probabilistic CCA jsinformation projection based support selection technique to

within the purview of our framework, albeit it requires a bit State Of the art baselines. We begin by experiments on simu-
more complicated constraint set and algorithm lated data for group regression for model veribcation. We

then present experiments for 2 applications for real world
We describe the setup for CMF next. Instead of observingiatasets, namely group sparse PCA, and sparse CMF. We

Experiments

single view as am 2 d matrix, or a singleview, multi-  jmplement our method in Python using Numpy and Scipy
ple views of the same entities are observed. Hence, Wgbraries. The greedy selection is parallelized by Message
observen samples of dimensiorth, dz, ..., dy as matri-  Passing Interface usingpi4py . We make use of Wood-
cesTy,Ta,..., Ty each of which are one of theviews  pury matrix inversion identity in the cost function to greedily

of the observed. The generative model assumes an upuild up the cost function. This avoids taking explicit in-
derlying parametex " R" shared among all the views, verses.

and the random variablgsv; " R%,,i " [v]}. Asin

Section 4.2, we note that, {w;} can be matrices in gen- 51 Experiment: Simulated data

eral. To emphasize the proposed greedy information projec-

tion, we focus on modeling for the top-1 component. Theye compare the proposed approach for group sparsity spar-
random variables are drawn from Gaussian distribution agjty against the sparse-group lasso [Simon et al., 2013] im-
wi .N (0,Ci),i" [v], and each of the view is Igzenerated plemented in the package SLEP [Liu et al., 2010] which
asT; = Xw; + !, where the noise is . N (0,") For s ysed in practice as state of the art. We bx the ambi-
our experimentsC; is set from domain knowledge (see ent dimension to bel = 1000. We generate an arbitrary
Section 5), and 2 allows for additional isotropic variation pyeq weight vectot " RY with all butk = 20 dimen-

to capture residuals from .th"e cross correlation. We wishsions zeroed out, arbitrarily separated into 5 groups of 4
to infer sparsaw; so that, i " [V], |[supwi)| # ki for  each. We sample from trdvariate normal distribution

the supplieck;. The parameters are optimized using anyith jdentity covariance = 1000 times to get the feature
EM algorithm. The variational E-step can be formulated toatrix X " R"" @, Finally we obtain the response vector

honor the sparsity constraints on the random variables. Wg = x| + 1 where! . N (0," 2) with " 2 being set with

next that show that the variational E-step solves a submodyrying values of the Signal-to-Noise ratio (SNR) so that
lar maximization problem subject to a partition matroidal SNR<{ 10000 1000 100, 10, 1, 0.1} to generate 6 datasets.
constraint. Note that SNR< 1 implies variance of the noise is more
We now map the sparse PCMF prob|em to the partha.n that of the Signal. We Spllt the d&@! 10! 40into
tition matroidal constrained optimization,, L& =  training, validation and test sets. We compare performance
[T1,T2,...,Ty] be the matrix of sizam 2 (* ; d;) con- qf GroupGreedyKL (group selection based on KL projt_ac—
structed by stacking all the observed views column-wisgion) and GroupLasso [Simon et al., 2013] on two metrics
Similarly, w = [w1;W5;...;w,] be the vector obtained - the AUC of the support recovered, aRd on test data.

by end-to-end concatenation of.random variable vectors of/e use Bayes Factor to estimatdor GroupGreedyKL.

all views. DebneC " R( 19)" (1) gs the block diag- For GroupLasso, we do a parameter sweep to get the best
onal matrix withC; as its block. The generative model of Performing numbers. For each of the 6 different SNRs, data
PCMF can now be equivalently and succinctly encoded a¥ 9enerated 10 different times randomly and the average
T = xw'! + ! wherew . N (0,C), and,! . N (0,"2). results are reported. The results are presented in Figure 1.
Furthey, the partition matroid is easy to construct withGroupGreedyKL performs consistently better than Grou-
N =[ ,dl andA; to to be the respective index set of pLasso, and degrades more gracefully as SNR decreases.
w; in w. Again, proceeding as in Section 4.2, the submodu-

lar maximization problem can be written as: 5.2 fMRI data

rg [ #'rs! logdetl 4. Neurovault data A key question in functional neuroimag-
ing is the extent to which task brain measurements incorpo-
Hence, Algorithm 1 or equivalently Algorithm 2 can be rate distributed regions in the brain. One way to tackle this
used for sparse inference. We focus on sparse PCMF fdrypothesis is to decompose a collection of task statistical
this manuscript. However, it should be easy to the see thahaps and examine the shared factors. Smith et al. [2009]

max
{ S%E, Matroid(N,E)}
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u a
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¢ 4 GroupGreedyKL| ’ ) B, » N
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i "—.‘4
B ool = m Grouplasso
2 ¢ <9 GroupGreedyKL|

10000 1000 100 10 1 0.1
615 SNR

(a) R? performance on test data (b) Recovery of true support

Figure 1: Group Sparse Regression performance on simulated data.

considered a similar question using the brain map databadsy the topk-sparse eigenvector at different valuekatnd
decomposed via ICA, showing correspondence betweeshow superior performance of GroupPCAKL in Figure 2a.
task activation factors and resting state factors. Followingrhe GroupPCAKL provides signibcant lifts (about times
their approach, we downloaded 1669 fMRI task statisticathe variance explained) over groupPCA consistently across
maps from neurovault [Gorgolewski et al., 2015]. Eachdifferent sparsity levels.

image in the collection represents a standardized statistii_i . . . .
S . A uman Connectome ProjectAnother interesting question
cal map of univariate brain voxel activation in response to

an experimental manioulation. The statistical maps werthat the neuroscientists are interested to address is about
b b 3 ' 3 P: $he association of human brain function to human behavior.
downsampled fron2mm* voxels to3mm* voxels using

the nilearn python packagewe then applied the standard The brain fpnctlon and th? human behgwor can .be t_h_ought
. ; . of as twoviewsof underlying latent traits. This intuition
brain mask, removing voxels outsize of the grey matter, re- . C o .
Lo . : suggests possible application of the cross correlation based
sulting ind=65598 variables. We incorporate smoothness :
. . g el ; . approaches (Section 4.3). We make use of the Human Con-
via spatial precision matri¢ >~ on the prior onV- which ) .
. . . . nectome Project data (HCP) [Essen et al., 2013] for this
is generated by using the adjacency matrix of the three di- . .
urpose. It consists of large number of samples of high

mensional brain image voxels. This directly correspondé) . . . . i )
to the observation that nearby voxels tend to have simil quality brain imaging and behavioral information collected

functional behavior %om several healthy adults. We specibcally use two datasets
' of different tasks - 2K (2 Back vs 0 Back contrast, measures
While our greedy algorithm can easily scale to dimensionworking memory), and REL-match (REL vs MATCH con-
ality of size 65598, the matlab implementation of the basetrast, measures relational processingye download and
line is not as scalable. We cluster the original set of diextract brain statistical maps (a statistical map is a summary
mensions ta = 10000 dimensions using the spatially con-of each voxel in the brain in response to externally applied
strained Ward hierarchical clustering approach of Michelcontrolled stimulus) and respective behavioral variances
et al. [2012]. We further apply the same hierarchical clusfrom 497 adult subjects. Each subject has 380 behavioral
tering to group the dimensions into 500 groups, with groupvariables, 27000 downsampled voxels. Further details on the
sizes ranging from 1 to 1500 with average group size clos¢ask are available in the HCP documentation [Essen et al.,
to 20. We apply our information projection based Group2013]. On the extracted maps, we perform the standard
Sparse PCA algorithm (GroupPCAKL) developed in Secpreprocessing for motion correction, and image registration
tion 4.2. The group sparse constraint specibes that eath the MNI template for consistency of comparisons across
group can be either wholly included or completely discardedsubjects. The resulting maps we downsampled in the similar
from the model. Our algorithm adheres to this specibcatiorway as the Neurosynth data.
It is possible to have a soft version of the constraint which . .
L o . As before, to incorporate smoothness we use the spatial
allows for sparsity within each chosen group. This is typi- : : : .
; o .. correlation matrix as the prior on the factors of view of
cally imposed as a regularization trade-off between sparsng - . i
L : tatistical map. For the view of behavioral data, we use an
across and within groups. We compare against the Struc

tured Sparse PCA algorithm (GroupPCA) of Jenatton et a[,genlt't}(;::?;rggrﬁ;:;g;fr%?g%gnpEgrsgzvgr'g:‘;: gﬁt;'?'s\/\g_
[2010], which is considered state of the art algorithm for PPl ) P b

group sparse PCA. We report the ratio of variance explaine&eCMFKL) approach and compare it against the Sparse

- 2https://wiki.humanconnectome.org/display/PublicData/
http://nilearn.github.io/ Task+fMRI+Contrasts
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Figure 3: The brst factor from 2-back task. Neural support_ _ . .
is seen in a number of frontal and parietal regions and cerd-'9ureé 4: The prst factor from relational reasoning task.

bellum, consistent with cognitive control systems usuallyNeural suppor.t Is observed in frontal, parietal, and occipital
engaged by the task. Behavioral correlates including botfgortex. Behavioral correlates captured both performance on
reaction time and accuracy on the task, showing greatépis particular task, as well as independent measures related

neural engagement associated with slower and less accurdf higher cognitive functions including working memory
performance. capacity, vocabulary, and reading.

CCA algorithm developed by Witten et al. [2009] (pmd- €an be expressed_in this way is quite broad. In parti_cular, we
CCA) which is used in its original or slightly modiped form Nighlight the special cases of group sparse regression, group

as state of the art in many neuroscience and biomedical apParse principal components analysis and sparse canonical
plications. For quantitative comparison, we use the n-backerelation analysis. We also presented empirical evidence
task dataset to report the cross-variance explained which & Strong performance compared to established baselines of
debned as follows. I, Y are the two views, and,v are  'espective models on simulated and two real world fMRI
the respective (possible sparse) factors, the cross-varianceggtasets. Our strong results motivates us to further study the
debned asl' u® X* vy Note that the normalization theoretical properties of the information projection frame-

Gf Xu [72|v¥ vy V2 ) .. work, including sparsistency and robustness.
ensures that the results are not driven by over estimating

the within-view variance. We present strong performance

of SparseCMFKL on the metric in Figure 2b. For lower ACknowledgement

sparsity (around 60-sparse) we obtain gains of the order

of more than 4 times over pmdCCA. For higher sparsityThis work was supported by NSF grant [1S-1421729. fMRI
levels, the order of the gap decreases a bit, but SparseCMata was provided by the Consortium for Neuropsychi-
FKL maintains a much stronger performance. We also shovatric Phenomics (NIH Roadmap for Medical Research
qualitative performance on the 2-back and relational task irgrants UL1-DE019580, RL1IMH083269, RL1DA024853,
Figure 3, 4 respectively. We note that applying pmdCCA onPL1MH083271).

the same datasets yields inconsistent brainmaps.
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