
Supplementary Material for
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large

Datasets

A Entropy Search

A.1 Approximations used

Given p(f), the probability that a point is the minimum is
defined with suggestive notation as

pmin(x|D) = p(x = arg min
x′∈X

f(x′)|D)

=

∫
p(f |D)

∏
x̃∈[a,b]
x̃ 6=x

Θ[f(x̃)− f(x)] df (1)

where Θ is the Heaviside’s step function. The product in
this equation is over an infinite domain (yet well-defined
if p(f |D) is sufficiently regular). In practice, it has to be
represented in a finite form. We follow the approach of
Hennig and Schuler (2012), who approximate p(f |D) by a
finite-dimensional Gaussian over an irregular grid of points
r1, ..., rZ , which are designed heuristically to provide good
interpolation resolution on pmin. Like Hennig and Schuler
(2012), we sample these so called representer points using
Expected Improvement. This step reduces pmin to a dis-
crete distribution, and turns the infinite product in Equation
1 into a finite one. That distribution itself is still analyti-
cally intractable, but an analytically tractable (in particular,
differentiable) approximation qmin(rj) of good empirical
quality can be computed using Expectation Propagation
(EP) (Minka, 2001), at computational cost in O(Z4). EP
does not only yield pmin, but also the gradient with respect to
means and covariances of the model at the representer points
allowing efficient computations after an expensive initial
calculation of these quantities. This particular application
of EP to Gaussian integrals was introduced by Cunningham
et al. (2012) where all the details can be found.

A.2 Pseudocode

Algorithm 1 provides pseudocode for our implementation
of Entropy Search. Lines 1-12 precompute various quanti-
ties that are needed for evaluating the acquisition function,
which is optimized in line 13. Specifically, after sampling
K hyperparameter settings from the marginal loglikelihood

for the GP using MCMC (line 1), for every hyperparameter
setting θi, the algorithm

• fits a GP (line 4),

• samples representer points with respect to aEI (line 5),

• stores the representer points and their logarithmic EI
values (lines 6 and 7),

• computes µ and Σ for the joint predictive distribution
at the representer points (line 8),

• computes pmin given µ and Σ, using EPMGP (line 9),

• draws random points from a normal distribution cen-
tered at 0 and unit variance (line 10) for the innovation
in Algorithm 3, and stores them (line 11) for later us-
age.

Algorithm 1 Selection of next point by Entropy Search
Require: Dn = (xj , yj)j=1...n

1: Sample K instantiations of the GP hyperparameters
Θ = [θ1, . . . ,θK] w.r.t. marginal likelihood

2: pmin ← [],Ω← [],R← [],U ← []
3: for i = 1 . . .K do
4: Fit GP modelM(i) on Dn with hyperparameter θi
5: (r1, aEI(r1)) . . . , (rZ , aEI(rZ)) ∼ aEI(x|M(i))
. Sample Z representer points

6: R[i]← r1, . . . , rZ . Store representer points
R ∈ RK×Z×D

7: U [i]← aEI(r1), . . . , aEI(rZ) . Store LogEI
values of the representer points U ∈ RK×Z

8: Let µ,Σ be the mean and covariance matrix at
r1, . . . , rZ based onM(i)

9: pmin[i]← computePmin (µ,Σ) . Probability of
each r1, . . . , rZ to be the minimum.

10: For p = 1, . . . , P : ωp ∼ N (0, IZ) . Stochastic
change to hallucinate P values at representer points

11: Ω[i]← [ω1, . . . ,ωP] . Store stochastic change for
the innovations Ω ∈ RK×Z×P

12: end for
13: xn+1 ← arg maxx∈X

InformationGain(x,Dn,R,U ,Ω,Θ)
14: return xn+1

Manuscript under review by AISTATS 2017

Given these quantities, Algorithm 2 then computes the ES
acquisition function from Equation (3) in the main paper
(repeated here for convenience):

aES(x) : = Ep(y|x,D)

[∫
pmin(x′ | D ∪ {(x, y)})·

log
pmin(x′ | D ∪ {(x, y)})

u(x′)
dx′
]
.

For each hyperparameter θi of the GP, it then carries out the
following steps:

• train a modelM(i) on the data D by computing the
Cholesky decomposition (line 3)

• based on this modelM(i), compute the mean and the
variance for the test point x and the mean and covari-
ance for the representer points r1, . . . , rZ (line 4 and
5)

• For each of the P stochastic change vectors ωp sam-
pled in Algorithm 1 (line 10) and stored in Ω[i, j, :],

– fantasize the change ∆µ,∆Σ of the current pos-
terior p(f |D) (line 7) with Algorithm 3

– estimate the pmin distribution of this updated pos-
terior (line 8)

– compute the relative change in entropy (line 9)

• take the expectation over p(y|x, D) of Equation (3)
(line 10)

• marginalize the acquisition function aES(x) over all
hyperparameters Θ (line 13)

Algorithm 2 InformationGain
Require: x,D,R,U ,Ω,Θ

1: a(x)← 0
2: for i = 1, . . .K do . Marginalization over Θ
3: LetM(i) be the trained model on D with hyperpa-

rameters θi
4: Let µ, σ2 be the predictive mean and variance at x

based onM(i)

5: Let µ,Σ be the mean and covariance matrix at
r1, . . . , rZ based onM(i)

6: for j = 0, . . . P do. Averages over all hallucinated
values.

7: ∆µ,∆Σ ← Innovations(x,M(i),R[i, :, :
], σ2,Ω[i, j, :]) . Change in the posterior believe at
r1, . . . , rZ if we would evaluate at x

8: qmin ← computePmin (µ+ ∆µ,Σ + ∆Σ) .
New Pmin of the updated posterior

9: dH ← −
∑
j qmin

(
log(qmin) + U [i]

)
+∑

j pmin[i]
(

log(pmin[i]) +U [i]
)

10: a(x)← a(x) + 1
P dH

11: end for
12: end for
13: return 1

K a(x)

This algorithm in turns makes use of Algorithm 3 to compute
the innovations, which

• computes the change in the mean ∆µ by first comput-
ing the correlation Σ(x, r) of x and the representer
points r1, . . . , rZ and multiplying it with the Cholesky
decomposition of the k(x,x) and the vector ω ∈ Ω.
Note that this change is stochastic (line 1).

• computes the change of the covariance (line 2) which
is deterministic

Algorithm 3 Innovations
Require: x,M, r1, . . . , rZ , σ

2,ω
1: ∆µ(x) = Σ(x, r) ∗ σ2 ∗ C[σ2 + σ2

noise]ω . Σ(x,x′)
denotes the correlation between x and x′ based onM

2: ∆Σ(x) = Σ(x, r) ∗ σ2 ∗ Σ(x, r)T

3: return ∆µ(x),∆Σ(x)

B Scaling of Loss and Computational Cost
With Dataset Size

The runtime of machine learning algorithms usually scales
polynomially with the number of data points (Nsub), i.e.
O(Nα

sub) for some positive α. While the computational
cost of training grows, the loss of machine learning meth-
ods usually decreases with the number of training samples.
The computational cost is often largely independent of the
hyperparameter values, but the loss depends crucially on
the hyperparameter values (which is the reason we want to
optimize hyperparameters in the first place).

We invested these trends using our 20 × 20 grid of SVM
configurations for MNIST described in the main text. Figure
1 shows these trends for ten random configurations, evalu-
ated on subsets of different sizes. We note that, as training
size increases, the loss of many configurations decreases,
but the relative ordering does not change dramatically, such
that training on few data points provides information about
the full data set. The training time behaves similarly across
different configurations. Please note that the complexity of
the underlying SVM is not trivial, which is why the curves
are not straight lines.

To show that our method, i.e. the kernel we use and our
initial design, actually capture these trends, we sampled
points from that data as our initial design and predicted loss
and cost of unseen configurations, see Figure 2. The cost
model already quite accurately captures the growth trends
based on this small amount of initial data. The loss model
predicts worse (especially for configurations very different
from the ones in the initial design), but it also reflects that
errors decrease with increasing data set size.

Manuscript under review by AISTATS 2017

Figure 1: Validation error (left) and training time (left) for ten
random configurations training a SVM on the MNIST dataset. For
all costs, the cost increases with s whereas the validation error
decreases or stays constant.

C Modeling the Heteroscedastic Noise

When making the subset size a parameter, we shuffle the
data before an evaluation to prevent bias incurred by re-
peatedly using the same subset. This shuffling introduces
additional noise which could be particularly high for small
subsets. To investigate this, we again used the SVM grid of
400 configurations from the main paper. We repeated each
run with a given subset size K = 10 times using different
subsets, and estimate the observation noise variance at each
point as:

σ2
obs(xj , si) =

1

K

K∑
k=1

(yk(xj , si)− µi,j)2 , (2)

where µi,j = K−1
∑K
k=1 yk(xj , si). The red points in Fig-

ure 3 show the mean and standard deviation of σ2
obs(xj , si)

over all configurations for all si values considered. As ex-
pected, the noise decreases with an increasing s, to a point
where σ2

obs is zero for s = 1.

In contrast to this heteroscedastic noise intrinsic to the ran-
dom subsampling, the commonly used noise hyperparameter
σ2 of a GP (call it σ2

GP) is fixed and typically estimated us-

Figure 2: Model (solid line) of the objective function and
the cost function (dashed) after the initial design (2 configu-
rations evaluated on N/16,N/32,N/64,N/128,N/256,N/512.

ing MCMC sampling. To compare these two noise values,
for each fixed size s, we also trained a GP to predict losses
and plotted its estimates σ2

GP as blue markers in Figure 3.
To obtain a good estimate of the GP’s hyperparameters, we
used a relatively long MCMC chain compared to the ones
used during Bayesian optimization. Figure 3 clearly shows
that the estimated variance σ2

GP is always larger than the
observation noise σ2

obs. This might indicate a certain misfit
between the true objective and the space of functions the GP
can model (Sollich, 2002). Consequently, we believe the
heteroscedastic noise from subsampling the data to often be
negligible compared to the noise estimated by the MCMC
sampling.

Nonetheless, we model the noise decreasing in s by an
additive kernel Knoise = diag(ri) with ri = αsβi for each
data point (xi, si). This adds a heteroscedastic noise to the
Gram matrix of our kernel kf for our objective function, and
we treat α and β as additional hyperparameters. These are
marginalized together with the other GP’s hyperparameter
by sampling from the marginal loglikelihood (see Section
3.4 in the main paper for details). Figure 4 shows sample
functions of this kernel for different α and β sampled from

Manuscript under review by AISTATS 2017

Figure 3: Evaluating a configurations on a shuffled subset of the
data induces an additional noise, σ2

obs that depends on the dataset
size s. The noise parameter σ2

GP estimated by MCMC sampling
for fixed dataset sizes.

Figure 4: Sample functions of our heteroscedastic noise kernel
for different values for its hyperparameters α and β.

their respective priors:

α ∼ logN (−3, 1) β ∼ logN (3, 1) . (3)

These are not very strong priors, but they still enforce the
MCMC sampler to choose configurations similar to those
shown in Figure 4, which resemble the ones in Figure 3. We
performed preliminary Bayesian optimization experiments
with this kernel, but these did not lead to an additional
improvement. Thus we did not use them in our production
experiments in order to reduce our model’s total number of
hyperparameters.

D Optimization ranges for Bayesian
optimization experiments

Table 1 shows the ranges of the 2 hyperparameters we opti-
mized in our SVM experiments, Table 2 the ranges of the

5 convolutional neural network hyperparameters we opti-
mized, and Table 3 the ranges of the 4 deep residual network
hyperparameters we optimized.

Table 1: Hyperparameters for all support vector machine
tasks.

Hyperparameter lower bound upper bound log

Regularization C e−10 e10 X
Kernel parameter γ e−10 e10 X

Table 2: Hyperparameters for the convolutional neural net-
work task.

Hyperparameter lower bound upper bound log

Initial learning rate 10−6 100 X
Batch size 32 512
units layer 1 24 29 X
units layer 2 24 29 X
units layer 3 24 29 X

Table 3: Hyperparameters for the deep residual network
task.

Hyperparameter lower bound upper bound log

Learning rate 10−6 1 X
L2 regularization 10−6 1 X
Learning rate factor 10−4 1 X
Momentum 0.1 0.999

References
P. Hennig and C. Schuler. Entropy search for information-efficient

global optimization. JMLR, (1), 2012.
Thomas P. Minka. Expectation propagation for approximate

bayesian inference. In Proc. of UAI’01, UAI ’01, San Fran-
cisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

J. Cunningham, P. Hennig, and S. Lacoste-Julien. Approximate
gaussian integration using expectation propagation. pages 1–11,
January 2012.

Peter Sollich. Gaussian process regression with mismatched mod-
els. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems 14. MIT
Press, 2002.

	Entropy Search
	Approximations used
	Pseudocode

	Scaling of Loss and Computational Cost With Dataset Size
	Modeling the Heteroscedastic Noise
	Optimization ranges for Bayesian optimization experiments

