Supplementary material for
 A Learning Theory of Ranking Aggregation

A Optimality

A.0. 1 Proof of Remark 6

Suppose P satisfies the strongly stochastically transitive condition. According to Theorem 5, there exists $\sigma^{*} \in \mathfrak{S}_{n}$ satisfying (9) and (11). We already know that σ^{*} is a Kemeny consensus since it minimizes the loss with respect to the Kendall's τ distance. Then, Copeland's method order the items by the number of their pairwise victories, which corresponds to sort them according to the mapping s^{*} and thus σ^{*} is a Copeland consensus. Finally, the Borda score for an item is: $s(i)=\sum_{\sigma \in \mathfrak{S}_{n}} \sigma(i) P(\sigma)$. Firstly observe that for any $\sigma \in \mathfrak{S}_{n}$,

$$
\begin{equation*}
\sum_{k \neq i} \mathbb{I}\{\sigma(k)<\sigma(i)\}-\sum_{k \neq i} \mathbb{I}\{\sigma(k)>\sigma(i)\}=\sigma(i)-1-(n-\sigma(i))=2 \sigma(i)-(n+1) \tag{1}
\end{equation*}
$$

According to (1), we have the following calculations:

$$
\begin{aligned}
s(i) & =\sum_{\sigma \in \mathfrak{S}_{n}} \frac{1}{2}\left(n+1+\sum_{k \neq i}(2 \mathbb{I}\{\sigma(k)<\sigma(i)\}-1)\right) P(\sigma) \\
& =\frac{n+1}{2}+\frac{1}{2}\left(\sum_{\sigma \in \mathfrak{S}_{n}} \sum_{k \neq i} 2 \mathbb{I}\{\sigma(k)<\sigma(i)\}-(n-1)\right) P(\sigma) \\
& =\frac{n+1}{2}-\frac{n-1}{2}+\sum_{k \neq i} \sum_{\sigma \in \mathfrak{S}_{n}} \mathbb{I}\{\sigma(k)<\sigma(i)\} P(\sigma) \\
& =1+\sum_{k \neq i} p_{k, i} .
\end{aligned}
$$

Let i, j such that $p_{i, j}>1 / 2\left(\Leftrightarrow s^{*}(i)<s^{*}(j)\right.$ under stochastic transitivity $)$.

$$
\begin{aligned}
s(j)-s(i) & =\sum_{k \neq j} p_{k, j}-\sum_{k \neq i} p_{k, i} \\
& =\sum_{k \neq i, j} p_{k, j}-\sum_{k \neq i, j} p_{k, i}+p_{i, j}-p_{j, i} \\
& =\sum_{k \neq i, j} p_{k, j}-p_{k, i}+\left(2 p_{i, j}-1\right)
\end{aligned}
$$

With $\left(2 p_{i, j}-1\right)>0$. Now we focus on the first term, and consider $k \neq i, j$.
(i) First case: $p_{j, k} \geq 1 / 2$. The strong stochastic transitivity condition implies that :

$$
\begin{aligned}
p_{i, k} & \geq \max \left(p_{i, j}, p_{j, k}\right) \\
1-p_{k, i} & \geq \max \left(p_{i, j}, p_{j, k}\right) \\
p_{k, j}-p_{k, i} & \geq p_{k, j}-1+\max \left(p_{i, j}, p_{j, k}\right) \\
p_{k, j}-p_{k, i} & \geq-p_{j, k}+\max \left(p_{i, j}, p_{j, k}\right) \\
p_{k, j}-p_{k, i} & \geq \max \left(p_{i, j}-p_{j, k}, 0\right) \\
p_{k, j}-p_{k, i} & \geq 0 .
\end{aligned}
$$

(ii) Second case: $p_{k, j}>1 / 2$. If $p_{k, i} \leq 1 / 2, p_{k, j}-p_{k, i}>0$. Now if $p_{k, i}>1 / 2$, having $p_{i, j}>1 / 2$, the strong stochastic transitivity condition implies that $p_{k, j} \geq \max \left(p_{k, i}, p_{i, j}\right)$.
Therefore in any case, $\forall k \neq i, j, p_{k, j}-p_{k, i} \geq 0$ and $s(j)-s(i)>0$.

B Empirical consensus

B. 1 Universal rates

We can obtain upper bounds using (16) and some calculations on L as follows. First notice that same as in (7) one has for any $\sigma \in \mathfrak{S}_{n}$:

$$
\widehat{L}_{N}(\sigma)=\binom{n}{2} \mathbb{E}\left[\widehat{p}_{\mathbf{i}, \mathbf{j}} \mathbb{I}\{\sigma(\mathbf{i})>\sigma(\mathbf{j})\}+\left(1-\widehat{p}_{\mathbf{i}, \mathbf{j}}\right) \mathbb{I}\{\sigma(\mathbf{i})<\sigma(\mathbf{j})\}\right]
$$

so that

$$
\begin{aligned}
\left|\widehat{L}_{N}(\sigma)-L(\sigma)\right| & =\binom{n}{2}\left|\mathbb{E}\left[\left(\widehat{p}_{\mathbf{i}, \mathbf{j}}-p_{\mathbf{i}, \mathbf{j}}\right) \mathbb{I}\{\sigma(\mathbf{i})>\sigma(\mathbf{j})\}-\left(\widehat{p}_{\mathbf{i}, \mathbf{j}}-p_{\mathbf{i}, \mathbf{j}}\right) \mathbb{I}\{\sigma(\mathbf{i})<\sigma(\mathbf{j})\}\right]\right| \\
& \leq\binom{ n}{2} \mathbb{E}_{\mathbf{i}, \mathbf{j}}\left[\left|p_{\mathbf{i}, \mathbf{j}}-\widehat{p}_{\mathbf{i}, \mathbf{j}}\right|\right]
\end{aligned}
$$

B.1.1 Proof of Proposition 9

(i) By the Cauchy-Schwartz inequality,

$$
\mathbb{E}_{\mathbf{i}, \mathbf{j}}\left[\left|p_{\mathbf{i}, \mathbf{j}}-\widehat{p}_{\mathbf{i}, \mathbf{j}}\right|\right] \leq \sqrt{\mathbb{E}_{\mathbf{i}, \mathbf{j}}\left[\left(p_{\mathbf{i}, \mathbf{j}}-\widehat{p}_{\mathbf{i}, \mathbf{j}}\right)^{2}\right]}=\sqrt{\operatorname{Var}\left(\widehat{p}_{\mathbf{i}, \mathbf{j}}\right)}
$$

Since $\mathbb{E}_{\mathbf{i}, \mathbf{j}}\left[p_{\mathbf{i}, \mathbf{j}}-\widehat{p}_{\mathbf{i}, \mathbf{j}}\right]=0$. Then, for $\left.i<j, N \widehat{p}_{i, j} \sim \mathcal{B}\left(N, p_{i, j}\right)\right)$ so $\operatorname{Var}\left(\widehat{p}_{i, j}\right)=\frac{p_{i, j}\left(1-p_{i, j}\right)}{N} \leq \frac{1}{4 N}$. Finally, we can upper bound the expectation of the excess of risk as follows:

$$
\mathbb{E}\left[L\left(\widehat{\sigma}_{N}\right)-L^{*}\right] \leq 2 \mathbb{E}\left[\max _{\sigma \in \mathfrak{S}_{n}}\left|\widehat{L}_{N}(\sigma)-L(\sigma)\right|\right] \leq 2\binom{n}{2} \frac{1}{\sqrt{4 N}}=\frac{n(n-1)}{2 \sqrt{N}}
$$

(ii) By (16) one has for any $t>0$

$$
\begin{equation*}
\mathbb{P}\left\{L\left(\widehat{\sigma}_{N}\right)-L^{*}>t\right\} \leq \mathbb{P}\left\{2\binom{n}{2} \mathbb{E}_{\mathbf{i}, \mathbf{j}}\left[\left|p_{\mathbf{i}, \mathbf{j}}-\widehat{p}_{\mathbf{i}, \mathbf{j}}\right|\right]>t\right\}=\mathbb{P}\left\{\sum_{1 \leq i<j \leq n}\left|p_{i, j}-\widehat{p}_{i, j}\right|>\frac{t}{2}\right\} \tag{2}
\end{equation*}
$$

and the other hand, it holds that

$$
\begin{equation*}
\mathbb{P}\left\{\sum_{1 \leq i<j \leq n}\left|p_{i, j}-\widehat{p}_{i, j}\right|>\frac{t}{2}\right\} \leq \mathbb{P}\left\{\bigcup_{1 \leq i<j \leq n}\left\{\left|p_{i, j}-\widehat{p}_{i, j}\right|>\frac{t}{2\binom{n}{2}}\right\}\right\} \leq \sum_{1 \leq i<j \leq n} \mathbb{P}\left\{\left|p_{i, j}-\widehat{p}_{i, j}\right|>\frac{t}{2\binom{n}{2}}\right\} \tag{3}
\end{equation*}
$$

Now, Hoeffding's inequality to $\widehat{p}_{i, j}=(1 / N) \sum_{t=1}^{N} \mathbb{I}\left\{\Sigma_{t}(i)<\Sigma_{t}(j)\right\}$ gives

$$
\begin{equation*}
\mathbb{P}\left\{\left|p_{i, j}-\widehat{p}_{i, j}\right|>\frac{t}{2\binom{n}{2}}\right\} \leq 2 e^{-2 N\left(t / 2\binom{n}{2}\right)^{2}} \tag{4}
\end{equation*}
$$

Therefore, combining (2), (3) and (4) we get

$$
\mathbb{P}\left\{L\left(\widehat{\sigma}_{N}\right)-L^{*}>t\right\} \leq 2\binom{n}{2} e^{-\frac{N t^{2}}{2\binom{n}{2}^{2}}}
$$

Setting $\delta=2\binom{n}{2} e^{-\frac{N t^{2}}{2\binom{n}{2}^{2}}}$ one obtains that with probability greater than $1-\delta$,

$$
L\left(\widehat{\sigma}_{N}\right)-L^{*} \leq\binom{ n}{2} \sqrt{\frac{2 \log (n(n-1) / \delta)}{N}}
$$

B.1.2 Proof of Proposition 11

In the following proof, we follow Le Cam's method, see section 2.3 in Tsybakov (2009).
Consider two Mallows models $P_{\theta_{0}}$ and $P_{\theta_{1}}$ where $\theta_{k}=\left(\sigma_{k}^{*}, \phi\right) \in \mathfrak{S}_{n} \times(0,1)$ and $\sigma_{0}^{*} \neq \sigma_{1}^{*}$. We clearly have:

$$
\begin{aligned}
\mathcal{R}_{N} & \geq \inf _{\sigma_{N}} \max _{k=0,1} \mathbb{E}_{P_{\theta_{k}}}\left[L_{P_{\theta_{k}}}\left(\sigma_{N}\right)-L_{P_{\theta_{k}}}^{*}\right] \\
& =\inf _{\sigma_{N}} \max _{k=0,1} \sum_{i<j} \mathbb{E}_{P_{\theta_{k}}}\left[2\left|p_{i, j}-\frac{1}{2}\right| \times \mathbb{I}\left\{\left(\sigma_{N}(i)-\sigma_{N}(j)\left(\sigma_{k}^{*}(i)-\sigma_{k}^{*}(j)\right)<0\right\}\right]\right. \\
& \geq \inf _{\sigma_{N}} \frac{|\phi-1|}{(1+\phi)} \max _{k=0,1} \sum_{i<j} \mathbb{E}_{P_{\theta_{k}}}\left[\mathbb{I}\left\{\left(\sigma_{N}(i)-\sigma_{N}(j)\left(\sigma_{k}^{*}(i)-\sigma_{k}^{*}(j)\right)<0\right\}\right]\right. \\
& \geq \frac{|\phi-1|}{2} \inf _{\sigma_{N}} \max _{k=0,1} \mathbb{E}_{P_{\theta_{k}}}\left[d_{\tau}\left(\sigma_{N}, \sigma_{k}^{*}\right)\right],
\end{aligned}
$$

using the fact that $\left|p_{i, j}-\frac{1}{2}\right| \geq \frac{|\phi-1|}{2(1+\phi)}$ (based on Corollary 3 from Busa-Fekete et al. (2014), see Remark 7). Set $\Delta=d_{\tau}\left(\sigma_{0}^{*}, \sigma_{1}^{*}\right) \geq 1$, and consider the test statistic related to σ_{N} :

$$
\psi\left(\Sigma_{1}, \ldots, \Sigma_{N}\right)=\mathbb{I}\left\{d_{\tau}\left(\sigma_{N}, \sigma_{1}^{*}\right) \leq d_{\tau}\left(\sigma_{N}, \sigma_{0}^{*}\right)\right\} .
$$

If $\psi=1$, by triangular inequality, we have:

$$
\Delta \leq d_{\tau}\left(\sigma_{N}, \sigma_{0}^{*}\right)+d_{\tau}\left(\sigma_{N}, \sigma_{1}^{*}\right) \leq 2 d_{\tau}\left(\sigma_{N}, \sigma_{0}^{*}\right)
$$

Hence, we have

$$
\mathbb{E}_{P_{\theta_{0}}}\left[d_{\tau}\left(\sigma_{N}, \sigma_{0}^{*}\right)\right] \geq \mathbb{E}_{P_{\theta_{0}}}\left[d_{\tau}\left(\sigma_{N}, \sigma_{0}^{*}\right) \mathbb{I}\{\psi=+1\}\right] \geq \frac{\Delta}{2} \mathbb{P}_{\theta_{0}}\{\psi=+1\}
$$

and similarly

$$
\mathbb{E}_{P_{\theta_{1}}}\left[d_{\tau}\left(\sigma_{N}, \sigma_{1}^{*}\right)\right] \geq \mathbb{E}_{P_{\theta_{1}}}\left[d_{\tau}\left(\sigma_{N}, \sigma_{1}^{*}\right) \mathbb{I}\{\psi=0\}\right] \geq \frac{\Delta}{2} \mathbb{P}_{\theta_{1}}\{\psi=0\}
$$

Bounding by below the maximum by the average, we have:

$$
\begin{aligned}
\inf _{\sigma_{N}} \max _{k=0,1} \mathbb{E}_{P_{\theta_{k}}}\left[d_{\tau}\left(\sigma_{N}, \sigma_{k}^{*}\right)\right] & \geq \inf _{\sigma_{N}} \frac{\Delta}{2} \frac{1}{2}\left\{\mathbb{P}_{\theta_{1}}\{\psi=0\}+\mathbb{P}_{\theta_{0}}\{\psi=1\}\right\} \\
& \geq \frac{\Delta}{4} \min _{k=0,1}\left\{\mathbb{P}_{\theta_{1}}\left\{\psi^{*}=0\right\}+\mathbb{P}_{\theta_{0}}\left\{\psi^{*}=1\right\}\right\}
\end{aligned}
$$

where the last inequality follows from a standard Neyman-Pearson argument, denoting by

$$
\psi^{*}\left(\Sigma_{1}, \ldots, \Sigma_{N}\right)=\mathbb{I}\left\{\prod_{i=1}^{N} \frac{P_{\theta_{1}}\left(\Sigma_{i}\right)}{P_{\theta_{0}}\left(\Sigma_{i}\right)} \geq 1\right\}
$$

the likelihood ratio test statistic. We deduce that

$$
\mathcal{R}_{N} \geq \frac{\Delta\left|\phi_{-} 1\right|}{8} \sum_{\sigma_{i} \in \mathfrak{S}_{N}, 1 \leq i \leq N} \min \left\{\prod_{i=1}^{N} P_{\theta_{0}}\left(\sigma_{i}\right), \prod_{i=1}^{N} P_{\theta_{1}}\left(\sigma_{i}\right)\right\}
$$

and with Le Cam's inequality that:

$$
\mathcal{R}_{N} \geq \frac{\Delta\left|\phi_{-} 1\right|}{16} e^{-N K\left(P_{\theta_{0}} \| P_{\theta_{1}}\right)}
$$

where $K\left(P_{\theta_{0}} \| P_{\theta_{1}}\right)=\sum_{\sigma \in \mathfrak{S}_{N}} P_{\theta_{0}}(\sigma) \log \left(P_{\theta_{0}}(\sigma) / P_{\theta_{1}}(\sigma)\right)$ denotes the Kullback-Leibler divergence. In order to establish a minimax lower bound of order $1 / \sqrt{N}$, one should choose $\theta_{0}=\left(\phi_{0}, \sigma_{0}\right)$ and $\theta_{1}=\left(\phi_{1}, \sigma_{1}\right)$ so that, for $k \in\{0,1\}, \phi_{k} \rightarrow 1$ and $K\left(P_{\theta_{0}} \| P_{\theta_{1}}\right) \rightarrow 0$ as $N \rightarrow+\infty$ at appropriate rates.

We consider the special case where $\phi_{0}=\phi_{1}=\phi$, which results in $Z_{0}=Z_{1}=Z$ for the normalization constant, and we fix $\sigma_{0} \in \mathfrak{S}_{n}$. Let $i<j$ such that $\sigma_{0}(i)+1=\sigma_{0}(j)$. We consider $\sigma_{1}=(i, j) \sigma_{0}$ the permutation where the adjacent pair (i, j) has been transposed, so that $\sigma_{1}(i)=\sigma_{1}(j)+1$ and $\Delta=1$. For any $\sigma \in \mathfrak{S}_{n}$, notice that

$$
\begin{equation*}
d_{\tau}\left(\sigma_{0}, \sigma\right)-d_{\tau}\left(\sigma_{1}, \sigma\right)=\mathbb{I}\{(\sigma(i)>\sigma(j)\}-\mathbb{I}\{(\sigma(i)<\sigma(j)\} \tag{5}
\end{equation*}
$$

According to (14), the Kullback-Leibler divergence is given by

$$
K\left(P_{\theta_{0}} \| P_{\theta_{1}}\right)=\sum_{\sigma \in \mathfrak{S}_{n}} P_{\theta_{0}}(\sigma) \log \left(\phi^{d_{\tau}\left(\sigma_{0}, \sigma\right)-d_{\tau}\left(\sigma_{1}, \sigma\right)}\right)
$$

And combining it with (5) yields

$$
K\left(P_{\theta_{0}} \| P_{\theta_{1}}\right)=\log (\phi) \sum_{\sigma \in \mathfrak{S}_{n}} P_{\theta_{0}}(\sigma)(\mathbb{I}\{(\sigma(i)>\sigma(j)\}-\mathbb{I}\{(\sigma(i)<\sigma(j)\})
$$

By denoting $p_{j, i}^{0}=P_{\theta_{0}}[\Sigma(i)<\Sigma(j)]$, this gives us

$$
\begin{equation*}
K\left(P_{\theta_{0}} \| P_{\theta_{1}}\right)=\log (\phi)\left(p_{j, i}^{0}-p_{i, j}^{0}\right)=\log \left(\frac{1}{\phi}\right)\left(2 p_{i, j}^{0}-1\right)=\log \left(\frac{1}{\phi}\right) \frac{1-\phi}{1+\phi} \tag{6}
\end{equation*}
$$

Where the last equality comes from Busa-Fekete et al. (2014) (Corollary 3 for adjacent items in the central permutation, see also Remark 7).

By taking $\phi=1-1 / \sqrt{N}$, we firstly have $|\phi-1|=1 / \sqrt{N}$ and

$$
K\left(P_{\theta_{0}} \| P_{\theta_{1}}\right)=-\log (1-1 / \sqrt{N}) \frac{1 / \sqrt{N}}{2-1 / \sqrt{N}}
$$

Then, since for all $x<1, x \neq 0,-\log (1-x)>x$ and for all $N \geq 1,2-\frac{1}{\sqrt{N}} \geq 1$, the Kullback-Leibler divergence can be upper bounded as follows:

$$
K\left(P_{\theta_{0}} \| P_{\theta_{1}}\right) \leq \frac{1}{\sqrt{N}} \cdot \frac{1}{\sqrt{N}}=\frac{1}{N}
$$

and thus the exponential term $e^{-N K\left(P_{\theta_{0}} \| P_{\theta_{1}}\right)}$ is lower bounded by e^{-1}. Finally:

$$
\mathcal{R}_{N} \geq \frac{\Delta}{32} \min _{k=0,1}\left|\phi_{k}-1\right| e^{-N K\left(P_{\theta_{0}}| | P_{\theta_{1}}\right)} \geq \frac{1}{16 e \sqrt{N}}
$$

B. 2 Fast Rates

B.2.1 Proof of Proposition 14

Let $\mathcal{A}_{N}=\bigcap_{i<j}\left\{\left(p_{i, j}-\frac{1}{2}\right)\left(\widehat{p}_{i, j}-\frac{1}{2}\right)>0\right\}$. On the event \mathcal{A}_{N}, p and \widehat{p} satisfy the strongly stochastic transitivity property, and agree on each pair, therefore $\widehat{\sigma}_{N}=\sigma^{*}$ and $L\left(\widehat{\sigma}_{N}\right)-L^{*}=0$. We can suppose without loss of generality that for any $i<j, \frac{1}{2}+h \leq p_{i, j} \leq 1$, and we have $N \hat{p}_{i, j} \sim$ $\mathcal{B}\left(N, p_{i, j}\right)$. We thus have:

$$
\begin{equation*}
\mathbb{P}\left\{\widehat{p}_{i, j} \leq \frac{1}{2}\right\}=\mathbb{P}\left\{N \widehat{p}_{i, j} \leq \frac{N}{2}\right\}=\sum_{k=0}^{\left\lfloor\frac{N}{2}\right\rfloor}\binom{N}{k} p_{i, j}^{k}\left(1-p_{i, j}\right)^{N-k} \tag{7}
\end{equation*}
$$

As $k \mapsto p_{i, j}^{k}\left(1-p_{i, j}\right)^{N-k}$ is an increasing function of k since $p_{i, j}>\frac{1}{2}$, we have

$$
\begin{equation*}
\sum_{k=0}^{\left\lfloor\frac{N}{2}\right\rfloor}\binom{N}{k} p_{i, j}^{k}\left(1-p_{i, j}\right)^{N-k} \leq \sum_{k=0}^{\left\lfloor\frac{N}{2}\right\rfloor}\binom{N}{k} \cdot p_{i, j}^{\frac{N}{2}}\left(1-p_{i, j}\right)^{\frac{N}{2}} \tag{8}
\end{equation*}
$$

Then, since $\sum_{k=0}^{\left\lfloor\frac{N}{2}\right\rfloor}\binom{N}{k}+\sum_{k=\left\lfloor\frac{N}{2}\right\rfloor}^{N}\binom{N}{k}=\sum_{k=0}^{N}\binom{N}{k}=2^{N}$ and $p_{i, j} \geq \frac{1}{2}+h$, we obtain

$$
\begin{equation*}
\sum_{k=0}^{\frac{N}{2}}\binom{N}{k} \cdot p_{i, j}^{\frac{N}{2}}\left(1-p_{i, j}\right)^{\frac{N}{2}} \leq 2^{N-1} \cdot\left(\frac{1}{4}-h^{2}\right)^{\frac{N}{2}}=\frac{1}{2}\left(1-4 h^{2}\right)^{\frac{N}{2}}=\frac{1}{2} e^{-\frac{N}{2} \log \left(\frac{1}{1-4 h^{2}}\right)}, \tag{9}
\end{equation*}
$$

Combining (7), (8) and (9), yields

$$
\begin{equation*}
\mathbb{P}\left\{\widehat{p}_{i, j} \leq \frac{1}{2}\right\} \leq \frac{1}{2} e^{-\frac{N}{2} \log \left(\frac{1}{1-4 h^{2}}\right)} \tag{10}
\end{equation*}
$$

Since the probability of the complementary of \mathcal{A}_{N} is

$$
\begin{equation*}
\mathbb{P}\left\{\mathcal{A}_{N}^{c}\right\}=\mathbb{P}\left\{\bigcup_{i<j}\left\{\left(p_{i, j}-\frac{1}{2}\right)\left(\widehat{p}_{i, j}-\frac{1}{2}\right)<0\right\}\right\}=\mathbb{P}\left\{\bigcup_{i<j}\left\{\widehat{p}_{i, j} \leq \frac{1}{2}\right\}\right\}, \tag{11}
\end{equation*}
$$

combining (10) and Boole's inequality on (11) yields

$$
\begin{equation*}
\mathbb{P}\left\{\mathcal{A}_{N}^{c}\right\} \leq \sum_{i<j} \mathbb{P}\left\{\widehat{p}_{i, j} \leq \frac{1}{2}\right\} \leq \frac{n(n-1)}{4} e^{-\frac{N}{2} \log \left(\frac{1}{1-4 h^{2}}\right)} . \tag{12}
\end{equation*}
$$

As the expectation of the excess of risk can be written

$$
\mathbb{E}\left\{L\left(\widehat{\sigma}_{N}\right)-L^{*}\right\}=\mathbb{E}\left\{\left(L\left(\widehat{\sigma}_{N}\right)-L^{*}\right) \mathbb{I}\left\{\mathcal{A}_{N}\right\}+\left(L\left(\widehat{\sigma}_{N}\right)-L^{*}\right) \mathbb{I}\left\{\mathcal{A}_{N}^{c}\right\}\right\},
$$

using successively the fact that $L\left(\widehat{\sigma}_{N}\right)-L^{*}=0$ on \mathcal{A}_{N} and (12) we obtain finally

$$
\mathbb{E}\left\{L\left(\widehat{\sigma}_{N}\right)-L^{*}\right\} \leq \frac{n(n-1)}{2} \mathbb{P}\left\{\mathcal{A}_{N}^{c}\right\} \leq \frac{n^{2}(n-1)^{2}}{8} e^{-\frac{N}{2} \log \left(\frac{1}{1-4 h^{2}}\right)} .
$$

B.2.2 Remark 12

According to (12) and (20) we have

$$
\mathbb{E}\left[\left(\widehat{L}^{*}-L^{*}\right)^{2}\right]=\mathbb{E}\left[\left(\sum_{i<j}\left\{\frac{1}{2}-\left|\widehat{p}_{i, j}-\frac{1}{2}\right|\right\}-\sum_{i<j}\left\{\frac{1}{2}-\left|p_{i, j}-\frac{1}{2}\right|\right\}\right)^{2}\right]
$$

and pushing further the calculus gives

$$
\mathbb{E}\left[\left(\widehat{L}^{*}-L^{*}\right)^{2}\right]=\mathbb{E}\left[\left(\sum_{i<j}\left|p_{i, j}-\frac{1}{2}\right|-\left|\widehat{p}_{i, j}-\frac{1}{2}\right|\right)^{2}\right]=\mathbb{E}\left[\left(\sum_{i<j}\left|p_{i, j}-\widehat{p}_{i, j}\right|\right)^{2}\right] .
$$

Firstly, with the bias-variance decomposition we obtain

$$
\begin{equation*}
\mathbb{E}\left[\left(\widehat{L}^{*}-L^{*}\right)^{2}\right]=\operatorname{Var}\left(\sum_{i<j}\left|p_{i, j}-\widehat{p}_{i, j}\right|\right)+\left(\mathbb{E}\left[\sum_{i<j}\left|p_{i, j}-\widehat{p}_{i, j}\right|\right]\right)^{2} . \tag{13}
\end{equation*}
$$

The bias in (13) can be written as

$$
\begin{equation*}
\mathbb{E}\left[\sum_{i<j}\left|p_{i, j}-\widehat{p}_{i, j}\right|\right]=\sum_{\substack{i<j \\ p_{i, j}>\widehat{p}_{i, j}}} \mathbb{E}\left[p_{i, j}-\widehat{p}_{i, j}\right]+\sum_{\substack{i<j \\ p_{i, j}<\widehat{p}_{i, j}}} \mathbb{E}\left[\widehat{p}_{i, j}-p_{i, j}\right]=0 \tag{14}
\end{equation*}
$$

And the variance in (13) is

$$
\begin{align*}
\operatorname{Var}\left(\sum_{i<j}\left|p_{i, j}-\widehat{p}_{i, j}\right|\right) & =\sum_{i<j} \sum_{i^{\prime}<j^{\prime}} \operatorname{Cov}\left(\left|p_{i, j}-\widehat{p}_{i, j}\right|,\left|p_{i^{\prime}, j^{\prime}}-\widehat{p}_{i^{\prime}, j^{\prime}}\right|\right) \tag{15}\\
& \leq \sum_{i<j} \sum_{i^{\prime}<j^{\prime}} \sqrt{\operatorname{Var}\left(\left|p_{i, j}-\widehat{p}_{i, j}\right|\right) \operatorname{Var}\left(\left|p_{i^{\prime}, j^{\prime}}-\widehat{p}_{i^{\prime}, j^{\prime}}\right|\right)} \tag{16}
\end{align*}
$$

Since for $i<j, \widehat{p}_{i, j} \sim \mathcal{B}\left(N, p_{i, j}\right)$, we have

$$
\begin{equation*}
\operatorname{Var}\left(\left|p_{i, j}-\widehat{p}_{i, j}\right|\right) \operatorname{Var}\left(\left|p_{i^{\prime}, j^{\prime}}-\widehat{p}_{i^{\prime}, j^{\prime}}\right|\right)=\frac{p_{i, j}\left(1-p_{i, j}\right) p_{i^{\prime}, j^{\prime}}\left(1-p_{i^{\prime}, j^{\prime}}\right)}{N^{2}} \leq \frac{1}{16 N^{2}} \tag{17}
\end{equation*}
$$

Therefore combining (17) with (15) gives

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{i<j}\left|p_{i, j}-\widehat{p}_{i, j}\right|\right) \leq\left(\frac{n(n-1)}{2}\right)^{2} \frac{1}{4 N} \tag{18}
\end{equation*}
$$

Finally according to (13), (14) and (18) we obtain: $\mathbb{E}\left[\left(\widehat{L}^{*}-L^{*}\right)^{2}\right] \leq \frac{n^{2}(n-1)^{2}}{16 N}$.

B.2.3 Proof of Proposition 15

Similarly to Proposition 11, we use Le Cam's method and consider two Mallows models $P_{\theta_{0}}$ and $P_{\theta_{1}}$ where $\theta_{k}=\left(\sigma_{k}^{*}, \phi\right) \in \mathfrak{S}_{n} \times(0,1)$ and $\sigma_{0}^{*} \neq \sigma_{1}^{*}$. We can lower bound the minimax risk as follows

$$
\begin{aligned}
\mathcal{R}_{N} & \geq \inf _{\sigma_{N}} \max _{k=0,1} \mathbb{E}_{P_{\theta_{k}}}\left[L_{P_{\theta_{k}}}\left(\sigma_{N}\right)-L_{P_{\theta_{k}}}^{*}\right] \\
& =\inf _{\sigma_{N}} \max _{k=0,1} \sum_{i<j} \mathbb{E}_{P_{\theta_{k}}}\left[2\left|p_{i, j}-\frac{1}{2}\right| \times \mathbb{I}\left\{\left(\sigma_{N}(i)-\sigma_{N}(j)\left(\sigma^{*}(i)-\sigma_{k}^{*}(j)\right)<0\right\}\right]\right. \\
& \geq \inf _{\sigma_{N}} \max _{k=0,1} h \mathbb{E}_{P_{\theta_{k}}}\left[d_{\tau}\left(\sigma_{N}, \sigma^{*}\right)\right] \\
& \geq h \frac{\Delta}{4} e^{-N K\left(P_{\theta_{0} \| \theta_{1}}\right)}
\end{aligned}
$$

With $K\left(P_{\theta_{0} \| \theta_{1}}\right)=\log \left(\frac{1}{\phi}\right) \frac{1-\phi}{1+\phi}$ accordig to (6) and $\Delta=1$, choosing σ_{0} and σ_{1} as in the proof of Proposition 11. Now we take $\phi=\frac{1-2 h}{1+2 h}$ so that both $P_{\theta_{0}}$ and $P_{\theta_{1}}$ satisfy NA(h), and we have $K\left(P_{\theta_{0} \| \theta_{1}}\right)=2 h \log \left(\frac{1+2 h}{1-2 h}\right)$, which gives us finally:

$$
\mathcal{R}_{N} \geq \frac{h}{4} e^{-N 2 h \log \left(\frac{1+2 h}{1-2 h}\right)}
$$

