
Supplementary material for
A Learning Theory of Ranking Aggregation

A Optimality

A.0.1 Proof of Remark 6

Suppose P satisfies the strongly stochastically transitive condition. According to Theorem 5, there
exists σ∗ ∈ Sn satisfying (9) and (11). We already know that σ∗ is a Kemeny consensus since
it minimizes the loss with respect to the Kendall’s τ distance. Then, Copeland’s method order
the items by the number of their pairwise victories, which corresponds to sort them according to
the mapping s∗ and thus σ∗ is a Copeland consensus. Finally, the Borda score for an item is:
s(i) =

∑
σ∈Sn σ(i)P (σ). Firstly observe that for any σ ∈ Sn,∑
k 6=i

I{σ(k) < σ(i)} −
∑
k 6=i

I{σ(k) > σ(i)} = σ(i)− 1− (n− σ(i)) = 2σ(i)− (n+ 1). (1)

According to (1), we have the following calculations:

s(i) =
∑
σ∈Sn

1

2

n+ 1 +
∑
k 6=i

(2I{σ(k) < σ(i)} − 1)

P (σ)

=
n+ 1

2
+

1

2

 ∑
σ∈Sn

∑
k 6=i

2I{σ(k) < σ(i)} − (n− 1)

P (σ)

=
n+ 1

2
− n− 1

2
+
∑
k 6=i

∑
σ∈Sn

I{σ(k) < σ(i)}P (σ)

= 1 +
∑
k 6=i

pk,i.

Let i, j such that pi,j > 1/2 (⇔ s∗(i) < s∗(j) under stochastic transitivity).

s(j)− s(i) =
∑
k 6=j

pk,j −
∑
k 6=i

pk,i

=
∑
k 6=i,j

pk,j −
∑
k 6=i,j

pk,i + pi,j − pj,i

=
∑
k 6=i,j

pk,j − pk,i + (2pi,j − 1)

With (2pi,j − 1) > 0. Now we focus on the first term, and consider k 6= i, j.
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(i) First case: pj,k ≥ 1/2. The strong stochastic transitivity condition implies that :

pi,k ≥ max(pi,j , pj,k)

1− pk,i ≥ max(pi,j , pj,k)

pk,j − pk,i ≥ pk,j − 1 + max(pi,j , pj,k)

pk,j − pk,i ≥ −pj,k + max(pi,j , pj,k)

pk,j − pk,i ≥ max(pi,j − pj,k, 0)

pk,j − pk,i ≥ 0.

(ii) Second case: pk,j > 1/2. If pk,i ≤ 1/2, pk,j − pk,i > 0. Now if pk,i > 1/2, having pi,j > 1/2,
the strong stochastic transitivity condition implies that pk,j ≥ max(pk,i, pi,j).

Therefore in any case, ∀k 6= i, j, pk,j − pk,i ≥ 0 and s(j)− s(i) > 0.

B Empirical consensus

B.1 Universal rates

We can obtain upper bounds using (16) and some calculations on L as follows. First notice that
same as in (7) one has for any σ ∈ Sn:

L̂N (σ) =

(
n

2

)
E [p̂i,jI{σ(i) > σ(j)}+ (1− p̂i,j)I{σ(i) < σ(j)}]

so that

|L̂N (σ)− L(σ)| =
(
n

2

)
|E [(p̂i,j − pi,j)I{σ(i) > σ(j)} − (p̂i,j − pi,j)I{σ(i) < σ(j)}] |

≤
(
n

2

)
Ei,j [|pi,j − p̂i,j|] .

B.1.1 Proof of Proposition 9

(i) By the Cauchy-Schwartz inequality,

Ei,j [|pi,j − p̂i,j|] ≤
√
Ei,j [(pi,j − p̂i,j)2] =

√
V ar(p̂i,j).

Since Ei,j [pi,j − p̂i,j] = 0. Then, for i < j, Np̂i,j ∼ B(N, pi,j)) so V ar(p̂i,j) =
pi,j(1−pi,j)

N ≤ 1
4N .

Finally, we can upper bound the expectation of the excess of risk as follows:

E [L(σ̂N )− L∗] ≤ 2E
[

max
σ∈Sn

|L̂N (σ)− L(σ)|
]
≤ 2

(
n

2

)
1√
4N

=
n(n− 1)

2
√
N

.
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(ii) By (16) one has for any t > 0

P
{
L(σ̂N )− L∗ > t

}
≤ P

{
2

(
n

2

)
Ei,j [|pi,j − p̂i,j|] > t

}
= P

{ ∑
1≤i<j≤n

|pi,j − p̂i,j | >
t

2

}
, (2)

and the other hand, it holds that

P
{ ∑

1≤i<j≤n

|pi,j−p̂i,j | >
t

2

}
≤ P

{ ⋃
1≤i<j≤n

{
|pi,j−p̂i,j | >

t

2
(
n
2

)}} ≤ ∑
1≤i<j≤n

P
{
|pi,j−p̂i,j | >

t

2
(
n
2

)}.
(3)

Now, Hoeffding’s inequality to p̂i,j = (1/N)
∑N
t=1 I{Σt(i) < Σt(j)} gives

P
{
|pi,j − p̂i,j | >

t

2
(
n
2

)} ≤ 2e−2N(t/2(n2))
2

. (4)

Therefore, combining (2), (3) and (4) we get

P
{
L(σ̂N )− L∗ > t

}
≤ 2

(
n

2

)
e
− Nt2

2(n2)
2

.

Setting δ = 2
(
n
2

)
e
− Nt2

2(n2)
2

one obtains that with probability greater than 1− δ,

L(σ̂N )− L∗ ≤
(
n

2

)√
2 log(n(n− 1)/δ)

N
.

B.1.2 Proof of Proposition 11

In the following proof, we follow Le Cam’s method, see section 2.3 in Tsybakov (2009).

Consider two Mallows models Pθ0 and Pθ1 where θk = (σ∗k, φ) ∈ Sn × (0, 1) and σ∗0 6= σ∗1 . We
clearly have:

RN ≥ inf
σN

max
k=0, 1

EPθk
[
LPθk (σN )− L∗Pθk

]
= inf
σN

max
k=0, 1

∑
i<j

EPθk

[
2|pi,j −

1

2
| × I{(σN (i)− σN (j)(σ∗k(i)− σ∗k(j)) < 0}

]
≥ inf
σN

|φ− 1|
(1 + φ)

max
k=0, 1

∑
i<j

EPθk [I{(σN (i)− σN (j)(σ∗k(i)− σ∗k(j)) < 0}]

≥|φ− 1|
2

inf
σN

max
k=0, 1

EPθk [dτ (σN , σ
∗
k)] ,

using the fact that |pi,j − 1
2 | ≥

|φ−1|
2(1+φ) (based on Corollary 3 from Busa-Fekete et al. (2014), see

Remark 7). Set ∆ = dτ (σ∗0 , σ
∗
1) ≥ 1, and consider the test statistic related to σN :

ψ(Σ1, . . . , ΣN ) = I{dτ (σN , σ
∗
1) ≤ dτ (σN , σ

∗
0) }.
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If ψ = 1, by triangular inequality, we have:

∆ ≤ dτ (σN , σ
∗
0) + dτ (σN , σ

∗
1) ≤ 2dτ (σN , σ

∗
0).

Hence, we have

EPθ0 [dτ (σN , σ
∗
0)] ≥ EPθ0 [dτ (σN , σ

∗
0)I{ψ = +1}] ≥ ∆

2
Pθ0{ψ = +1}

and similarly

EPθ1 [dτ (σN , σ
∗
1)] ≥ EPθ1 [dτ (σN , σ

∗
1)I{ψ = 0}] ≥ ∆

2
Pθ1{ψ = 0}.

Bounding by below the maximum by the average, we have:

inf
σN

max
k=0, 1

EPθk [dτ (σN , σ
∗
k)] ≥ inf

σN

∆

2

1

2
{Pθ1{ψ = 0}+ Pθ0{ψ = 1}}

≥ ∆

4
min
k=0, 1

{Pθ1{ψ∗ = 0}+ Pθ0{ψ∗ = 1}} ,

where the last inequality follows from a standard Neyman-Pearson argument, denoting by

ψ∗(Σ1, . . . , ΣN ) = I

{
N∏
i=1

Pθ1(Σi)

Pθ0(Σi)
≥ 1

}
the likelihood ratio test statistic. We deduce that

RN ≥
∆|φ−1|

8

∑
σi∈SN , 1≤i≤N

min

{
N∏
i=1

Pθ0(σi),

N∏
i=1

Pθ1(σi)

}
,

and with Le Cam’s inequality that:

RN ≥
∆|φ−1|

16
e−NK(Pθ0 ||Pθ1 ),

where K(Pθ0 ||Pθ1) =
∑
σ∈SN Pθ0(σ) log(Pθ0(σ)/Pθ1(σ)) denotes the Kullback-Leibler divergence.

In order to establish a minimax lower bound of order 1/
√
N , one should choose θ0 = (φ0, σ0) and

θ1 = (φ1, σ1) so that, for k ∈ {0, 1}, φk → 1 and K(Pθ0 ||Pθ1)→ 0 as N → +∞ at appropriate rates.

We consider the special case where φ0 = φ1 = φ, which results in Z0 = Z1 = Z for the normalization
constant, and we fix σ0 ∈ Sn. Let i < j such that σ0(i) + 1 = σ0(j). We consider σ1 = (i, j)σ0
the permutation where the adjacent pair (i, j) has been transposed, so that σ1(i) = σ1(j) + 1 and
∆ = 1. For any σ ∈ Sn, notice that

dτ (σ0, σ)− dτ (σ1, σ) = I{(σ(i) > σ(j)} − I{(σ(i) < σ(j)} (5)

According to (14), the Kullback-Leibler divergence is given by

K(Pθ0 ||Pθ1) =
∑
σ∈Sn

Pθ0(σ) log
(
φdτ (σ0,σ)−dτ (σ1,σ)

)
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And combining it with (5) yields

K(Pθ0 ||Pθ1) = log(φ)
∑
σ∈Sn

Pθ0(σ) (I{(σ(i) > σ(j)} − I{(σ(i) < σ(j)})

By denoting p0j,i = Pθ0 [Σ(i) < Σ(j)], this gives us

K(Pθ0 ||Pθ1) = log(φ)
(
p0j,i − p0i,j

)
= log(

1

φ
)
(
2p0i,j − 1

)
= log(

1

φ
)
1− φ
1 + φ

(6)

Where the last equality comes from Busa-Fekete et al. (2014) (Corollary 3 for adjacent items in the
central permutation, see also Remark 7).

By taking φ = 1− 1/
√
N , we firstly have |φ− 1| = 1/

√
N and

K(Pθ0 ||Pθ1) = − log(1− 1/
√
N)

1/
√
N

2− 1/
√
N
.

Then, since for all x < 1, x 6= 0, −log(1−x) > x and for all N ≥ 1, 2− 1√
N
≥ 1, the Kullback-Leibler

divergence can be upper bounded as follows:

K(Pθ0 ||Pθ1) ≤ 1√
N
.

1√
N

=
1

N

and thus the exponential term e−NK(Pθ0 ||Pθ1 ) is lower bounded by e−1. Finally:

RN ≥
∆

32
min
k=0, 1

|φk − 1|e−NK(Pθ0 ||Pθ1 ) ≥ 1

16e
√
N

B.2 Fast Rates

B.2.1 Proof of Proposition 14

Let AN =
⋂
i<j{(pi,j −

1
2 )(p̂i,j − 1

2 ) > 0}. On the event AN , p and p̂ satisfy the strongly stochastic
transitivity property, and agree on each pair, therefore σ̂N = σ∗ and L(σ̂N ) − L∗ = 0. We can
suppose without loss of generality that for any i < j, 1

2 + h ≤ pi,j ≤ 1, and we have Np̂i,j ∼
B(N, pi,j). We thus have:

P
{
p̂i,j ≤

1

2

}
= P

{
Np̂i,j ≤

N

2

}
=

bN2 c∑
k=0

(
N

k

)
pki,j(1− pi,j)N−k (7)

As k 7→ pki,j(1− pi,j)N−k is an increasing function of k since pi,j >
1
2 , we have

bN2 c∑
k=0

(
N

k

)
pki,j(1− pi,j)N−k ≤

bN2 c∑
k=0

(
N

k

)
.p
N
2
i,j(1− pi,j)

N
2 (8)
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Then, since
∑bN2 c
k=0

(
N
k

)
+
∑N
k=bN2 c

(
N
k

)
=
∑N
k=0

(
N
k

)
= 2N and pi,j ≥ 1

2 + h, we obtain

N
2∑

k=0

(
N

k

)
.p
N
2
i,j(1− pi,j)

N
2 ≤ 2N−1.

(
1

4
− h2

)N
2

=
1

2

(
1− 4h2

)N
2 =

1

2
e
−N2 log

(
1

1−4h2

)
, (9)

Combining (7), (8) and (9), yields

P
{
p̂i,j ≤

1

2

}
≤ 1

2
e
−N2 log

(
1

1−4h2

)
(10)

Since the probability of the complementary of AN is

P
{
AcN
}

= P
{⋃
i<j

{(pi,j −
1

2
)(p̂i,j −

1

2
) < 0}

}
= P

{⋃
i<j

{p̂i,j ≤
1

2
}
}
, (11)

combining (10) and Boole’s inequality on (11) yields

P
{
AcN
}
≤
∑
i<j

P
{
p̂i,j ≤

1

2

}
≤ n(n− 1)

4
e
−N2 log

(
1

1−4h2

)
. (12)

As the expectation of the excess of risk can be written

E
{
L(σ̂N )− L∗

}
= E

{
(L(σ̂N )− L∗)I{AN}+ (L(σ̂N )− L∗)I{AcN}

}
,

using successively the fact that L(σ̂N )− L∗ = 0 on AN and (12) we obtain finally

E
{
L(σ̂N )− L∗

}
≤ n(n− 1)

2
P
{
AcN
}
≤ n2(n− 1)2

8
e
−N2 log

(
1

1−4h2

)
.

B.2.2 Remark 12

According to (12) and (20) we have

E[(L̂∗ − L∗)2] = E


∑
i<j

{
1

2
−
∣∣∣∣p̂i,j − 1

2

∣∣∣∣}−∑
i<j

{
1

2
−
∣∣∣∣pi,j − 1

2

∣∣∣∣}
2
 ,

and pushing further the calculus gives

E[(L̂∗ − L∗)2] = E


∑
i<j

∣∣∣∣pi,j − 1

2

∣∣∣∣− ∣∣∣∣p̂i,j − 1

2

∣∣∣∣
2
 = E


∑
i<j

|pi,j − p̂i,j |

2
 .

Firstly, with the bias-variance decomposition we obtain

E[(L̂∗ − L∗)2] = V ar

∑
i<j

|pi,j − p̂i,j |

+

E

∑
i<j

|pi,j − p̂i,j |

2

. (13)
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The bias in (13) can be written as

E

∑
i<j

|pi,j − p̂i,j |

 =
∑
i<j

pi,j>p̂i,j

E [pi,j − p̂i,j ] +
∑
i<j

pi,j<p̂i,j

E [p̂i,j − pi,j ] = 0 (14)

And the variance in (13) is

V ar

∑
i<j

|pi,j − p̂i,j |

 =
∑
i<j

∑
i′<j′

Cov (|pi,j − p̂i,j | , |pi′,j′ − p̂i′,j′ |) (15)

≤
∑
i<j

∑
i′<j′

√
V ar(|pi,j − p̂i,j |)V ar(|pi′,j′ − p̂i′,j′ |). (16)

Since for i < j, p̂i,j ∼ B(N, pi,j), we have

V ar(|pi,j − p̂i,j |)V ar(|pi′,j′ − p̂i′,j′ |) =
pi,j(1− pi,j)pi′,j′(1− pi′,j′)

N2
≤ 1

16N2
. (17)

Therefore combining (17) with (15) gives

V ar

∑
i<j

|pi,j − p̂i,j |

 ≤ (n(n− 1)

2

)2
1

4N
. (18)

Finally according to (13), (14) and (18) we obtain: E[(L̂∗ − L∗)2] ≤ n2(n−1)2
16N .

B.2.3 Proof of Proposition 15

Similarly to Proposition 11, we use Le Cam’s method and consider two Mallows models Pθ0 and
Pθ1 where θk = (σ∗k, φ) ∈ Sn× (0, 1) and σ∗0 6= σ∗1 . We can lower bound the minimax risk as follows

RN ≥ inf
σN

max
k=0, 1

EPθk
[
LPθk (σN )− L∗Pθk

]
= inf
σN

max
k=0, 1

∑
i<j

EPθk

[
2|pi,j −

1

2
| × I{(σN (i)− σN (j)(σ∗(i)− σ∗k(j)) < 0}

]
≥ inf
σN

max
k=0, 1

hEPθk [dτ (σN , σ
∗)]

≥h∆

4
e−NK(Pθ0||θ1 )

With K(Pθ0||θ1) = log( 1
φ ) 1−φ

1+φ accordig to (6) and ∆ = 1, choosing σ0 and σ1 as in the proof of

Proposition 11. Now we take φ = 1−2h
1+2h so that both Pθ0 and Pθ1 satisfy NA(h), and we have

K(Pθ0||θ1) = 2h log( 1+2h
1−2h ), which gives us finally:

RN ≥
h

4
e−N2h log( 1+2h

1−2h )
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