A Proofs of technical results

A. 1 Proof of Proposition 3.1

Lemma A. 1 There exists a finite family of polytopes $\left(\mathcal{X}^{\ell}\right)_{\ell \in \mathcal{L}}$ such that
(i) $\Delta(\mathcal{I})=\bigcup_{\ell \in \mathcal{L}} \mathcal{X}^{\ell}$;
(ii) For each $\ell \in \mathcal{L}$ and $f \in \mathcal{F}, \mathbf{r}(\cdot, f)$ is affine on \mathcal{X}^{ℓ}.

Proof. Let $1 \leqslant n \leqslant d$ and $b \in \mathcal{B}$. Let us first prove that $\mathbf{r}^{n}(\cdot, b)$ is piecewise affine. The map \mathbf{f} being affine and defined on $\Delta(\mathcal{J})$, the set $\mathbf{f}^{-1}(b)$ is a polytope. Denote $y_{b, 1}, \ldots, y_{b, q}$ its vertices. Let $x \in \Delta(\mathcal{I})$. By linearity of $\mathbf{g}(x, \cdot), \mathbf{r}^{n}(x, b)$ can then be written

$$
\mathbf{r}^{n}(x, b)=\max \mathbf{g}^{n}\left(x, \mathbf{f}^{-1}(b)\right)=\max _{1 \leqslant p \leqslant q} \mathbf{g}^{n}\left(x, y_{b, p}\right)
$$

$\mathbf{r}^{n}(\cdot, b)$ now appears as the maximum of a finite family $\left(\mathbf{g}^{n}\left(\cdot, y_{b, p}\right)\right)_{1 \leqslant p \leqslant q}$ of linear functions. It is therefore piecewise affine and so is $\mathbf{r}(\cdot, b)$. Therefore, for each $b \in \mathcal{B}$ there exists a decomposition of $\Delta(\mathcal{I})$ into polytopes on each of which $\mathbf{r}(\cdot, b)$ is affine. \mathcal{B} being finite, we can consider the decomposition $\left(\mathcal{X}^{\ell}\right)_{\ell \in \mathcal{L}}$ which refines all of them. $\mathbf{r}(\cdot, b)$ is therefore affine on each polytope \mathcal{X}^{ℓ} for all $b \in \mathcal{B}$. Let us now prove that $\mathbf{r}(\cdot, f)$ is affine on each polytope \mathcal{X}^{ℓ} for all $f \in \mathcal{F}$.
Let $f \in \mathcal{F}, \ell \in \mathcal{L}, x_{1}, x_{2} \in \mathcal{X}^{\ell}$ and $\lambda \in[0,1]$. We consider the unique decomposition $f=\sum_{b \in \mathcal{B}} \mu^{b} \cdot b$ and $k \in \mathcal{K}$ such that $\operatorname{supp} \mu \subset \mathcal{F}^{k}$. Using the definition of \mathbf{r} and the affinity of $\mathbf{r}(\cdot, b)$ on \mathcal{X}^{ℓ}, we have

$$
\begin{aligned}
\mathbf{r}\left(\lambda x_{1}\right. & \left.+(1-\lambda) x_{2}, f\right) \\
& =\sum_{b \in \mathcal{B}} \mu^{b} \cdot \mathbf{r}\left(\lambda x_{1}+(1-\lambda) x_{2}, b\right) \\
& =\sum_{b \in \mathcal{B}} \mu^{b}\left(\lambda \mathbf{r}\left(x_{1}, b\right)+(1-\lambda) \mathbf{r}\left(x_{2}, b\right)\right) \\
& =\lambda \sum_{b \in \mathcal{B}} \mu^{b} \cdot \mathbf{r}\left(x_{1}, b\right)+(1-\lambda) \sum_{b \in \mathcal{B}} \mu^{b} \cdot \mathbf{r}\left(x_{2}, b\right) \\
& =\lambda \mathbf{r}\left(x_{1}, f\right)+(1-\lambda) \mathbf{r}\left(x_{2}, f\right),
\end{aligned}
$$

where the last equality stands because of the uniqueness of the decomposition of f lets us recognize the definitions of $\mathbf{r}\left(x_{1}, b\right)$ and $\mathbf{r}\left(x_{2}, b\right)$ from Equation (4).

Proof. of Proposition 3.1 (i) Let $x \in \Delta(\mathcal{I})$ and $y \in \Delta(\mathcal{J})$. Denote $f=\mathbf{f}(y)$. We consider the unique decomposition $f=\sum_{b \in \mathcal{B}} \mu^{b} \cdot b$ and $k \in \mathcal{K}$ such that
$\operatorname{supp} \mu \subset \mathcal{F}^{k} . \mathbf{f}^{-1}$ being affine on \mathcal{F}^{k}, we have

$$
\begin{aligned}
\mathbf{g}(x, y) & \in \mathbf{g}\left(x, \mathbf{f}^{-1}(f)\right) \\
& =\mathbf{g}\left(x, \mathbf{f}^{-1}\left(\sum_{b \in \operatorname{supp} \mu} \mu^{b} \cdot b\right)\right) \\
& =\mathbf{g}\left(x, \sum_{b \in \mathcal{B}} \mu^{b} \cdot \mathbf{f}^{-1}(b)\right) \\
& =\sum_{b \in \operatorname{supp} \mu} \mu^{b} \cdot \mathbf{g}\left(x, \mathbf{f}^{-1}(b)\right) .
\end{aligned}
$$

Then for each $1 \leqslant n \leqslant d$,

$$
\begin{aligned}
\mathbf{g}^{n}(x, y) & \leqslant \max \sum_{b \in \operatorname{supp} \mu} \mu^{b} \cdot \mathbf{g}\left(x, \mathbf{f}^{-1}(b)\right) \\
& =\sum_{b \in \mathcal{B}} \mu^{b} \cdot \max \mathbf{g}^{n}\left(x, \mathbf{f}^{-1}(b)\right) \\
& =\sum_{b \in \mathcal{B}} \mu^{b} \cdot \mathbf{r}^{n}(x, b)=\mathbf{r}^{n}(x, f)
\end{aligned}
$$

where for the second equality, we recognized the definition of $\mathbf{r}^{n}(x, b)$ from Equation (3) on page 5, and the the last equality, the definition of $\mathbf{r}^{n}(x, f)$ from Equation (4).
(ii) Let $f \in \mathcal{F}$. Thanks to the characterization of approachability from Proposition 1 , there exists $x \in$ $\Delta(\mathcal{I})$ such that $\mathbf{m}(x, f) \in \mathbb{R}_{-}^{d}$. Let $f=\sum_{b \in \mathcal{B}} \mu^{b} \cdot b$ be the unique decomposition of f given by Lemma 3.1. With the same arguments as above, we have for each $1 \leqslant n \leqslant d$,

$$
\begin{aligned}
\mathbf{r}^{n}(x, f) & =\sum_{b \in \mathcal{B}} \mu^{b} \cdot \mathbf{r}^{n}(x, b) \\
& =\sum_{b \in \mathcal{B}} \mu^{b} \cdot \max \mathbf{g}^{n}\left(x, \mathbf{f}^{-1}(b)\right) \\
& =\max \sum_{b \in \mathcal{B}} \mu^{b} \cdot \mathbf{g}^{n}\left(x, \mathbf{f}^{-1}(b)\right) \\
& =\max \mathbf{g}^{n}\left(x, \mathbf{f}^{-1}\left(\sum_{b \in \mathcal{B}} \mu^{b} \cdot b\right)\right) \\
& =\max \mathbf{g}^{n}\left(x, \mathbf{f}^{-1}(f)\right)=\max \mathbf{m}^{n}(x, f) \leqslant 0
\end{aligned}
$$

Therefore, $\mathbf{r}(x, f) \in \mathbb{R}_{-}^{d}$.
(iii) Let $x \in \Delta(\mathcal{I}), k \in \mathcal{K}, f_{1}, f_{2} \in \mathcal{F}^{k}$ and $\lambda \in[0,1]$. We write $f_{1}=\sum_{b \in \mathcal{B}} \mu_{1}^{b} \cdot b$ and $f_{2}=\sum_{b \in \mathcal{B}} \mu_{2}^{b} \cdot b$ with $\operatorname{supp} \mu_{1} \subset \mathcal{F}^{k}$ and $\operatorname{supp} \mu_{2} \subset \mathcal{F}^{k}$. The unique decomposition of $\lambda f_{1}+(1-\lambda) f_{2}$ given by Lemma 3.1 is then

$$
\lambda f_{1}+(1-\lambda) f_{2}=\sum_{b \in \mathcal{B}}\left(\lambda \mu_{1}^{b}+(1-\lambda) \mu_{2}^{b}\right) \cdot b
$$

Therefore, using the definition of \mathbf{r} and the affinity of $\mathbf{r}(x, \cdot)$ on \mathcal{F}^{k},

$$
\begin{aligned}
\mathbf{r}\left(x, \lambda f_{1}+(1-\lambda)\right. & \left.f_{2}\right) \\
= & \mathbf{r}\left(x, \sum_{b \in \mathcal{B}}\left(\lambda \mu_{1}^{b}+(1-\lambda) \mu_{2}^{b}\right) \cdot b\right) \\
= & \sum_{b \in \mathcal{B}}\left(\lambda \mu_{1}^{b}+(1-\lambda) \mu_{2}^{b}\right) \cdot \mathbf{r}(x, b) \\
= & \lambda \sum_{b \in \mathcal{B}} \mu_{1}^{b} \cdot \mathbf{r}(x, b) \\
& \quad+(1-\lambda) \sum_{b \in \mathcal{B}} \mu_{2}^{b} \cdot \mathbf{r}(x, b) \\
= & \lambda \mathbf{r}\left(x, f_{1}\right)+(1-\lambda) \cdot \mathbf{r}\left(x, f_{2}\right) .
\end{aligned}
$$

(iv) is already proved in Lemma A.1.

A. 2 Existence of $\mathbf{r}^{[k]}$

Proposition A. 2 For every $k \in \mathcal{K}$, there exists a $\operatorname{map} \mathbf{r}^{[k]}: \Delta(\mathcal{I}) \times \mathbb{R}^{\mathcal{S} \times \mathcal{I}} \rightarrow \mathbb{R}^{d}$ such that
(i) for all $x \in \Delta(\mathcal{I})$, the map $\mathbf{r}^{[k]}(x, \cdot): \mathbb{R}^{\mathcal{S} \times \mathcal{I}} \rightarrow \mathbb{R}^{d}$ is linear;
(ii) for all $x \in \Delta(\mathcal{I})$ and $f \in \mathcal{F}^{k}, \mathbf{r}^{[k]}(x, f)=\mathbf{r}(x, f)$.

Proof. Let $k \in \mathcal{K}$ and $x \in \Delta(\mathcal{I})$. Let us consider $\operatorname{span}\left(\mathcal{F}^{k}\right) \subset \mathbb{R}^{\mathcal{S} \times \mathcal{I}}$, the linear span of \mathcal{F}^{k}. There exists a basis $\left(f_{1}, \ldots, f_{q}\right)$ of $\operatorname{span}\left(\mathcal{F}^{k}\right)$ such that f_{p} belongs to \mathcal{F}^{k} for each $1 \leqslant p \leqslant q$. We now define $\mathbf{r}^{[k]}(x, \cdot)$ on $\operatorname{span}\left(\mathcal{F}^{k}\right)$ by setting
$\mathbf{r}^{[k]}\left(x, f_{p}\right):=\mathbf{r}\left(x, f_{p}\right)$, for each element f_{p} of the basis, and extending linearly. $\mathbf{r}^{[k]}(x, \cdot)$ can then be further extended to the whole space $\mathbb{R}^{\mathcal{S} \times \mathcal{I}}$ by setting its value to zero on some complementary subspace of $\operatorname{span}\left(\mathcal{F}^{k}\right)$.
Let us now prove that $\mathbf{r}^{[k]}(x, \cdot)$ coincides with $\mathbf{r}(x, \cdot)$ on \mathcal{F}^{k}. Let $f \in \mathcal{F}^{k}$. In particular, f belongs to $\operatorname{span}\left(\mathcal{F}^{k}\right)$ and can be uniquely written

$$
f=\sum_{p=1}^{q} \lambda_{p} f_{p}, \quad \text { where } \quad \lambda_{1}, \ldots, \lambda_{q} \in \mathbb{R}
$$

The application $\mathbf{r}^{[k]}(x, \cdot)$ being linear by definition, we have

$$
\mathbf{r}^{[k]}(x, f)=\sum_{p=1}^{q} \lambda_{p} \mathbf{r}\left(x, f_{p}\right)
$$

We now aim at proving that the above sum is equal to $\mathbf{r}(x, f)$. This cannot be done by directly applying the affinity of $\mathbf{r}(x, \cdot)$ (property (iii) in Lemma 3.1) because
some of the above coefficients λ_{p} may be negative. To overcome this, we first separate the terms according to the signs of the coefficients λ_{p}. We denote Λ^{+}(resp. Λ^{-}) the sum of all positive (resp. negative) coefficients λ_{p} and write

$$
\begin{aligned}
\mathbf{r}^{[k]}(x, f)= & \sum_{\lambda_{p}>0} \lambda_{p} \mathbf{r}\left(x, f_{p}\right)+\sum_{\lambda_{p}<0} \lambda_{p} \mathbf{r}\left(x, f_{p}\right) \\
= & \Lambda^{+} \sum_{\lambda_{p}>0}\left(\frac{\lambda_{p}}{\Lambda^{+}}\right) \mathbf{r}\left(x, f_{p}\right) \\
& +\Lambda^{-} \sum_{\lambda_{p}<0}\left(\frac{\lambda_{p}}{\Lambda^{-}}\right) \mathbf{r}\left(x, f_{p}\right)
\end{aligned}
$$

Since each of the above sum is now a convex combination, we can apply the affinity of $\mathbf{r}(x, \cdot)$:

$$
\begin{aligned}
\mathbf{r}^{[k]}(x, f)=\Lambda^{+} \cdot \mathbf{r} & \left(x, \sum_{\lambda_{p}>0}\left(\frac{\lambda_{p}}{\Lambda^{+}}\right) f_{p}\right) \\
& +\Lambda^{-} \mathbf{r}\left(x, \sum_{\lambda_{p}<0}\left(\frac{\lambda_{p}}{\Lambda^{-}}\right) f_{p}\right)
\end{aligned}
$$

Let us prove that

$$
\begin{align*}
\mathbf{r}(x, f)-\Lambda^{-} \mathbf{r} & \left(x, \sum_{\lambda_{p}<0}\left(\frac{\lambda_{p}}{\Lambda^{-}}\right) f_{p}\right) \\
& =\Lambda^{+} \cdot \mathbf{r}\left(x, \sum_{\lambda_{p}>0}\left(\frac{\lambda_{p}}{\Lambda^{+}}\right) f_{p}\right) \tag{5}
\end{align*}
$$

This will prove that $\mathbf{r}^{[k]}(x, f)=\mathbf{r}(x, f)$.

$$
\begin{aligned}
& \mathbf{r}(x, f)-\Lambda^{-} \mathbf{r}\left(x, \sum_{\lambda_{p}<0}\left(\frac{\lambda_{p}}{\Lambda^{-}}\right) f_{p}\right) \\
& =\left(1-\Lambda^{-}\right)\left(\frac{1}{1-\Lambda^{-}} \mathbf{r}(x, f)\right. \\
& \\
& \left.\quad+\frac{-\Lambda^{-}}{1-\Lambda^{-}} \mathbf{r}\left(x, \sum_{\lambda_{p}<0}\left(\frac{\lambda_{p}}{\Lambda^{-}}\right) f_{p}\right)\right) \\
& =\left(1-\Lambda^{-}\right) \cdot \mathbf{r}\left(x, \frac{1}{1-\Lambda^{-}} f+\sum_{\lambda_{p}<0}\left(-\frac{\lambda_{p}}{1-\Lambda^{-}}\right) f_{p}\right) \\
& =\left(1-\Lambda^{-}\right) \cdot \mathbf{r}\left(x, \frac{1}{1-\Lambda^{-}}\left(f-\sum_{\lambda_{p}<0} \lambda_{p} f_{p}\right)\right) \\
& =\left(1-\Lambda^{-}\right) \cdot \mathbf{r}\left(x, \sum_{\lambda_{p}>0}\left(\frac{\lambda_{p}}{1-\Lambda^{-}}\right) f_{p}\right) .
\end{aligned}
$$

For relation (5) to be true, it is now enough to prove that $\Lambda^{+}+\Lambda^{-}=1$. Since $\mathcal{F}^{k} \subset \mathcal{F} \subset \Delta(\mathcal{S})^{\mathcal{I}}$, for any $f_{0}=\left(f_{0}^{i s}\right)_{\substack{s \in \mathcal{S} \\ i \in \mathcal{I}}} \in \mathcal{F}^{k}$, we have

$$
\sum_{\substack{s \in \mathcal{S} \\ i \in \mathcal{I}}} f_{0}^{i s}=\sum_{i \in \mathcal{I}} \sum_{s \in \mathcal{S}} f_{0}^{i s}=\sum_{i \in \mathcal{I}} 1=|\mathcal{I}|
$$

By applying the above to f and the f_{p}, we get

$$
\begin{aligned}
|\mathcal{I}| & =\sum_{\substack{s \in \mathcal{S} \\
i \in \mathcal{I}}} f^{i s}=\sum_{\substack{s \in \mathcal{S} \\
i \in \mathcal{I}}}\left(\sum_{\lambda_{p}>0} \lambda_{p} f_{p}^{i s}+\sum_{\lambda_{p}<0} \lambda_{p} f_{p}^{i s}\right) \\
& =\sum_{\lambda_{p}>0} \lambda_{p} \sum_{\substack{s \in \mathcal{S} \\
i \in \mathcal{I}}} f_{p}^{i s}+\sum_{\lambda_{p}<0} \lambda_{p} \sum_{\substack{s \in \mathcal{S} \\
i \in \mathcal{I}}} f_{p}^{i s} \\
& =\Lambda^{+}|\mathcal{I}|+\Lambda^{-}|\mathcal{I}|,
\end{aligned}
$$

and we indeed get $\Lambda^{+}+\Lambda^{-}=1$ by dividing by $|\mathcal{I}|$, which concludes the proof.

A. 3 A lemma on L_{r}

Recall that $L_{\mathbf{r}}$ was defined as the maximal Lipschitz constant of mappings $\mathbf{r}(x, \cdot)$. Then it is also the maximal operator norm of the linear maps $\mathbf{r}^{[k]}(a, \cdot)$:

$$
L_{\mathbf{r}}:=\max _{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \max _{\substack{f \in \mathbb{R}^{\mathcal{S} \times \mathcal{I}} \\ f \neq 0}} \frac{\left\|\mathbf{r}^{[k]}(a, f)\right\|_{2}}{\|f\|_{2}}
$$

Lemma A. $3 L_{\mathbf{r}}$ is a common Lipschitz constant to $\mathbf{r}(a, \cdot)$ and $\mathbf{r}^{[k]}(a, \cdot) \quad(k \in \mathcal{K}$ and $a \in \mathcal{A})$. In other words, for all $k \in \mathcal{K}$ and $a \in \mathcal{A}$, we have
(i) for all $f, f^{\prime} \in \mathbb{R}^{\mathcal{S} \times \mathcal{I}},\left\|\mathbf{r}^{[k]}(a, f)-\mathbf{r}^{[k]}\left(a, f^{\prime}\right)\right\|_{2} \leqslant$ $L_{\mathbf{r}}\left\|f-f^{\prime}\right\|_{2} ;$
(ii) for all $f, f^{\prime} \in \mathcal{F},\left\|\mathbf{r}(a, f)-\mathbf{r}\left(a, f^{\prime}\right)\right\|_{2} \leqslant$ $L_{\mathbf{r}}\left\|f-f^{\prime}\right\|_{2}$.

Proof. Property (i) follows from the definition of $L_{\mathbf{r}}$ and the linearity of the map $\mathbf{r}^{[k]}(a, \cdot)$.
(ii) Let $k \in \mathcal{K}, a \in \mathcal{A}$ and $f, f^{\prime} \in \mathcal{F} .\left(\mathcal{F}^{k}\right)_{k \in \mathcal{K}}$ being a finite decomposition of \mathcal{F} into convex polytopes, there exists a finite sequence $\left(k_{1}, k_{2}, \ldots, k_{q}\right)$ in \mathcal{K} such that the k_{p} 's are all different and a sequence $\left(f_{0}=f, f_{1}, f_{2}, \ldots, f_{q}=f^{\prime}\right)$ in the affine segment $\left[f, f^{\prime}\right]$ such that $\left[f_{p-1}, f_{p}\right] \subset \mathcal{F}^{k_{p}}$ for each $1 \leqslant p \leqslant q$, see Figure 1. Therefore, using the fact that $\mathbf{r}^{\left[k^{\prime}\right]}(a, \cdot)$ and

Figure 1: An illustrative figure of the sequence ($f_{0}=$ $\left.f, f_{1}, f_{2}, \ldots, f_{q}=f^{\prime}\right)$

$\mathbf{r}(a, \cdot)$ coincide on $\mathcal{F}^{k^{\prime}}$ for all $k^{\prime} \in \mathcal{K}$, we can write

$$
\begin{aligned}
\| \mathbf{r}(a, f)-\mathbf{r}(a, & \left.f^{\prime}\right) \|_{2} \\
& =\left\|\sum_{p=1}^{q}\left(\mathbf{r}\left(a, f_{p-1}\right)-\mathbf{r}\left(a, f_{p}\right)\right)\right\|_{2} \\
& =\left\|\sum_{p=1}^{q} \mathbf{r}^{\left[k_{p}\right]}\left(a, f_{p-1}\right)-\mathbf{r}^{\left[k_{p}\right]}\left(a, f_{p}\right)\right\|_{2} \\
& \leqslant \sum_{p=1}^{q}\left\|\mathbf{r}^{\left[k_{p}\right]}\left(a, f_{p-1}\right)-\mathbf{r}^{\left[k_{p}\right]}\left(a, f_{p}\right)\right\|_{2} \\
& \leqslant L_{\mathbf{r}} \sum_{p=1}^{q}\left\|f_{p-1}-f_{p}\right\|_{2} \\
& =L_{\mathbf{r}}\left\|f-f^{\prime}\right\|_{2}
\end{aligned}
$$

where the last equality holds because the points f_{0}, \ldots, f_{q} are aligned and ordered.

A. 4 Proof of Proposition 3.2

Proof. Using the definition of \mathbf{R},

$$
\begin{aligned}
& \mathbf{R}\left(\left(\mathbb{1}_{\left\{k_{0}=k\right\}} \lambda^{a} \cdot f\right)_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}}\right) \\
&=\sum_{k \in \mathcal{K}} \sum_{a \in \mathcal{A}} \mathbf{r}^{[k]}\left(a, \mathbb{1}_{\left\{k_{0}=k\right\}} \lambda^{a} \cdot f\right) \\
&=\sum_{a \in \mathcal{A}} \lambda^{a} \cdot \mathbf{r}^{\left[k_{0}\right]}(a, f) \\
&=\sum_{a \in \mathcal{A}} \lambda^{a} \cdot \mathbf{r}(a, f)=\mathbf{r}(x, f)
\end{aligned}
$$

where the second equality holds because by linearity of $\mathbf{r}^{[k]}(a, \cdot)$ (Proposition A.2), the fourth because $\mathbf{r}^{\left[k_{0}\right]}(x, \cdot)$ and $\mathbf{r}(x, \cdot)$ coincide on $\mathcal{F}^{k_{0}}$ (property (ii) in Proposition A.2, and the last by affinity of $\mathbf{r}(\cdot, f)$ on \mathcal{X}^{ℓ} (property (iv) in Proposition 3.1).

A. 5 Proof of Proposition 3.3

(i) Let $k \in \mathcal{K} . \mathbf{R}_{k}^{-1}\left(\mathbb{R}_{-}^{d}\right)$ is a closed convex cone as the inverse image via a linear application of the closed convex cone \mathbb{R}_{-}^{d} (Proposition C.5). \mathcal{F}_{c}^{k} is a closed convex cone by definition, and $\left(\mathcal{F}_{c}^{k}\right)^{\mathcal{A}}$ is thus a closed convex cone as a Cartesian product of closed convex cones. Therefore, $\tilde{\mathcal{C}}^{k}=\mathbf{R}_{k}^{-1}\left(\mathbb{R}_{-}^{d}\right) \cap\left(\mathcal{F}_{c}^{k}\right)^{\mathcal{A}}$ is also a closed convex cone as the intersection of two closed convex cones. Then, $\tilde{\mathcal{C}}$ is also a closed convex cone as a Cartesian product of closed convex cones.
 $k \in \mathcal{K},\left(\tilde{g}^{k a}\right)_{a \in \mathcal{A}}$ belongs to $\tilde{\mathcal{C}}^{k}$ and thus to $\left(\mathcal{F}_{c}^{k}\right)^{\mathcal{A}}$. Therefore, $\tilde{g} \in \prod_{k \in \mathcal{K}}\left(\mathcal{F}_{c}^{k}\right)^{\mathcal{A}}$. Moreover,

$$
\mathbf{R}(\tilde{g})=\sum_{k \in \mathcal{K}} \mathbf{R}_{k}\left(\left(\tilde{g}^{k a}\right)_{a \in \mathcal{A}}\right)
$$

belongs to \mathbb{R}_{-}^{d}. Indeed, each term of the above sum belongs to \mathbb{R}_{-}^{d} because for all $k \in \mathcal{K},\left(\tilde{g}^{k a}\right)_{a \in \mathcal{A}} \in \tilde{\mathcal{C}}^{k} \subset$ $\mathbf{R}_{k}^{-1}\left(\mathbb{R}_{-}^{d}\right)$.
(iii) This full information game has convex compact decision sets and a bilinear payoff function. Thanks to the characterization of approachable closed convex cones in full information, the statement of the proposition is then equivalent to Blackwell condition:

$$
\forall f \in \mathcal{F}, \exists \tilde{x} \in \Delta(\mathcal{K} \times \mathcal{A}), \quad \tilde{\mathbf{g}}(\tilde{x}, f) \in \tilde{\mathcal{C}}
$$

which we now aim at proving. Let $f \in \mathcal{F}$ and $k_{0} \in$ \mathcal{K} such that $f \in \mathcal{F}^{k_{0}}$. According to property (ii) in Proposition 3.1, there exists $x \in \Delta(\mathcal{I})$ such that such that $\mathbf{r}(x, f) \in \mathbb{R}_{-}^{d}$. By Proposition 3.1, there exists $\ell \in \mathcal{L}$ such that $x \in \mathcal{X}^{\ell}$ and we can write x as a convex combination of the vertices of \mathcal{X}^{ℓ} :

$$
x=\sum_{a \in \mathcal{A}} \lambda^{a} \cdot a \quad \text { where } \quad\left\{\begin{array}{l}
\left(\lambda^{a}\right)_{a \in \mathcal{A}} \in \Delta(\mathcal{A}) \\
\operatorname{supp}\left(\lambda^{a}\right)_{a \in \mathcal{A}} \subset \mathcal{X}^{\ell}
\end{array}\right.
$$

Now consider the random decision

$$
\tilde{x}:=\left(\mathbb{1}_{\left\{k=k_{0}\right\}} \lambda^{a}\right)_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \in \Delta(\mathcal{K} \times \mathcal{A})
$$

and let us prove that $\tilde{\mathbf{g}}(\tilde{x}, f) \in \tilde{\mathcal{C}}$. We have by definition of $\tilde{\mathbf{g}}$:

$$
\tilde{\mathbf{g}}(\tilde{x}, f)=\left(\mathbb{1}_{\left\{k=k_{0}\right\}} \lambda^{a} \cdot f\right)_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}}
$$

and since $\tilde{\mathcal{C}}=\prod_{k \in \mathcal{K}} \tilde{\mathcal{C}}^{k}$, we only have to check that $\left(\lambda^{a} f\right)_{a \in \mathcal{A}}$ belongs to $\tilde{\mathcal{C}}^{k_{0}}=\mathbf{R}_{k_{0}}^{-1}\left(\mathbb{R}_{-}^{d}\right) \cap\left(\mathcal{F}_{c}^{k_{0}}\right)^{\mathcal{A}}$. First, because $f \in \mathcal{F}^{k_{0}}$, $\lambda^{a} f$ belongs to the closed convex cone $\mathcal{F}_{c}^{k_{0}}=\mathbb{R}_{+} \mathcal{F}^{k_{0}}$ and we have indeed $\left(\lambda^{a} f\right)_{a \in \mathcal{A}} \in$ $\left(\mathcal{F}_{c}^{k_{0}}\right)^{\mathcal{A}}$. Then, let us prove that $\mathbf{R}_{k_{0}}\left(\left(\lambda^{a} f\right)_{a \in \mathcal{A}}\right) \in \mathbb{R}_{-}^{d}$.

Using Proposition 3.2,

$$
\begin{aligned}
\mathbf{R}_{k_{0}}\left(\left(\lambda^{a} f\right)_{a \in \mathcal{A}}\right) & =\mathbf{R}\left(\left(\mathbb{1}_{\left\{k=k_{0}\right\}} \lambda^{a} \cdot f\right)_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}}\right) \\
& =\mathbf{r}(x, f) \in \mathbb{R}_{-}^{d} .
\end{aligned}
$$

Therefore, we have proved that $\left(\lambda^{a} f\right)_{a \in \mathcal{A}}$ belongs to $\tilde{\mathcal{C}}^{k_{0}}=\mathbf{R}_{k_{0}}^{-1}\left(\mathbb{R}_{-}^{d}\right) \cap\left(\mathcal{F}_{c}^{k_{0}}\right)^{\mathcal{A}}$, and thus, that $\tilde{\mathbf{g}}(\tilde{x}, f) \in \tilde{\mathcal{C}}$, which concludes the proof.

A. 6 Properties of the estimate \hat{f}_{t}.

Lemma A. 4 For all $t \geqslant 1$,
(i) $\mathbb{E}\left[\hat{f}_{t} \mid \mathcal{G}_{t}\right]=\mathbb{E}\left[f_{t} \mid \mathcal{G}_{t}\right]$;
(ii) $\mathbb{E}\left[\left\|\hat{f}_{t}\right\|_{2}^{2} \mid \mathcal{G}_{t}\right] \leqslant \frac{|\mathcal{I}|^{2}}{\gamma}$;
(iii) $\left\|\hat{f}_{t}\right\|_{2}^{2} \leqslant \frac{|\mathcal{I}|^{2}}{\gamma^{2}}$.

Proof. (i) Let $i \in \mathcal{I}$. Using the conditional expectation with respect to event $\left\{i_{t}=i\right\}$, we have

$$
\begin{aligned}
\mathbb{E}\left[\hat{f}_{t}^{i} \mid \mathcal{G}_{t}\right] & =\mathbb{E}\left[\left.\frac{\mathbb{1}_{\left\{i_{t}=i\right\}}}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]} \delta_{s_{t}} \right\rvert\, \mathcal{G}_{t}\right] \\
& =\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right] \mathbb{E}\left[\left.\frac{\delta_{s_{t}}}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]} \right\rvert\, \mathcal{G}_{t},\left\{i_{t}=i\right\}\right] \\
& =\mathbb{E}\left[\delta_{s_{t}} \mid \mathcal{G}_{t},\left\{i_{t}=i\right\}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\delta_{s_{t}} \mid y_{t}, \mathcal{G}_{t},\left\{i_{t}=i\right\}\right] \mid \mathcal{G}_{t},\left\{i_{t}=i\right\}\right] \\
& =\mathbb{E}\left[\mathbf{s}\left(i, y_{t}\right) \mid \mathcal{G}_{t},\left\{i_{t}=i\right\}\right] \\
& =\mathbb{E}\left[\mathbf{s}\left(i, y_{t}\right) \mid \mathcal{G}_{t}\right] \\
& =\mathbb{E}\left[f_{t}^{i} \mid \mathcal{G}_{t}\right]
\end{aligned}
$$

hence the result.
(ii) We write

$$
\begin{aligned}
\mathbb{E}\left[\left\|\hat{f}_{t}\right\|_{2}^{2} \mid \mathcal{G}_{t}\right]= & \mathbb{E}\left[\left.\sum_{i \in \mathcal{I}}\left\|\frac{\mathbb{1}_{\left\{i_{t}=i\right\}}}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]} \delta_{s_{t}}\right\|_{2}^{2} \right\rvert\, \mathcal{G}_{t}\right] \\
= & \mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right] \\
& \times \mathbb{E}\left[\left.\sum_{i \in \mathcal{I}}\left\|\frac{\delta_{s_{t}}}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]}\right\|_{2}^{2} \right\rvert\, \mathcal{G}_{t},\left\{i_{t}=i\right\}\right] \\
= & \sum_{i \in \mathcal{I}} \frac{1}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]} \mathbb{E}\left[\left\|\delta_{s_{t}}\right\|_{2}^{2} \mid \mathcal{G}_{t},\left\{i_{t}=i\right\}\right] \\
= & \sum_{i \in \mathcal{I}} \frac{1}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]} \\
\leqslant & \frac{|\mathcal{I}|^{2}}{\gamma},
\end{aligned}
$$

where the last inequality stands because $\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right] \geqslant \gamma /|\mathcal{I}|$ by definition of the algorithm.
(iii) We have

$$
\begin{aligned}
\left\|\hat{f}_{t}\right\|_{2}^{2} & =\sum_{i \in \mathcal{I}}\left\|\frac{\mathbb{1}_{\left\{i_{t}=i\right\}}}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]} \delta_{s_{t}}\right\|_{2}^{2} \\
& =\sum_{i \in \mathcal{I}} \mathbb{1}_{\left\{i_{t}=i\right\}} \frac{\left\|\delta_{s_{t}}\right\|_{2}^{2}}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]^{2}} \\
& \leqslant \frac{|\mathcal{I}|^{2}}{\gamma^{2}} \sum_{i \in \mathcal{I}} \mathbb{1}_{\left\{i_{t}=i\right\}}=\frac{|\mathcal{I}|^{2}}{\gamma^{2}} .
\end{aligned}
$$

B Proof of Theorem 4.1

B. 1 Average auxiliary payoff $\overline{\tilde{g}}_{T}$ is close to auxiliary target set \mathcal{C}

Lemma B. 1

$$
\mathbb{E}\left[\mathbf{d}_{2}\left(\overline{\tilde{g}}_{T}, \tilde{\mathcal{C}}\right)\right] \leqslant \frac{1}{2 \eta T}+\frac{\eta|\mathcal{I}|^{2}}{2 \gamma}
$$

Proof. For $t \geqslant 1$, we can write

$$
\begin{aligned}
\tilde{z}_{t} & =\mathbf{P}_{\tilde{\mathcal{Z}}}\left(\eta \sum_{s=1}^{t-1} \tilde{g}_{s}\right)=\arg \min _{\tilde{z} \in \tilde{\mathcal{Z}}}\left\|\tilde{z}-\eta \sum_{s=1}^{t-1} \tilde{g}_{s}\right\|_{2}^{2} \\
& =\arg \max _{\tilde{z} \in \tilde{\mathcal{Z}}}\left\{\left\langle\eta \sum_{s=1}^{t-1} \tilde{g}_{s} \mid \tilde{z}\right\rangle-\frac{1}{2}\|\tilde{z}\|_{2}^{2}\right\} .
\end{aligned}
$$

Then, Theorem D. 1 together with the fact that $\|\tilde{\mathcal{Z}}\|_{2}=\left\|\tilde{\mathcal{C}}^{\circ} \cap \mathcal{B}_{2}\right\|_{2} \leqslant 1$ gives

$$
\max _{\tilde{z} \in \tilde{\mathcal{Z}}} \sum_{t=1}^{T}\left\langle\tilde{g}_{t} \mid \tilde{z}\right\rangle-\sum_{t=1}^{T}\left\langle\tilde{g}_{t} \mid \tilde{z}_{t}\right\rangle \leqslant \frac{1}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\tilde{g}_{t}\right\|_{2}^{2}
$$

By taking the expectation and dividing by T, we get

$$
\begin{array}{r}
\mathbb{E}\left[\max _{\tilde{z} \in \tilde{\mathcal{Z}}}\left\langle\overline{\tilde{g}}_{T} \mid \tilde{z}\right\rangle\right] \leqslant \\
\frac{1}{2 \eta T}+\mathbb{E}\left[\frac{1}{T} \sum_{t=1}^{T}\left\langle\tilde{g}_{t} \mid \tilde{z}_{t}\right\rangle\right] \\
+\frac{\eta}{2 T} \mathbb{E}\left[\sum_{t=1}^{T}\left\|\tilde{g}_{t}\right\|_{2}^{2}\right]
\end{array}
$$

We first analyze the first sum of the right-hand side. Let us prove that each scalar product $\left\langle\tilde{g}_{t} \mid \tilde{z}_{t}\right\rangle$ is nonpositive in expectation. For all $1 \leqslant t \leqslant T$, we replace \tilde{g}_{t} by its definition:

$$
\mathbb{E}\left[\left\langle\tilde{g}_{t} \mid \tilde{z}_{t}\right\rangle\right]=\mathbb{E}\left[\left\langle\tilde{\mathbf{g}}\left(\left(k_{t}, a_{t}\right), \hat{f}_{t}\right) \mid \tilde{z}_{t}\right\rangle\right]
$$

We then consider the conditional expectation with respect to \mathcal{G}_{t}. The application $\tilde{\mathbf{g}}\left(\left(k_{t}, a_{t}\right), \cdot\right)$ being linear, and the variables k_{t}, a_{t} and \tilde{z}_{t} being measurable with
respect to \mathcal{G}_{t}, we can make $\mathbb{E}\left[\hat{f}_{t} \mid \mathcal{G}_{t}\right]$ appear as follows:

$$
\begin{aligned}
\mathbb{E}\left[\left\langle\tilde{g}_{t} \mid \tilde{z}_{t}\right\rangle\right] & =\mathbb{E}\left[\mathbb{E}\left[\left\langle\tilde{\mathbf{g}}\left(\left(k_{t}, a_{t}\right), \hat{f}_{t}\right) \mid \tilde{z}_{t}\right\rangle \mid \mathcal{G}_{t}\right]\right] \\
& =\mathbb{E}\left[\left\langle\tilde{\mathbf{g}}\left(\left(k_{t}, a_{t}\right), \mathbb{E}\left[\hat{f}_{t} \mid \mathcal{G}_{t}\right]\right) \mid \tilde{z}_{t}\right\rangle\right] \\
& =\mathbb{E}\left[\left\langle\tilde{\mathbf{g}}\left(\left(k_{t}, a_{t}\right), \mathbb{E}\left[f_{t} \mid \mathcal{G}_{t}\right]\right) \mid \tilde{z}_{t}\right\rangle\right] \\
& =\mathbb{E}\left[\left\langle\tilde{\mathbf{g}}\left(\left(k_{t}, a_{t}\right), f_{t}\right) \mid \tilde{z}_{t}\right\rangle\right],
\end{aligned}
$$

where we used Lemma A. 4 to replace the conditional expectation of \hat{f}_{t} by the conditional expectation of f_{t}. Now consider the sigma-algebra \mathcal{H}_{t} generated by

$$
\left(k_{1}, a_{1}, i_{1}, s_{1}, \ldots, k_{t-1}, a_{t-1}, i_{t-1}, s_{t-1}\right)
$$

By definition of the algorithm, the law of random variable $\left(k_{t}, a_{t}\right)$ knowing \mathcal{H}_{t} is \tilde{x}_{t}. We now resume the above computation by introducing the conditional expectation with respect to \mathcal{H}_{t} and f_{t} :

$$
\begin{aligned}
\mathbb{E}\left[\left\langle\tilde{g}_{t} \mid \tilde{z}_{t}\right\rangle\right] & =\mathbb{E}\left[\left\langle\tilde{\mathbf{g}}\left(\left(k_{t}, a_{t}\right), f_{t}\right) \mid \tilde{z}_{t}\right\rangle\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[\left\langle\tilde{\mathbf{g}}\left(\left(k_{t}, a_{t}\right), f_{t}\right) \mid \tilde{z}_{t}\right\rangle \mid \mathcal{H}_{t}, f_{t}\right]\right] \\
& =\mathbb{E}\left[\left\langle\tilde{\mathbf{g}}\left(\mathbb{E}\left[\left(k_{t}, a_{t}\right) \mid \mathcal{H}_{t}, f_{t}\right], f_{t}\right) \mid \tilde{z}_{t}\right\rangle\right] \\
& =\mathbb{E}\left[\left\langle\tilde{\mathbf{g}}\left(\mathbb{E}\left[\left(k_{t}, a_{t}\right) \mid \mathcal{H}_{t}\right], f_{t}\right) \mid \tilde{z}_{t}\right\rangle\right] \\
& =\mathbb{E}\left[\left\langle\tilde{\mathbf{g}}\left(\tilde{x}_{t}, f_{t}\right) \mid \tilde{z}_{t}\right\rangle\right] .
\end{aligned}
$$

By definition of the algorithm, $\tilde{x}_{t}=\tilde{\mathbf{x}}\left(\tilde{z}_{t}\right)$. In other words (see Proposition 3.3), for all $f \in \mathcal{F}$, the scalar product $\left\langle\tilde{\mathbf{g}}\left(\tilde{x}_{t}, f\right) \mid \tilde{z}_{t}\right\rangle$ is nonpositive. This is in particular true for $f=f_{t}$. Therefore, $\mathbb{E}\left[\left\langle\tilde{g}_{t} \mid \tilde{z}_{t}\right\rangle\right] \leqslant 0$.
We now turn to the second sum that involves the squared norms $\left\|\tilde{g}_{t}\right\|_{2}^{2}$. For $1 \leqslant t \leqslant T$, using the definition of $\tilde{\mathbf{g}}$,

$$
\begin{aligned}
\left\|\tilde{g}_{t}\right\|_{2}^{2} & =\| \tilde{\mathbf{g}}^{\left(\left(k_{t}, a_{t}\right), \hat{f}_{t}\right) \|_{2}^{2}} \\
& =\left\|\left(\mathbb{1}_{\left\{k=k_{t}\right\}} \mathbb{1}_{\left\{a=a_{t}\right\}} \hat{f}_{t}\right)_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}}\right\|_{2}^{2} \\
& =\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}}\left\|\mathbb{1}_{\left\{k=k_{t}\right\}} \mathbb{1}_{\left\{a=a_{t}\right\}} \hat{f}_{t}\right\|_{2}^{2}=\left\|\hat{f}_{t}\right\|_{2}^{2} .
\end{aligned}
$$

Using (ii) from Lemma B.1, we have

$$
\mathbb{E}\left[\left\|\tilde{g}_{t}\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|\hat{f}_{t}\right\|_{2}^{2}\right]=\mathbb{E}\left[\mathbb{E}\left[\left\|\hat{f}_{t}\right\|_{2}^{2} \mid \mathcal{G}_{t}\right]\right] \leqslant \frac{|\mathcal{I}|^{2}}{\gamma}
$$

Putting everything together, we obtain in expectation the following bound on the distance from $\overline{\tilde{g}}_{T}$ to $\tilde{\mathcal{C}}$:

$$
\mathbb{E}\left[\mathbf{d}_{2}\left(\overline{\tilde{g}}_{T}, \tilde{\mathcal{C}}\right)\right]=\mathbb{E}\left[\max _{\tilde{z} \in \tilde{\mathcal{Z}}}\left\langle\overline{\tilde{g}}_{T} \mid \tilde{z}\right\rangle\right] \leqslant \frac{1}{2 \eta T}+\frac{\eta|\mathcal{I}|^{2}}{2 \gamma}
$$

where the above equality comes from the expression of the Euclidean distance to $\tilde{\mathcal{C}}$ given by Proposition C.6.

B. 2 From $\overline{\tilde{g}}_{T}$ in the auxiliary space to $\mathbf{R}\left(\overline{\tilde{g}}_{T}\right)$ in the initial space

Lemma B. 2

$$
\mathbf{d}_{2}\left(\mathbf{R}\left(\overline{\tilde{g}}_{T}\right), \mathbb{R}_{-}^{d}\right) \leqslant\left(L_{\mathbf{r}} \sqrt{|\mathcal{K}||\mathcal{A}|}\right) \cdot \mathbf{d}_{2}\left(\overline{\tilde{g}}_{T}, \tilde{\mathcal{C}}\right)
$$

Proof. It follows from property (ii) in Proposition 3.3 that $\tilde{\mathcal{C}} \subset \mathbf{R}^{-1}\left(\mathbb{R}_{-}^{d}\right)$. Therefore, we can write

$$
\begin{aligned}
\mathbf{d}_{2}\left(\mathbf{R}\left(\overline{\tilde{g}}_{T}\right), \mathbb{R}_{-}^{d}\right) & =\min _{g^{\prime} \in \mathbb{R}_{-}^{d}}\left\|\mathbf{R}\left(\overline{\tilde{g}}_{T}\right)-g^{\prime}\right\|_{2} \\
& \leqslant \min _{\tilde{g} \in \mathbf{R}^{-1}\left(\mathbb{R}_{-}^{d}\right)}\left\|\mathbf{R}\left(\overline{\tilde{g}}_{T}\right)-\mathbf{R}(\tilde{g})\right\|_{2} \\
& \leqslant \min _{\tilde{g} \in \tilde{\mathcal{C}}}\left\|\mathbf{R}\left(\overline{\tilde{g}}_{T}\right)-\mathbf{R}(\tilde{g})\right\|_{2} \\
& \leqslant\|\mathbf{R}\| \cdot \min _{\tilde{g} \in \tilde{\mathcal{C}}}\left\|\overline{\tilde{g}}_{T}-\tilde{g}\right\|_{2} \\
& =\|\mathbf{R}\| \cdot \mathbf{d}_{2}\left(\overline{\tilde{g}}_{T}, \tilde{\mathcal{C}}\right),
\end{aligned}
$$

where $\|\mathbf{R}\|$ is the operator norm of \mathbf{R}. To conclude the proof, let us prove that the latter is bounded from above by $L_{\mathbf{r}} \sqrt{|\mathcal{K}||\mathcal{A}|}$. Let $\tilde{g} \in\left(\mathbb{R}^{\mathcal{S} \times \mathcal{I}}\right)^{\mathcal{K} \times \mathcal{A}}$. By definition of \mathbf{R}, and using the Lipschitz constant $L_{\mathbf{r}}$ from Lemma A. 3 which is common to the linear applications $\mathbf{r}^{[k]}(a, \cdot)$, we have

$$
\begin{aligned}
\|\mathbf{R}(\tilde{g})\|_{2} & =\left\|\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \mathbf{r}^{[k]}\left(a, \tilde{g}^{k a}\right)\right\|_{2} \leqslant \sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}}\left\|\mathbf{r}^{[k]}\left(a, \tilde{g}^{k a}\right)\right\|_{2} \\
& \leqslant \sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} L_{\mathbf{r}}\left\|\tilde{g}^{k a}\right\|_{2} \leqslant L_{\mathbf{r}} \sqrt{|\mathcal{K}||\mathcal{A}| \sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}}\left\|\tilde{g}^{k a}\right\|_{2}^{2}} \\
& =L_{\mathbf{r}} \sqrt{|\mathcal{K}||\mathcal{A}|} \cdot\|\tilde{g}\|_{2}
\end{aligned}
$$

which concludes the proof.

B. 3 Decomposition of $\mathbf{R}\left(\overline{\tilde{g}}_{T}\right)$

We have the following expression of the image by \mathbf{R} of the average auxiliary payoff $\overline{\tilde{g}}_{T}$.

Lemma B. 3

$\mathbf{R}\left(\overline{\tilde{g}}_{T}\right)=\mathbf{R}\left(\frac{1}{T} \sum_{t=1}^{T} \tilde{g}_{t}\right)=\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{r}^{[k]}\left(a, \overline{\hat{f}}_{T}(k, a)\right)$.

Proof. Using the definitions of $\mathbf{R}, \tilde{g}_{t}, \tilde{\mathbf{g}}$, and the linearity of \mathbf{R} and $\mathbf{r}^{[k]}(a, \cdot)$, we can write

$$
\begin{aligned}
\mathbf{R}\left(\frac{1}{T} \sum_{t=1}^{T} \tilde{g}_{t}\right) & =\frac{1}{T} \sum_{t=1}^{T} \mathbf{R}\left(\tilde{g}_{t}\right)=\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \mathbf{r}^{[k]}\left(a, \tilde{g}_{t}^{k a}\right) \\
& =\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \mathbf{r}^{[k]}\left(a, \mathbb{1}_{\left\{k=k_{t}\right\}} \mathbb{1}_{\left\{a=a_{t}\right\}} \hat{f}_{t}\right) \\
& =\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{r}^{[k]}\left(a, \overline{\hat{f}}_{T}(k, a)\right)
\end{aligned}
$$

B. 4 Average estimator $\overline{\hat{f}}_{T}(k, a)$ is close to average flag $\bar{f}_{T}(k, a)$

Lemma B. 4

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \lambda_{T}(k, a)\left\|\overline{\hat{f}}_{T}(k, a)-\bar{f}_{T}(k, a)\right\|_{2}\right] \\
& \leqslant|\mathcal{I}||\mathcal{K}||\mathcal{A}|\left(\frac{8}{\sqrt{T \gamma}}+\frac{8}{3 T \gamma}\right)
\end{aligned}
$$

Proof. Let $k \in \mathcal{K}$ and $a \in \mathcal{A}$. Consider the random process $\left(X_{t}(k, a)\right)_{t \geqslant 1}$ defined by

$$
X_{t}(k, a):=\mathbb{1}_{\left\{k_{t}=k, a_{t}=a\right\}}\left(\hat{f}_{t}-f_{t}\right)
$$

and to which we are aiming at applying Corollary E.4. $\left(X_{t}(k, a)\right)_{t \geqslant 1}$ is a martingale difference sequence with respect to filtration $\left(\mathcal{G}_{t}\right)_{t \geqslant 1}$. Indeed, since $\mathbb{1}_{\left\{k_{t}=k, a_{t}=a\right\}}$ is measurable with respect to \mathcal{G}_{t},

$$
\begin{aligned}
& \mathbb{E}\left[\mathbb{1}_{\left\{k_{t}=k, a_{t}=a\right\}}\left(\hat{f}_{t}-f_{t}\right) \mid \mathcal{G}_{t}\right] \\
& =\mathbb{1}_{\left\{k_{t}=k, a_{t}=a\right\}} \mathbb{E}\left[\hat{f}_{t}-f_{t} \mid \mathcal{G}_{t}\right]=0 .
\end{aligned}
$$

where the last equality follows from (i) in Lemma A.4. Moreover, using (iii) from Lemma A.4, we bound each $X_{t}(k, a)$ as follows.

$$
\begin{aligned}
\left\|X_{t}(k, a)\right\|_{2} & \leqslant\left\|\hat{f}_{t}-f_{t}\right\|_{2} \leqslant\left\|\hat{f}_{t}\right\|_{2}+\left\|f_{t}\right\|_{2} \\
& \leqslant \frac{|\mathcal{I}|}{\gamma}+\left\|\left(\mathbf{s}\left(i, y_{t}\right)\right)_{i \in \mathcal{I}}\right\|_{2} \\
& =\frac{|\mathcal{I}|}{\gamma}+\sqrt{\sum_{i \in \mathcal{I}}\left\|\mathbf{s}\left(i, y_{t}\right)\right\|_{2}^{2}} \\
& \leqslant \frac{|\mathcal{I}|}{\gamma}+\sqrt{|\mathcal{I}|} \leqslant \frac{2|\mathcal{I}|}{\gamma}
\end{aligned}
$$

where we used the fact that $\gamma \geqslant 1$ for the last inequality. As far as the conditional variances are concerned, we have

$$
\begin{aligned}
\mathbb{E}\left[\left\|X_{t}(k, a)\right\|_{2}^{2} \mid \mathcal{G}_{t}\right] & =\mathbb{E}\left[\mathbb{1}_{\left\{k_{t}=k, a_{t}=a\right\}}\left\|\hat{f}_{t}-f_{t}\right\|_{2}^{2} \mid \mathcal{G}_{t}\right] \\
& \leqslant \mathbb{E}\left[\left\|\hat{f}_{t}-f_{t}\right\|_{2}^{2} \mid \mathcal{G}_{t}\right] \\
& \leqslant \mathbb{E}\left[\left\|\hat{f}_{t}\right\|_{2}^{2} \mid \mathcal{G}_{t}\right]+\mathbb{E}\left[\left\|f_{t}\right\|_{2}^{2} \mid \mathcal{G}_{t}\right] \\
& \leqslant \frac{|\mathcal{I}|^{2}}{\gamma}+|\mathcal{I}| \leqslant \frac{2|\mathcal{I}|^{2}}{\gamma}
\end{aligned}
$$

where the first term of the second line has been bounded using property (ii) from Lemma A.4, whereas the second term is bounded by $|\mathcal{I}|$ since

$$
\left\|f_{t}\right\|_{2}^{2}=\left\|\left(\mathbf{s}\left(i, y_{t}\right)\right)_{i \in \mathcal{I}}\right\|_{2}^{2}=\sum_{i \in \mathcal{I}}\left\|\mathbf{s}\left(i, y_{t}\right)\right\|_{2}^{2} \leqslant|\mathcal{I}|
$$

Therefore we have

$$
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\|X_{t}(k, a)\right\|_{2}^{2} \mid \mathcal{G}_{t}\right] \leqslant \frac{2|\mathcal{I}|^{2}}{\gamma}
$$

We can now apply Corollary E. 4 with $M=2|\mathcal{I}| / \gamma$ and $V=2|\mathcal{I}|^{2} / \gamma$ to get:

$$
\mathbb{E}\left[\left\|\frac{1}{T} \sum_{t=1}^{T} X_{t}(k, a)\right\|_{2}\right] \leqslant \frac{8|\mathcal{I}|}{\sqrt{T \gamma}}+\frac{8|\mathcal{I}|}{3 T \gamma} .
$$

Besides, it follows from the definition of $X_{t}(k, a)$ that

$$
\frac{1}{T} \sum_{t=1}^{T} X_{t}(k, a)=\lambda_{T}(k, a)\left(\overline{\hat{f}}_{T}(k, a)-\bar{f}_{T}(k, a)\right)
$$

Finally, by summing over k and a, we obtain:

$$
\begin{aligned}
& \mathbb{E}\left[\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \lambda_{T}(k, a)\left\|\left(\overline{\hat{f}}_{T}(k, a)-\bar{f}_{T}(k, a)\right)\right\|_{2}\right] \\
& \leqslant|\mathcal{I}||\mathcal{K}||\mathcal{A}|\left(\frac{8}{\sqrt{T \gamma}}+\frac{8}{3 T \gamma}\right)
\end{aligned}
$$

B. 5 Average estimator $\overline{\hat{f}}_{T}(k, a)$ is close to \mathcal{F}_{c}^{k}

Lemma B. 5

$$
\mathbb{E}\left[\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \mathbf{d}_{2}\left(\overline{\tilde{g}}_{T}^{k a}, \mathcal{F}_{c}^{k}\right)\right] \leqslant \sqrt{|\mathcal{K}||\mathcal{A}|}\left(\frac{1}{2 \eta T}+\frac{\eta|\mathcal{I}|^{2}}{2 \gamma}\right)
$$

Proof. Consider the set $\tilde{\mathcal{Z}}_{0}$ defined by

$$
\tilde{\mathcal{Z}}_{0}:=\prod_{k \in \mathcal{K}}\left(\left(\mathcal{F}_{c}^{k}\right)^{\circ} \cap \mathcal{B}_{2}\right)^{\mathcal{A}}
$$

and let us assume for the moment that the following inclusion holds:

$$
\begin{equation*}
\tilde{\mathcal{Z}}_{0} \subset \sqrt{|\mathcal{K}||\mathcal{A}|} \cdot \tilde{\mathcal{Z}} \tag{6}
\end{equation*}
$$

For each $k \in \mathcal{K}$ and $a \in \mathcal{A}, \mathcal{F}_{c}^{k}$ being a closed convex cone, Proposition C. 6 gives the following expression of the distance of $\overline{\tilde{g}}_{T}^{k a}$ to \mathcal{F}_{c}^{k} :

$$
\mathbf{d}_{2}\left(\overline{\tilde{g}}_{T}^{k a}, \mathcal{F}_{c}^{k}\right)=\max _{\tilde{z}^{k a} \in\left(\mathcal{F}_{c}^{k}\right)^{\circ} \cap \mathcal{B}_{2}}\left\langle\overline{\tilde{g}}_{T}^{k a} \mid \tilde{z}^{k a}\right\rangle .
$$

By summing over k and a, we have:

$$
\begin{aligned}
\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \mathbf{d}_{2}\left(\overline{\tilde{g}}_{T}^{k a}, \mathcal{F}_{c}^{k}\right) & =\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \max _{\tilde{z}^{k a} \in\left(\mathcal{F}_{c}^{k}\right)^{\circ} \cap \mathcal{B}_{2}}\left\langle\overline{\tilde{g}}_{T}^{k a} \mid \tilde{z}^{k a}\right\rangle \\
& =\max _{\tilde{z} \in \tilde{\mathcal{Z}}_{0}} \sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}}\left\langle\tilde{\tilde{g}}_{T} \mid \tilde{z}\right\rangle \\
& \leqslant \sqrt{|\mathcal{K}||\mathcal{A}|} \cdot \max _{\tilde{z} \in \tilde{\mathcal{Z}}}\left\langle\overline{\tilde{g}}_{T} \mid \tilde{z}\right\rangle \\
& =\sqrt{|\mathcal{K}||\mathcal{A}|} \cdot \mathbf{d}_{2}\left(\overline{\tilde{g}}_{T}, \tilde{\mathcal{C}}\right)
\end{aligned}
$$

where for the inequality we used inclusion (6), and for the last equality Proposition C. 6 together with the fact that $\tilde{\mathcal{Z}}=\tilde{\mathcal{C}}^{\circ} \cap \mathcal{B}_{2}$ by definition. Taking the expectation and substituting distance $\mathbf{d}_{2}\left(\overline{\tilde{g}}_{T}, \tilde{\mathcal{C}}\right)$ by the bound from Lemma B. 1 yields the result.

Let us now prove inclusion (6). Let $\tilde{z}=\left(\tilde{z}^{k a}\right)_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \in$ $\tilde{\mathcal{Z}}_{0}$. First, let us prove that $\tilde{z} \in \tilde{\mathcal{C}}^{\circ}$. Let $\tilde{g} \in \tilde{\mathcal{C}}$. We can write

$$
\langle\tilde{g} \mid \tilde{z}\rangle=\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}}\left\langle\tilde{z}^{k a} \mid \tilde{g}^{k a}\right\rangle
$$

But for each $k \in \mathcal{K}$ and $a \in \mathcal{A}$, by definition of $\tilde{\mathcal{Z}}_{0}$, we have $\tilde{z}^{k a} \in\left(\mathcal{F}_{c}^{k}\right)^{\circ}$, and since $\tilde{\mathcal{C}} \subset \prod_{k \in \mathcal{K}}\left(\mathcal{F}_{c}^{k}\right)^{\mathcal{A}}$ by definition, we also have $\tilde{g}^{k a} \in \mathcal{F}_{c}^{k}$. Therefore, $\left\langle\tilde{g}^{k a} \mid \tilde{z}^{k a}\right\rangle \leqslant 0$ and consequently, $\langle\tilde{g} \mid \tilde{z}\rangle \leqslant 0$. This proves $\tilde{\mathcal{Z}}_{0} \subset \tilde{\mathcal{C}}^{\circ}$.
Let $\tilde{z} \in \tilde{\mathcal{Z}}_{0}$. By definition of $\tilde{\mathcal{Z}}_{0}$, we have $\left\|\tilde{z}^{k a}\right\|_{2} \leqslant 1$ for all $k \in \mathcal{K}$ and $a \in \mathcal{A}$. Thus

$$
\|\tilde{z}\|_{2}=\sqrt{\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}}\left\|\tilde{z}^{k a}\right\|_{2}^{2}} \leqslant \sqrt{|\mathcal{K}||\mathcal{A}|},
$$

and therefore $\tilde{\mathcal{Z}}_{0} \subset \sqrt{|\mathcal{K}||\mathcal{A}|} \cdot \mathcal{B}_{2}$. Finally, we have

$$
\tilde{\mathcal{Z}}_{0} \subset \tilde{\mathcal{C}}^{\circ} \cap \sqrt{|\mathcal{K}||\mathcal{A}|} \cdot \mathcal{B}_{2}=\sqrt{|\mathcal{K}||\mathcal{A}|} \cdot \tilde{\mathcal{Z}}
$$

B. $6 \quad \mathbf{r}^{[k]}\left(a, \overline{\hat{f}}_{T}(k, a)\right)$ is close to $\mathbf{r}\left(a, \bar{f}_{T}(k, a)\right)$

Lemma B. 6

$$
\begin{gathered}
\mathbb{E}\left[\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \lambda_{T}(k, a)\left\|\mathbf{r}\left(a, \bar{f}_{T}(k, a)\right)-\mathbf{r}^{[k]}\left(a, \overline{\hat{f}}_{T}(k, a)\right)\right\|_{2}\right] \\
\leqslant L_{\mathbf{r}}|\mathcal{I}||\mathcal{K}||\mathcal{A}|\left(\frac{8}{\sqrt{T \gamma}}+\frac{8}{3 T \gamma}\right) \\
+L_{\mathbf{r}} \sqrt{|\mathcal{K}||\mathcal{A}|}\left(\frac{1}{\eta T}+\frac{\eta|\mathcal{I}|^{2}}{\gamma}\right)
\end{gathered}
$$

Proof. Let $(k, a) \in \mathcal{K} \times \mathcal{A}$ and denote $f:=\bar{f}_{T}(k, a)$ and $\hat{f}:=\overline{\hat{f}}_{T}(k, a)$ to alleviate notation. Denote $\mathbf{P}^{[k]}$ the Euclidean projection onto \mathcal{F}_{c}^{k}. Then of course $\mathbf{P}^{[k]}(\hat{f})$ belongs to \mathcal{F}_{c}^{k}, and since $\mathbf{r}(a, \cdot)$ and $\mathbf{r}^{[k]}(a, \cdot)$ coincide on \mathcal{F}_{c}^{k} by Proposition A.2, we can write

$$
\begin{aligned}
& \mathbf{r}(a, f)-\mathbf{r}^{[k]}(a, \hat{f})=\mathbf{r}(a, f)-\mathbf{r}(a, \hat{f})+\mathbf{r}(a, \hat{f}) \\
& \quad-\mathbf{r}\left(a, \mathbf{P}^{[k]}(\hat{f})\right)+\mathbf{r}^{[k]}\left(a, \mathbf{P}^{[k]}(\hat{f})\right)-\mathbf{r}^{[k]}(a, \hat{f})
\end{aligned}
$$

Thus, by taking the norm and using the triangle inequality and the Lipschitz constant $L_{\mathbf{r}}$ which is common to $\mathbf{r}(a, \cdot)$ and $\mathbf{r}^{[k]}(a, \cdot)$ to get

$$
\begin{aligned}
& \left\|\mathbf{r}(a, f)-\mathbf{r}^{[k]}(a, \hat{f})\right\|_{2} \\
& \quad \leqslant L_{\mathbf{r}}\left(\|f-\hat{f}\|_{2}+2 \cdot \mathbf{d}_{2}\left(\hat{f}, \mathcal{F}_{c}^{k}\right)\right)
\end{aligned}
$$

We now multiply by $\lambda_{T}(k, a)$. The last term in the above right-hand side is transformed as

$$
\begin{aligned}
2 \lambda_{T}(k, a) \cdot \mathbf{d}_{2}\left(\hat{f}, \mathcal{F}_{c}^{k}\right) & =2 \cdot \mathbf{d}_{2}\left(\lambda_{T}(k, a) \hat{f}, \mathcal{F}_{c}^{k}\right) \\
& =2 \cdot \mathbf{d}_{2}\left(\overline{\tilde{g}}_{T}^{k a}, \mathcal{F}_{c}^{k}\right)
\end{aligned}
$$

where used the fact that \mathcal{F}_{c}^{k} is a convex cone to push the factor $\lambda_{T}(k, a)$ into the distance. Therefore,

$$
\begin{aligned}
& \lambda_{T}(k, a)\left\|\mathbf{r}(a, f)-\mathbf{r}^{[k]}(a, \hat{f})\right\|_{2} \\
& \quad \leqslant L_{\mathbf{r}} \cdot \lambda_{T}(k, a)\|f-\hat{f}\|_{2}+2 L_{\mathbf{r}} \cdot \mathbf{d}_{2}\left(\overline{\tilde{g}}_{T}^{k a}, \mathcal{F}_{c}^{k}\right)
\end{aligned}
$$

Finally, we get the result by taking the expectation, summing over k and a, and plugging Lemmas B. 4 and B.5.

B. 7 g is closer to \mathbb{R}_{-}^{d} than r

Lemma B. 7

$$
\begin{aligned}
& \mathbf{d}_{2}\left(\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{g}\left(a, \bar{y}_{T}(k, a)\right), \mathbb{R}_{-}^{d}\right) \\
& \quad \leqslant \mathbf{d}_{2}\left(\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{r}\left(a, \bar{f}_{T}(k, a)\right), \mathbb{R}_{-}^{d}\right) .
\end{aligned}
$$

Proof. Let $k \in \mathcal{K}$ and $a \in \mathcal{A}$. First note that $\mathbf{f}\left(\bar{y}_{T}(k, a)\right)=\bar{f}_{T}(k, a)$. Indeed, using the affinity of f,

$$
\begin{aligned}
\mathbf{f}\left(\bar{y}_{T}(k, a)\right) & =\mathbf{f}\left(\frac{1}{\left|N_{T}(k, a)\right|} \sum_{t \in N_{T}(k, a)} y_{t}\right) \\
& =\frac{1}{\left|N_{T}(k, a)\right|} \sum_{t \in N_{T}(k, a)} \mathbf{f}\left(y_{t}\right) \\
& =\frac{1}{\left|N_{T}(k, a)\right|} \sum_{t \in N_{T}(k, a)} f_{t}=\bar{f}_{T}(k, a) .
\end{aligned}
$$

For each component $n \in\{1, \ldots, d\}$, we have $\mathbf{g}^{n}\left(a, \bar{y}_{T}(k, a)\right) \leqslant \mathbf{r}^{n}\left(a, \bar{f}_{T}(k, a)\right)$ by property (i) in Proposition 3.1. Finally, using the explicit expression of the Euclidean distance to \mathbb{R}_{-}^{d}, we have

$$
\begin{aligned}
& \mathbf{d}_{2}\left(\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{g}\left(a, \bar{y}_{T}(k, a)\right), \mathbb{R}_{-}^{d}\right) \\
& =\sqrt{\sum_{n=1}^{d}\left(\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{g}^{n}\left(a, \bar{y}_{T}(k, a)\right)\right)^{2}} \\
& \leqslant \sqrt{\sum_{n=1}^{d}\left(\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{r}^{n}\left(a, \bar{f}_{T}(k, a)\right)\right)^{2}} \\
& \quad=\mathbf{d}_{2}\left(\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{r}\left(a, \bar{f}_{T}(k, a)\right), \mathbb{R}_{-}^{d}\right)
\end{aligned}
$$

B. 8 Decomposition of $\mathbf{g}\left(a_{t}, y_{t}\right)$ with respect to the realized auxiliary decision $\left(k_{t}, a_{t}\right)$

Lemma B. 8

$$
\frac{1}{T} \sum_{t=1}^{T} \mathbf{g}\left(a_{t}, y_{t}\right)=\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{g}\left(a, \bar{y}_{T}(k, a)\right)
$$

Proof. Using the definitions of $N_{T}(k, a)$ and $\lambda_{T}(k, a)$, and the linearity of $\mathbf{g}(a, \cdot)$, we have

$$
\begin{aligned}
& \frac{1}{T} \sum_{t=1}^{T} \mathbf{g}\left(a_{t}, y_{t}\right)=\frac{1}{T} \sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \sum_{t \in N_{T}(k, a)} \mathbf{g}\left(a, y_{t}\right) \\
&=\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \frac{\left|N_{T}(k, a)\right|}{T} \cdot \frac{1}{\left|N_{T}(k, a)\right|} \sum_{t \in N_{T}(k, a)} \mathbf{g}\left(a, y_{t}\right) \\
&=\sum_{\substack{k \in \mathcal{K} \\
a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{g}\left(a, \bar{y}_{T}(k, a)\right) .
\end{aligned}
$$

B. 9 From $\mathbf{g}\left(i_{t}, j_{t}\right)$ to $\mathbf{g}\left(a_{t}, y_{t}\right)$

Lemma B. 9

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\frac{1}{T} \sum_{t=1}^{T} \mathbf{g}\left(i_{t}, j_{t}\right)-\frac{1}{T} \sum_{t=1}^{T} \mathbf{g}\left(a_{t}, y_{t}\right)\right\|_{2}\right] \\
& \leqslant \frac{2 \sqrt{\pi}\|\mathbf{g}\|_{2}}{\sqrt{T}}+2 \gamma\|\mathbf{g}\|_{2}
\end{aligned}
$$

Proof. Consider the process $\left(X_{t}\right)_{t \geqslant 1}$ defined by

$$
X_{t}=\mathbf{g}\left(i_{t}, j_{t}\right)-(1-\gamma) \mathbf{g}\left(a_{t}, y_{t}\right)-\gamma \mathbf{g}\left(u, y_{t}\right)
$$

and the filtration $\left(\mathcal{G}_{t}^{\prime}\right)_{t \geqslant 1}$ where \mathcal{G}_{t}^{\prime} is generated by

$$
\begin{aligned}
& \left(k_{1}, a_{1}, y_{1}, i_{1}, s_{1}, \ldots\right. \\
& \\
& \left.\quad k_{t-1}, a_{t-1}, y_{t-1}, i_{t-1}, s_{t-1}, k_{t}, a_{t}, y_{t}\right)
\end{aligned}
$$

$\left(X_{t}\right)_{t \geqslant 1}$ is martingale difference sequence with respect to filtration $\left(\mathcal{G}_{t}^{\prime}\right)_{t \geqslant 1}$. Indeed, knowing \mathcal{G}_{t}^{\prime}, the law of i_{t} is $(1-\gamma) a_{t}+\gamma u$ by definition of the algorithm, and thus the law of $\left(i_{t}, j_{t}\right)$ is $\left((1-\gamma) a_{t}+\gamma u\right) \otimes y_{t}$. We can then write, by bilinearity of \mathbf{g} :

$$
\mathbb{E}\left[\mathbf{g}\left(i_{t}, j_{t}\right) \mid \mathcal{G}_{t}^{\prime}\right]=(1-\gamma) \mathbf{g}\left(a_{t}, y_{t}\right)+\gamma \mathbf{g}\left(u, y_{t}\right)
$$

Moreover, $\left\|X_{t}\right\|_{2}$ is always bounded by $2\|\mathbf{g}\|_{2}$:

$$
\begin{aligned}
\left\|X_{t}\right\|_{2}= & \|(1-\gamma)\left(\mathbf{g}\left(i_{t}, j_{t}\right)-\mathbf{g}\left(a_{t}, y_{t}\right)\right) \\
& +\gamma\left(\mathbf{g}\left(i_{t}, j_{t}\right)-\mathbf{g}\left(u, y_{t}\right)\right) \|_{2} \\
\leqslant & (1-\gamma)\left\|\mathbf{g}\left(i_{t}, j_{t}\right)-\mathbf{g}\left(a_{t}, y_{t}\right)\right\|_{2} \\
& +\gamma\left\|\mathbf{g}\left(i_{t}, j_{t}\right)-\mathbf{g}\left(u, y_{t}\right)\right\|_{2} \\
\leqslant & 2\|\mathbf{g}\|_{2}
\end{aligned}
$$

We can thus apply Corollary E. 2 with $M=2\|\mathbf{g}\|_{2}$ to get

$$
\mathbb{E}\left[\left\|\frac{1}{T} \sum_{t=1}^{T} X_{t}\right\|_{2}\right] \leqslant \frac{2 \sqrt{\pi}\|\mathbf{g}\|_{2}}{\sqrt{T}}
$$

Therefore,

$$
\begin{aligned}
& \left\|\frac{1}{T} \sum_{t=1}^{T} \mathbf{g}\left(i_{t}, j_{t}\right)-\frac{1}{T} \sum_{t=1}^{T} \mathbf{g}\left(a_{t}, y_{t}\right)\right\|_{2} \\
& =\left\|\frac{1}{T} \sum_{t=1}^{T}\left(X_{t}+\gamma\left(\mathbf{g}\left(u, y_{t}\right)-\mathbf{g}\left(a_{t}, y_{t}\right)\right)\right)\right\|_{2} \\
& \leqslant\left\|\frac{1}{T} \sum_{t=1}^{T} X_{t}\right\|_{2}+\left\|\frac{\gamma}{T} \sum_{t=1}^{T}\left(\mathbf{g}\left(u, y_{t}\right)-\mathbf{g}\left(a_{t}, y_{t}\right)\right)\right\|_{2} \\
& \leqslant\left\|\frac{1}{T} \sum_{t=1}^{T} X_{t}\right\|_{2}+2 \gamma\|\mathbf{g}\|_{2}
\end{aligned}
$$

And taking the expectation:

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\frac{1}{T} \sum_{t=1}^{T} \mathbf{g}\left(i_{t}, j_{t}\right)-\frac{1}{T} \sum_{t=1}^{T} \mathbf{g}\left(a_{t}, y_{t}\right)\right\|_{2}\right] \\
& \leqslant \frac{2 \sqrt{\pi}\|\mathbf{g}\|_{2}}{\sqrt{T}}+2 \gamma\|\mathbf{g}\|_{2}
\end{aligned}
$$

B. 10 Final bound

We now combine the above lemmas in the order specified at the beginning of the section to get:

$$
\begin{aligned}
\mathbb{E}\left[\mathbf{d}_{2}\left(\bar{g}_{T}, \mathbb{R}_{-}^{d}\right)\right] \leqslant & \frac{2 \sqrt{\pi}\|\mathbf{g}\|_{2}}{\sqrt{T}}+2 \gamma\|\mathbf{g}\|_{2} \\
& +L_{\mathbf{r}}|\mathcal{I}||\mathcal{K}||\mathcal{A}|\left(\frac{8}{\sqrt{T \gamma}}+\frac{8}{3 T \gamma}\right) \\
& +\frac{3 L_{\mathbf{r}}}{2} \sqrt{|\mathcal{K}||\mathcal{A}|}\left(\frac{1}{\eta T}+\frac{\eta|\mathcal{I}|^{2}}{\gamma}\right)
\end{aligned}
$$

Injecting the values of η and γ yields the result.

C Closed Convex Cones

Throughout the section, \mathcal{W} will be a finite-dimensional vector space and \mathcal{W}^{*} its dual.

Definition C. 1 A nonempty subset \mathcal{C} of \mathcal{W} is a closed convex cone if it is closed and if for all $w, w^{\prime} \in \mathcal{C}$ and $\lambda \in \mathbb{R}_{+}$, we have $w+w^{\prime} \in \mathcal{C}$ and $\lambda w \in \mathcal{C}$.

The following proposition gathers a few immediate properties.

Proposition C. 2 (i) A closed convex cone is convex.
(ii) An intersection of closed convex cones is a closed convex cone.
(iii) A Cartesian product of closed convex cones is a closed convex cone.
(iv) A half-space of the form $\{w \in \mathcal{W} \mid\langle z \mid w\rangle \leqslant 0\}$ (for some $z \in \mathcal{W}^{*}$) is a closed convex cone.

Definition C. 3 Let \mathcal{A} be a subset of \mathcal{W}. The polar cone of \mathcal{A} is a subset of the dual space \mathcal{W}^{*} defined by

$$
\mathcal{A}^{\circ}=\left\{z \in \mathcal{W}^{*} \mid \forall w \in \mathcal{A},\langle w \mid z\rangle \leqslant 0\right\} .
$$

The following proposition is an immediate consequence of the Bipolar theorem - see e.g. Theorem 3.3.14 in Borwein and Lewis [2010].

Proposition C. 4 Let \mathcal{A} be a subset of \mathcal{W}.
(i) $\mathcal{A}^{\circ \circ}$ is the smallest closed convex cone containing \mathcal{A}.
(ii) If \mathcal{A} is closed and convex, then $\mathcal{A}^{\circ \circ}=\mathbb{R}_{+} \mathcal{A}$.
(iii) If \mathcal{A} is a closed convex cone, then $\mathcal{A}^{\circ \circ}=\mathcal{A}$.

Proposition C. 5 Let $\varphi: \mathcal{W} \rightarrow \tilde{\mathcal{W}}$ be a linear application between two finite-dimensional vector spaces \mathcal{W} and $\tilde{\mathcal{W}}, \varphi^{*}$ its transpose, \mathcal{C} and $\tilde{\mathcal{C}}$ closed convex cones in \mathcal{W} and $\tilde{\mathcal{W}}$ respectively.
(i) $\varphi(\mathcal{C})$ is a closed convex cone.
(ii) Then $\varphi^{-1}(\tilde{\mathcal{C}})=\varphi^{*}\left(\tilde{\mathcal{C}}^{\circ}\right)^{\circ}$. In particular, $\varphi^{-1}(\tilde{\mathcal{C}})$ is a closed convex cone.

Proof. Property (i) is obvious. We prove property (ii) as follows. For $w \in \mathcal{W}$,

$$
\begin{aligned}
w \in \varphi^{-1}(\tilde{\mathcal{C}}) & \Longleftrightarrow \varphi(w) \in \tilde{\mathcal{C}} \quad \Longleftrightarrow \quad \varphi(w) \in \tilde{\mathcal{C}}^{\circ \circ} \\
& \Longleftrightarrow \forall \tilde{z} \in \tilde{\mathcal{C}}^{\circ}, \quad\langle\tilde{z} \mid \varphi(w)\rangle \leqslant 0 \\
& \Longleftrightarrow \forall z \in \tilde{\mathcal{C}}^{\circ}, \quad\left\langle\varphi^{*}(\tilde{z}) \mid w\right\rangle \leqslant 0 \\
& \Longleftrightarrow w \in \varphi^{*}\left(\tilde{\mathcal{C}}^{\circ}\right)^{\circ} .
\end{aligned}
$$

Therefore, $\varphi^{-1}(\tilde{\mathcal{C}})$ is a closed convex cone because it is a polar cone.

Proposition C. 6 Let \mathcal{C} be a closed convex cone in \mathbb{R}^{n}. For all point $w \in \mathbb{R}^{n}$, its Euclidean distance to \mathcal{C} can be written

$$
\mathbf{d}_{2}(w, \mathcal{C})=\max _{z \in \mathcal{C}^{\circ} \cap \mathcal{B}_{2}}\langle w \mid z\rangle
$$

where \mathcal{B}_{2} denotes the closed unit Euclidean ball.

D A regret minimization bound

The following statement is classic in the regret minimization literature - see e.g. Shalev-Shwartz [2011, Theorem 2.4].

Theorem D. 1 Let $n \geqslant 1, \mathbb{R}^{n}$ endowed with its canonical Euclidean structure, \mathcal{Z} a nonempty convex compact subset of $\mathbb{R}^{d},\left(u_{t}\right)_{t \geqslant 1}$ a sequence in $\mathbb{R}^{n}, \eta>0$, and

$$
z_{t}=\arg \max _{z \in \mathcal{Z}}\left\{\left\langle\eta \sum_{s=1}^{t-1} u_{s} \mid z\right\rangle-\frac{1}{2}\|z\|_{2}^{2}\right\}, \quad t \geqslant 1 .
$$

Then, for all $T \geqslant 1$,

$$
\max _{z \in \mathcal{Z}} \sum_{t=1}^{T}\left\langle u_{t} \mid z\right\rangle-\sum_{t=1}^{T}\left\langle u_{t} \mid z_{t}\right\rangle \leqslant \frac{\|\mathcal{Z}\|_{2}^{2}}{2 \eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|u_{t}\right\|_{2}^{2}
$$

E Concentration inequalities

The following result is a generalization to vectorvalued martingale differences of Hoeffding-Azuma's inequality and is due to Kallenberg and Sztencel [1991].

Proposition E. 1 Let $\left(U_{t}\right)_{t \geqslant 1}$ be a sequence of martingale differences in \mathbb{R}^{d}, bounded almost-surely by $M>0$:

$$
\forall t \geqslant 1, \quad\left\|U_{t}\right\|_{2} \leqslant M, \quad \text { a.s. }
$$

Then, for every $\varepsilon>0$ and $T \geqslant 1$,

$$
\mathbb{P}\left[\left\|\frac{1}{T} \sum_{t=1}^{T} U_{t}\right\|_{2} \geqslant \varepsilon\right] \leqslant 2 \exp \left(-\frac{T \varepsilon^{2}}{4 M^{2}}\right) .
$$

Corollary E. 2 Under the assumptions of Proposition E.1, we have:

$$
\mathbb{E}\left[\left\|\frac{1}{T} \sum_{t=1}^{T} U_{t}\right\|_{2}\right] \leqslant M \sqrt{\frac{\pi}{T}}
$$

Proof. The result follows from Proposition E. 1 by integrating the tail of the distribution:

$$
\begin{aligned}
\mathbb{E}\left[\left\|\bar{U}_{T}\right\|_{2}\right] & =\int_{0}^{+\infty} \mathbb{P}\left[\left\|\bar{U}_{T}\right\|_{2} \geqslant \varepsilon\right] \mathrm{d} \varepsilon \\
& \leqslant \int_{0}^{+\infty} 2 e^{-T \varepsilon^{2} / 4 M^{2}} \mathrm{~d} \varepsilon \\
& =2 \int_{0}^{+\infty} e^{-\varepsilon^{2}\left(T / 4 M^{2}\right)} \mathrm{d} \varepsilon=M \sqrt{\frac{\pi}{T}}
\end{aligned}
$$

The following Bernstein-like inequality is proved in Pinelis [1994]-see also [Tarres and Yao, 2014, Corollary A.2].

Proposition E. 3 Let $\left(X_{t}\right)_{t \geqslant 1}$ be a martingale difference sequence in a Hilbert space with respect to a filtration $\left(\mathcal{G}_{t}\right)_{t \geqslant 0}$. Suppose that $\left\|X_{t}\right\| \leqslant M$ almost-surely, and

$$
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[\left\|X_{t}\right\|^{2} \mid \mathcal{G}_{t-1}\right] \leqslant V
$$

Then,
$\mathbb{P}\left[\max _{1 \leqslant t \leqslant T}\left\|\sum_{t^{\prime}=1}^{t} X_{t^{\prime}}\right\| \geqslant \varepsilon\right] \leqslant 2 \exp \left(-\frac{\varepsilon^{2}}{2 T V+2 M \varepsilon / 3}\right)$.
Corollary E. 4 Under the assumptions of Proposition E.3,

$$
\mathbb{E}\left[\left\|\frac{1}{T} \sum_{t=1}^{T} X_{t}\right\|\right] \leqslant 4 \sqrt{2} \sqrt{\frac{V}{T}}+\frac{4 M}{3 T}
$$

Proof. Let $A \geqslant 0$ to be chosen later.

$$
\begin{aligned}
& \mathbb{E}\left[\left\|\bar{X}_{T}\right\|\right]=\int_{0}^{+\infty} \mathbb{P}\left[\left\|\bar{X}_{T}\right\| \geqslant \varepsilon\right] \mathrm{d} \varepsilon \\
& \\
& \leqslant 2 \int_{0}^{+\infty} \exp \left(-\frac{\varepsilon^{2} T^{2}}{2 V T+2 M \varepsilon T / 3}\right) \mathrm{d} \varepsilon \\
& =2 \int_{0}^{+\infty} \exp \left(-\frac{\varepsilon^{2} T}{2 V+2 M \varepsilon / 3}\right) \mathrm{d} \varepsilon \\
& \leqslant \\
& \begin{array}{c}
=2\left(A+\int_{A}^{+\infty} \exp \left(-\frac{\varepsilon^{2} T}{2 \varepsilon(V / A+M / 3)}\right) \mathrm{d} \varepsilon\right) \\
= \\
\\
\quad 2\left(A+\int_{A}^{+\infty} \exp \left(-\frac{\varepsilon T}{2(V / A+M / 3)}\right) \mathrm{d} \varepsilon\right) \\
\leqslant
\end{array} \quad\left[-\frac{2}{T}\left(\frac{V}{A}+\frac{M}{3}\right)\right. \\
& \leqslant 2 A+\frac{4}{T}\left(\frac{V}{A}+\frac{M}{3}\right) .
\end{aligned}
$$

Choosing $A=\sqrt{2 V / T}$ gives:

$$
\mathbb{E}\left[\left\|\bar{X}_{T}\right\|\right] \leqslant 4 \sqrt{2} \sqrt{\frac{V}{T}}+\frac{4 M}{3 T}
$$

