A Proofs of technical results

A.1 Proof of Proposition 3.1

Lemma A.1 There exists a finite family of polytopes $(\mathcal{X}^{\ell})_{\ell \in \mathcal{L}}$ such that

(i)
$$\Delta(\mathcal{I}) = \bigcup_{\ell \in \mathcal{L}} \mathcal{X}^{\ell};$$

(ii) For each $\ell \in \mathcal{L}$ and $f \in \mathcal{F}$, $\mathbf{r}(\cdot, f)$ is affine on \mathcal{X}^{ℓ} .

Proof. Let $1 \leq n \leq d$ and $b \in \mathcal{B}$. Let us first prove that $\mathbf{r}^n(\cdot, b)$ is piecewise affine. The map \mathbf{f} being affine and defined on $\Delta(\mathcal{J})$, the set $\mathbf{f}^{-1}(b)$ is a polytope. Denote $y_{b,1}, \ldots, y_{b,q}$ its vertices. Let $x \in \Delta(\mathcal{I})$. By linearity of $\mathbf{g}(x, \cdot), \mathbf{r}^n(x, b)$ can then be written

$$\mathbf{r}^{n}(x,b) = \max \mathbf{g}^{n}(x,\mathbf{f}^{-1}(b)) = \max_{1 \leq p \leq q} \mathbf{g}^{n}(x,y_{b,p}).$$

 $\mathbf{r}^{n}(\cdot, b)$ now appears as the maximum of a finite family $(\mathbf{g}^{n}(\cdot, y_{b,p}))_{1 \leq p \leq q}$ of linear functions. It is therefore piecewise affine and so is $\mathbf{r}(\cdot, b)$. Therefore, for each $b \in \mathcal{B}$ there exists a decomposition of $\Delta(\mathcal{I})$ into polytopes on each of which $\mathbf{r}(\cdot, b)$ is affine. \mathcal{B} being finite, we can consider the decomposition $(\mathcal{X}^{\ell})_{\ell \in \mathcal{L}}$ which refines all of them. $\mathbf{r}(\cdot, b)$ is therefore affine on each polytope \mathcal{X}^{ℓ} for all $b \in \mathcal{B}$. Let us now prove that $\mathbf{r}(\cdot, f)$ is affine on each polytope \mathcal{X}^{ℓ} for all $f \in \mathcal{F}$.

Let $f \in \mathcal{F}, \ \ell \in \mathcal{L}, \ x_1, x_2 \in \mathcal{X}^{\ell}$ and $\lambda \in [0, 1]$. We consider the unique decomposition $f = \sum_{b \in \mathcal{B}} \mu^b \cdot b$ and $k \in \mathcal{K}$ such that $\operatorname{supp} \mu \subset \mathcal{F}^k$. Using the definition of **r** and the affinity of $\mathbf{r}(\cdot, b)$ on \mathcal{X}^{ℓ} , we have

$$\mathbf{r}(\lambda x_1 + (1 - \lambda)x_2, f)$$

$$= \sum_{b \in \mathcal{B}} \mu^b \cdot \mathbf{r}(\lambda x_1 + (1 - \lambda)x_2, b)$$

$$= \sum_{b \in \mathcal{B}} \mu^b \left(\lambda \mathbf{r}(x_1, b) + (1 - \lambda)\mathbf{r}(x_2, b)\right)$$

$$= \lambda \sum_{b \in \mathcal{B}} \mu^b \cdot \mathbf{r}(x_1, b) + (1 - \lambda) \sum_{b \in \mathcal{B}} \mu^b \cdot \mathbf{r}(x_2, b)$$

$$= \lambda \mathbf{r}(x_1, f) + (1 - \lambda)\mathbf{r}(x_2, f),$$

where the last equality stands because of the uniqueness of the decomposition of f lets us recognize the definitions of $\mathbf{r}(x_1, b)$ and $\mathbf{r}(x_2, b)$ from Equation (4). \Box

Proof. of Proposition 3.1 (i) Let $x \in \Delta(\mathcal{I})$ and $y \in \Delta(\mathcal{J})$. Denote $f = \mathbf{f}(y)$. We consider the unique decomposition $f = \sum_{b \in \mathcal{B}} \mu^b \cdot b$ and $k \in \mathcal{K}$ such that

 $\operatorname{supp} \mu \subset \mathcal{F}^k$. \mathbf{f}^{-1} being affine on \mathcal{F}^k , we have

$$\begin{split} \mathbf{g}(x,y) &\in \mathbf{g}(x,\mathbf{f}^{-1}(f)) \\ &= \mathbf{g}\left(x,\mathbf{f}^{-1}\left(\sum_{b\in\mathrm{supp}\,\mu}\mu^b\cdot b\right)\right) \\ &= \mathbf{g}\left(x,\sum_{b\in\mathcal{B}}\mu^b\cdot\mathbf{f}^{-1}(b)\right) \\ &= \sum_{b\in\mathrm{supp}\,\mu}\mu^b\cdot\mathbf{g}(x,\mathbf{f}^{-1}(b)). \end{split}$$

Then for each $1 \leq n \leq d$,

$$\mathbf{g}^{n}(x,y) \leqslant \max \sum_{b \in \mathrm{supp}\,\mu} \mu^{b} \cdot \mathbf{g}(x,\mathbf{f}^{-1}(b))$$
$$= \sum_{b \in \mathcal{B}} \mu^{b} \cdot \max \mathbf{g}^{n}(x,\mathbf{f}^{-1}(b))$$
$$= \sum_{b \in \mathcal{B}} \mu^{b} \cdot \mathbf{r}^{n}(x,b) = \mathbf{r}^{n}(x,f),$$

where for the second equality, we recognized the definition of $\mathbf{r}^{n}(x,b)$ from Equation (3) on page 5, and the the last equality, the definition of $\mathbf{r}^{n}(x,f)$ from Equation (4).

(ii) Let $f \in \mathcal{F}$. Thanks to the characterization of approachability from Proposition 1, there exists $x \in \Delta(\mathcal{I})$ such that $\mathbf{m}(x, f) \in \mathbb{R}^d_-$. Let $f = \sum_{b \in \mathcal{B}} \mu^b \cdot b$ be the unique decomposition of f given by Lemma 3.1. With the same arguments as above, we have for each $1 \leq n \leq d$,

$$\mathbf{r}^{n}(x, f) = \sum_{b \in \mathcal{B}} \mu^{b} \cdot \mathbf{r}^{n}(x, b)$$

$$= \sum_{b \in \mathcal{B}} \mu^{b} \cdot \max \mathbf{g}^{n}(x, \mathbf{f}^{-1}(b))$$

$$= \max \sum_{b \in \mathcal{B}} \mu^{b} \cdot \mathbf{g}^{n}(x, \mathbf{f}^{-1}(b))$$

$$= \max \mathbf{g}^{n} \left(x, \mathbf{f}^{-1} \left(\sum_{b \in \mathcal{B}} \mu^{b} \cdot b \right) \right)$$

$$= \max \mathbf{g}^{n}(x, \mathbf{f}^{-1}(f)) = \max \mathbf{m}^{n}(x, f) \leq 0.$$

Therefore, $\mathbf{r}(x, f) \in \mathbb{R}^d_-$.

(iii) Let $x \in \Delta(\mathcal{I}), k \in \mathcal{K}, f_1, f_2 \in \mathcal{F}^k$ and $\lambda \in [0, 1]$. We write $f_1 = \sum_{b \in \mathcal{B}} \mu_1^b \cdot b$ and $f_2 = \sum_{b \in \mathcal{B}} \mu_2^b \cdot b$ with $\operatorname{supp} \mu_1 \subset \mathcal{F}^k$ and $\operatorname{supp} \mu_2 \subset \mathcal{F}^k$. The unique decomposition of $\lambda f_1 + (1 - \lambda) f_2$ given by Lemma 3.1 is then

$$\lambda f_1 + (1-\lambda)f_2 = \sum_{b \in \mathcal{B}} (\lambda \mu_1^b + (1-\lambda)\mu_2^b) \cdot b.$$

Therefore, using the definition of \mathbf{r} and the affinity of $\mathbf{r}(x, \cdot)$ on \mathcal{F}^k ,

$$\mathbf{r}(x,\lambda f_1 + (1-\lambda)f_2)$$

$$= \mathbf{r}\left(x,\sum_{b\in\mathcal{B}}(\lambda\mu_1^b + (1-\lambda)\mu_2^b)\cdot b\right)$$

$$= \sum_{b\in\mathcal{B}}(\lambda\mu_1^b + (1-\lambda)\mu_2^b)\cdot\mathbf{r}(x,b)$$

$$= \lambda\sum_{b\in\mathcal{B}}\mu_1^b\cdot\mathbf{r}(x,b)$$

$$+ (1-\lambda)\sum_{b\in\mathcal{B}}\mu_2^b\cdot\mathbf{r}(x,b)$$

$$= \lambda\mathbf{r}(x,f_1) + (1-\lambda)\cdot\mathbf{r}(x,f_2).$$

(iv) is already proved in Lemma A.1.

A.2 Existence of $\mathbf{r}^{[k]}$

Proposition A.2 For every $k \in \mathcal{K}$, there exists a map $\mathbf{r}^{[k]} : \Delta(\mathcal{I}) \times \mathbb{R}^{S \times \mathcal{I}} \to \mathbb{R}^d$ such that

(i) for all $x \in \Delta(\mathcal{I})$, the map $\mathbf{r}^{[k]}(x, \cdot) : \mathbb{R}^{S \times \mathcal{I}} \to \mathbb{R}^d$ is linear;

(ii) for all
$$x \in \Delta(\mathcal{I})$$
 and $f \in \mathcal{F}^k$, $\mathbf{r}^{[k]}(x, f) = \mathbf{r}(x, f)$.

Proof. Let $k \in \mathcal{K}$ and $x \in \Delta(\mathcal{I})$. Let us consider span $(\mathcal{F}^k) \subset \mathbb{R}^{S \times \mathcal{I}}$, the linear span of \mathcal{F}^k . There exists a basis (f_1, \ldots, f_q) of span (\mathcal{F}^k) such that f_p belongs to \mathcal{F}^k for each $1 \leq p \leq q$. We now define $\mathbf{r}^{[k]}(x, \cdot)$ on span (\mathcal{F}^k) by setting

 $\mathbf{r}^{[k]}(x, f_p) := \mathbf{r}(x, f_p)$, for each element f_p of the basis,

and extending linearly. $\mathbf{r}^{[k]}(x, \cdot)$ can then be further extended to the whole space $\mathbb{R}^{S \times \mathcal{I}}$ by setting its value to zero on some complementary subspace of span (\mathcal{F}^k) .

Let us now prove that $\mathbf{r}^{[k]}(x, \cdot)$ coincides with $\mathbf{r}(x, \cdot)$ on \mathcal{F}^k . Let $f \in \mathcal{F}^k$. In particular, f belongs to $\operatorname{span}(\mathcal{F}^k)$ and can be uniquely written

$$f = \sum_{p=1}^{q} \lambda_p f_p$$
, where $\lambda_1, \dots, \lambda_q \in \mathbb{R}$.

The application $\mathbf{r}^{[k]}(x,\,\cdot\,)$ being linear by definition, we have

$$\mathbf{r}^{[k]}(x,f) = \sum_{p=1}^{q} \lambda_p \mathbf{r}(x,f_p).$$

We now aim at proving that the above sum is equal to $\mathbf{r}(x, f)$. This cannot be done by directly applying the affinity of $\mathbf{r}(x, \cdot)$ (property (iii) in Lemma 3.1) because

some of the above coefficients λ_p may be negative. To overcome this, we first separate the terms according to the signs of the coefficients λ_p . We denote Λ^+ (resp. Λ^-) the sum of all positive (resp. negative) coefficients λ_p and write

$$\begin{aligned} \mathbf{r}^{[k]}(x,f) &= \sum_{\lambda_p > 0} \lambda_p \mathbf{r}(x,f_p) + \sum_{\lambda_p < 0} \lambda_p \mathbf{r}(x,f_p) \\ &= \Lambda^+ \sum_{\lambda_p > 0} \left(\frac{\lambda_p}{\Lambda^+}\right) \mathbf{r}(x,f_p) \\ &+ \Lambda^- \sum_{\lambda_p < 0} \left(\frac{\lambda_p}{\Lambda^-}\right) \mathbf{r}(x,f_p). \end{aligned}$$

Since each of the above sum is now a convex combination, we can apply the affinity of $\mathbf{r}(x, \cdot)$:

$$\begin{aligned} \mathbf{r}^{[k]}(x,f) &= \Lambda^+ \cdot \mathbf{r} \left(x, \sum_{\lambda_p > 0} \left(\frac{\lambda_p}{\Lambda^+} \right) f_p \right) \\ &+ \Lambda^- \mathbf{r} \left(x, \sum_{\lambda_p < 0} \left(\frac{\lambda_p}{\Lambda^-} \right) f_p \right). \end{aligned}$$

Let us prove that

$$\mathbf{r}(x,f) - \Lambda^{-} \mathbf{r} \left(x, \sum_{\lambda_{p} < 0} \left(\frac{\lambda_{p}}{\Lambda^{-}} \right) f_{p} \right)$$
$$= \Lambda^{+} \cdot \mathbf{r} \left(x, \sum_{\lambda_{p} > 0} \left(\frac{\lambda_{p}}{\Lambda^{+}} \right) f_{p} \right). \quad (5)$$

This will prove that $\mathbf{r}^{[k]}(x, f) = \mathbf{r}(x, f)$.

$$\begin{split} \mathbf{r}(x,f) &-\Lambda^{-}\mathbf{r}\left(x,\sum_{\lambda_{p}<0}\left(\frac{\lambda_{p}}{\Lambda^{-}}\right)f_{p}\right) \\ &= (1-\Lambda^{-})\left(\frac{1}{1-\Lambda^{-}}\mathbf{r}(x,f)\right. \\ &\left. +\frac{-\Lambda^{-}}{1-\Lambda^{-}}\mathbf{r}\left(x,\sum_{\lambda_{p}<0}\left(\frac{\lambda_{p}}{\Lambda^{-}}\right)f_{p}\right)\right) \right) \\ &= (1-\Lambda^{-})\cdot\mathbf{r}\left(x,\frac{1}{1-\Lambda^{-}}f+\sum_{\lambda_{p}<0}\left(-\frac{\lambda_{p}}{1-\Lambda^{-}}\right)f_{p}\right) \\ &= (1-\Lambda^{-})\cdot\mathbf{r}\left(x,\frac{1}{1-\Lambda^{-}}\left(f-\sum_{\lambda_{p}<0}\lambda_{p}f_{p}\right)\right) \\ &= (1-\Lambda^{-})\cdot\mathbf{r}\left(x,\sum_{\lambda_{p}>0}\left(\frac{\lambda_{p}}{1-\Lambda^{-}}\right)f_{p}\right). \end{split}$$

For relation (5) to be true, it is now enough to prove that $\Lambda^+ + \Lambda^- = 1$. Since $\mathcal{F}^k \subset \mathcal{F} \subset \Delta(\mathcal{S})^{\mathcal{I}}$, for any $f_0 = (f_0^{is})_{\substack{s \in \mathcal{S} \\ i \in \mathcal{I}}} \in \mathcal{F}^k$, we have

$$\sum_{\substack{s \in \mathcal{S} \\ i \in \mathcal{I}}} f_0^{is} = \sum_{i \in \mathcal{I}} \sum_{s \in \mathcal{S}} f_0^{is} = \sum_{i \in \mathcal{I}} 1 = |\mathcal{I}|.$$

By applying the above to f and the f_p , we get

$$\begin{aligned} |\mathcal{I}| &= \sum_{\substack{s \in \mathcal{S} \\ i \in \mathcal{I}}} f^{is} = \sum_{\substack{s \in \mathcal{S} \\ i \in \mathcal{I}}} \left(\sum_{\lambda_p > 0} \lambda_p f_p^{is} + \sum_{\lambda_p < 0} \lambda_p f_p^{is} \right) \\ &= \sum_{\lambda_p > 0} \lambda_p \sum_{\substack{s \in \mathcal{S} \\ i \in \mathcal{I}}} f_p^{is} + \sum_{\lambda_p < 0} \lambda_p \sum_{\substack{s \in \mathcal{S} \\ i \in \mathcal{I}}} f_p^{is} \\ &= \Lambda^+ |\mathcal{I}| + \Lambda^- |\mathcal{I}| \,, \end{aligned}$$

and we indeed get $\Lambda^+ + \Lambda^- = 1$ by dividing by $|\mathcal{I}|$, which concludes the proof.

A.3 A lemma on L_r

Recall that $L_{\mathbf{r}}$ was defined as the maximal Lipschitz constant of mappings $\mathbf{r}(x, \cdot)$. Then it is also the maximal operator norm of the linear maps $\mathbf{r}^{[k]}(a, \cdot)$:

$$L_{\mathbf{r}} := \max_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \max_{\substack{f \in \mathbb{R}^{S \times \mathcal{I}} \\ f \neq 0}} \frac{\left\| \mathbf{r}^{[k]}(a, f) \right\|_2}{\|f\|_2}.$$

Lemma A.3 $L_{\mathbf{r}}$ is a common Lipschitz constant to $\mathbf{r}(a, \cdot)$ and $\mathbf{r}^{[k]}(a, \cdot)$ $(k \in \mathcal{K} \text{ and } a \in \mathcal{A})$. In other words, for all $k \in \mathcal{K}$ and $a \in \mathcal{A}$, we have

(i) for all
$$f, f' \in \mathbb{R}^{S \times \mathcal{I}}$$
, $\left\| \mathbf{r}^{[k]}(a, f) - \mathbf{r}^{[k]}(a, f') \right\|_2 \leq L_{\mathbf{r}} \left\| f - f' \right\|_2$;

(ii) for all
$$f, f' \in \mathcal{F}$$
, $\|\mathbf{r}(a, f) - \mathbf{r}(a, f')\|_2 \leq L_{\mathbf{r}} \|f - f'\|_2$.

Proof. Property (i) follows from the definition of $L_{\mathbf{r}}$ and the linearity of the map $\mathbf{r}^{[k]}(a, \cdot)$.

(ii) Let $k \in \mathcal{K}$, $a \in \mathcal{A}$ and $f, f' \in \mathcal{F}$. $(\mathcal{F}^k)_{k \in \mathcal{K}}$ being a finite decomposition of \mathcal{F} into convex polytopes, there exists a finite sequence (k_1, k_2, \ldots, k_q) in \mathcal{K} such that the k_p 's are all different and a sequence $(f_0 = f, f_1, f_2, \ldots, f_q = f')$ in the affine segment [f, f']such that $[f_{p-1}, f_p] \subset \mathcal{F}^{k_p}$ for each $1 \leq p \leq q$, see Figure 1. Therefore, using the fact that $\mathbf{r}^{[k']}(a, \cdot)$ and

 $\mathbf{r}(a, \cdot)$ coincide on $\mathcal{F}^{k'}$ for all $k' \in \mathcal{K}$, we can write

$$\begin{aligned} \|\mathbf{r}(a, f) - \mathbf{r}(a, f')\|_{2} \\ &= \left\| \sum_{p=1}^{q} \left(\mathbf{r}(a, f_{p-1}) - \mathbf{r}(a, f_{p}) \right) \right\|_{2} \\ &= \left\| \sum_{p=1}^{q} \mathbf{r}^{[k_{p}]}(a, f_{p-1}) - \mathbf{r}^{[k_{p}]}(a, f_{p}) \right\|_{2} \\ &\leqslant \sum_{p=1}^{q} \left\| \mathbf{r}^{[k_{p}]}(a, f_{p-1}) - \mathbf{r}^{[k_{p}]}(a, f_{p}) \right\|_{2} \\ &\leqslant L_{\mathbf{r}} \sum_{p=1}^{q} \| f_{p-1} - f_{p} \|_{2} \\ &= L_{\mathbf{r}} \| f - f' \|_{2} \,, \end{aligned}$$

where the last equality holds because the points f_0, \ldots, f_q are aligned and ordered.

A.4 Proof of Proposition 3.2

Proof. Using the definition of **R**,

$$\begin{split} \mathbf{R} \left(\left(\mathbbm{1}_{\{k_0=k\}} \lambda^a \cdot f \right)_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \right) \\ &= \sum_{k \in \mathcal{K}} \sum_{a \in \mathcal{A}} \mathbf{r}^{[k]}(a, \mathbbm{1}_{\{k_0=k\}} \lambda^a \cdot f) \\ &= \sum_{a \in \mathcal{A}} \lambda^a \cdot \mathbf{r}^{[k_0]}(a, f) \\ &= \sum_{a \in \mathcal{A}} \lambda^a \cdot \mathbf{r}(a, f) = \mathbf{r}(x, f), \end{split}$$

where the second equality holds because by linearity of $\mathbf{r}^{[k]}(a, \cdot)$ (Proposition A.2), the fourth because $\mathbf{r}^{[k_0]}(x, \cdot)$ and $\mathbf{r}(x, \cdot)$ coincide on \mathcal{F}^{k_0} (property (ii) in Proposition A.2, and the last by affinity of $\mathbf{r}(\cdot, f)$ on \mathcal{X}^{ℓ} (property (iv) in Proposition 3.1).

A.5 Proof of Proposition 3.3

(i) Let $k \in \mathcal{K}$. $\mathbf{R}_{k}^{-1}(\mathbb{R}_{-}^{d})$ is a closed convex cone as the inverse image via a linear application of the closed convex cone \mathbb{R}_{-}^{d} (Proposition C.5). \mathcal{F}_{c}^{k} is a closed convex cone by definition, and $(\mathcal{F}_{c}^{k})^{\mathcal{A}}$ is thus a closed convex cone as a Cartesian product of closed convex cones. Therefore, $\tilde{\mathcal{C}}^{k} = \mathbf{R}_{k}^{-1}(\mathbb{R}_{-}^{d}) \cap (\mathcal{F}_{c}^{k})^{\mathcal{A}}$ is also a closed convex cones. Then, $\tilde{\mathcal{C}}$ is also a closed convex cone as a Cartesian product of two closed convex cones. Then, $\tilde{\mathcal{C}}$ is also a closed convex cone as a Cartesian product of closed convex cones.

(ii) Let $\tilde{g} = (\tilde{g}^{ka})_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \in \tilde{\mathcal{C}}$. By definition of $\tilde{\mathcal{C}}$, for each $k \in \mathcal{K}$, $(\tilde{g}^{ka})_{a \in \mathcal{A}}$ belongs to $\tilde{\mathcal{C}}^k$ and thus to $(\mathcal{F}_c^k)^{\mathcal{A}}$. Therefore, $\tilde{g} \in \prod_{k \in \mathcal{K}} (\mathcal{F}_c^k)^{\mathcal{A}}$. Moreover,

$$\mathbf{R}(\tilde{g}) = \sum_{k \in \mathcal{K}} \mathbf{R}_k \left((\tilde{g}^{ka})_{a \in \mathcal{A}} \right)$$

belongs to \mathbb{R}^d_- . Indeed, each term of the above sum belongs to \mathbb{R}^d_- because for all $k \in \mathcal{K}$, $(\tilde{g}^{ka})_{a \in \mathcal{A}} \in \tilde{\mathcal{C}}^k \subset \mathbf{R}^{-1}_k(\mathbb{R}^d_-)$.

(iii) This full information game has convex compact decision sets and a bilinear payoff function. Thanks to the characterization of approachable closed convex cones in full information, the statement of the proposition is then equivalent to Blackwell condition:

$$\forall f \in \mathcal{F}, \ \exists \ \tilde{x} \in \Delta(\mathcal{K} \times \mathcal{A}), \quad \tilde{\mathbf{g}}(\tilde{x}, f) \in \tilde{\mathcal{C}},$$

which we now aim at proving. Let $f \in \mathcal{F}$ and $k_0 \in \mathcal{K}$ such that $f \in \mathcal{F}^{k_0}$. According to property (ii) in Proposition 3.1, there exists $x \in \Delta(\mathcal{I})$ such that such that $\mathbf{r}(x, f) \in \mathbb{R}^d_-$. By Proposition 3.1, there exists $\ell \in \mathcal{L}$ such that $x \in \mathcal{X}^{\ell}$ and we can write x as a convex combination of the vertices of \mathcal{X}^{ℓ} :

$$x = \sum_{a \in \mathcal{A}} \lambda^a \cdot a \quad \text{where} \quad \begin{cases} (\lambda^a)_{a \in \mathcal{A}} \in \Delta(\mathcal{A}) \\ \operatorname{supp}(\lambda^a)_{a \in \mathcal{A}} \subset \mathcal{X}^{\ell}. \end{cases}$$

Now consider the random decision

$$\tilde{x} := \left(\mathbb{1}_{\{k=k_0\}} \lambda^a\right)_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \quad \in \Delta(\mathcal{K} \times \mathcal{A})$$

and let us prove that $\tilde{\mathbf{g}}(\tilde{x}, f) \in \tilde{\mathcal{C}}$. We have by definition of $\tilde{\mathbf{g}}$:

$$\tilde{\mathbf{g}}(\tilde{x}, f) = \left(\mathbb{1}_{\{k=k_0\}}\lambda^a \cdot f\right)_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}},$$

and since $\tilde{\mathcal{C}} = \prod_{k \in \mathcal{K}} \tilde{\mathcal{C}}^k$, we only have to check that $(\lambda^a f)_{a \in \mathcal{A}}$ belongs to $\tilde{\mathcal{C}}^{k_0} = \mathbf{R}_{k_0}^{-1}(\mathbb{R}^d_-) \cap (\mathcal{F}_c^{k_0})^{\mathcal{A}}$. First, because $f \in \mathcal{F}^{k_0}$, $\lambda^a f$ belongs to the closed convex cone $\mathcal{F}_c^{k_0} = \mathbb{R}_+ \mathcal{F}^{k_0}$ and we have indeed $(\lambda^a f)_{a \in \mathcal{A}} \in (\mathcal{F}_c^{k_0})^{\mathcal{A}}$. Then, let us prove that $\mathbf{R}_{k_0} ((\lambda^a f)_{a \in \mathcal{A}}) \in \mathbb{R}^d_-$.

Using Proposition 3.2,

$$\mathbf{R}_{k_0}((\lambda^a f)_{a \in \mathcal{A}}) = \mathbf{R}\left(\left(\mathbb{1}_{\{k=k_0\}}\lambda^a \cdot f\right)_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}}\right)$$
$$= \mathbf{r}(x, f) \in \mathbb{R}^d_-.$$

Therefore, we have proved that $(\lambda^a f)_{a \in \mathcal{A}}$ belongs to $\tilde{\mathcal{C}}^{k_0} = \mathbf{R}_{k_0}^{-1}(\mathbb{R}^d_{-}) \cap (\mathcal{F}_c^{k_0})^{\mathcal{A}}$, and thus, that $\tilde{\mathbf{g}}(\tilde{x}, f) \in \tilde{\mathcal{C}}$, which concludes the proof.

A.6 Properties of the estimate \hat{f}_t .

Lemma A.4 For all $t \ge 1$,

(i)
$$\mathbb{E}\left[\hat{f}_{t} \mid \mathcal{G}_{t}\right] = \mathbb{E}\left[f_{t} \mid \mathcal{G}_{t}\right];$$

(ii) $\mathbb{E}\left[\left\|\hat{f}_{t}\right\|_{2}^{2} \mid \mathcal{G}_{t}\right] \leq \frac{|\mathcal{I}|^{2}}{\gamma};$
(iii) $\left\|\hat{f}_{t}\right\|_{2}^{2} \leq \frac{|\mathcal{I}|^{2}}{\gamma^{2}}.$

Proof. (i) Let $i \in \mathcal{I}$. Using the conditional expectation with respect to event $\{i_t = i\}$, we have

$$\mathbb{E}\left[\hat{f}_{t}^{i} \middle| \mathcal{G}_{t}\right] = \mathbb{E}\left[\frac{\mathbb{1}_{\{i_{t}=i\}}}{\mathbb{P}\left[i_{t}=i \middle| \mathcal{G}_{t}\right]} \delta_{s_{t}} \middle| \mathcal{G}_{t}\right]$$

$$= \mathbb{P}\left[i_{t}=i \middle| \mathcal{G}_{t}\right] \mathbb{E}\left[\frac{\delta_{s_{t}}}{\mathbb{P}\left[i_{t}=i \middle| \mathcal{G}_{t}\right]} \middle| \mathcal{G}_{t}, \{i_{t}=i\}\right]$$

$$= \mathbb{E}\left[\delta_{s_{t}} \middle| \mathcal{G}_{t}, \{i_{t}=i\}\right]$$

$$= \mathbb{E}\left[\mathbb{E}\left[\delta_{s_{t}} \middle| y_{t}, \mathcal{G}_{t}, \{i_{t}=i\}\right] \middle| \mathcal{G}_{t}, \{i_{t}=i\}\right]$$

$$= \mathbb{E}\left[\mathbf{s}(i, y_{t}) \middle| \mathcal{G}_{t}, \{i_{t}=i\}\right]$$

$$= \mathbb{E}\left[\mathbf{s}(i, y_{t}) \middle| \mathcal{G}_{t}\right]$$

$$= \mathbb{E}\left[f_{t}^{i} \middle| \mathcal{G}_{t}\right],$$

hence the result.

(ii) We write

$$\begin{split} \mathbb{E}\left[\left\|\hat{f}_{t}\right\|_{2}^{2} \middle| \mathcal{G}_{t}\right] &= \mathbb{E}\left[\sum_{i \in \mathcal{I}} \left\|\frac{\mathbb{1}_{\{i_{t}=i\}}}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]} \delta_{s_{t}}\right\|_{2}^{2} \middle| \mathcal{G}_{t}\right] \\ &= \mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right] \\ &\times \mathbb{E}\left[\sum_{i \in \mathcal{I}} \left\|\frac{\delta_{s_{t}}}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]}\right\|_{2}^{2} \middle| \mathcal{G}_{t}, \{i_{t}=i\}\right] \\ &= \sum_{i \in \mathcal{I}} \frac{1}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]} \mathbb{E}\left[\left\|\delta_{s_{t}}\right\|_{2}^{2} \middle| \mathcal{G}_{t}, \{i_{t}=i\}\right] \\ &= \sum_{i \in \mathcal{I}} \frac{1}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]} \\ &\leqslant \frac{\left|\mathcal{I}\right|^{2}}{\gamma}, \end{split}$$

where the last inequality stands because $\mathbb{P}[i_t = i | \mathcal{G}_t] \ge \gamma/|\mathcal{I}|$ by definition of the algorithm.

(iii) We have

$$\begin{split} \left\| \hat{f}_{t} \right\|_{2}^{2} &= \sum_{i \in \mathcal{I}} \left\| \frac{\mathbb{1}_{\{i_{t}=i\}}}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]} \delta_{s_{t}} \right\|_{2}^{2} \\ &= \sum_{i \in \mathcal{I}} \mathbb{1}_{\{i_{t}=i\}} \frac{\left\| \delta_{s_{t}} \right\|_{2}^{2}}{\mathbb{P}\left[i_{t}=i \mid \mathcal{G}_{t}\right]^{2}} \\ &\leqslant \frac{\left| \mathcal{I} \right|^{2}}{\gamma^{2}} \sum_{i \in \mathcal{I}} \mathbb{1}_{\{i_{t}=i\}} = \frac{\left| \mathcal{I} \right|^{2}}{\gamma^{2}}. \end{split}$$

B Proof of Theorem 4.1

B.1 Average auxiliary payoff $\overline{\tilde{g}}_T$ is close to auxiliary target set \tilde{C}

Lemma B.1

$$\mathbb{E}\left[\mathbf{d}_{2}\left(\bar{\tilde{g}}_{T}, \ \tilde{\mathcal{C}}\right)\right] \leqslant \frac{1}{2\eta T} + \frac{\eta \left|\mathcal{I}\right|^{2}}{2\gamma}.$$

Proof. For $t \ge 1$, we can write

$$\tilde{z}_{t} = \mathbf{P}_{\tilde{\mathcal{Z}}} \left(\eta \sum_{s=1}^{t-1} \tilde{g}_{s} \right) = \arg\min_{\tilde{z}\in\tilde{\mathcal{Z}}} \left\| \tilde{z} - \eta \sum_{s=1}^{t-1} \tilde{g}_{s} \right\|_{2}^{2}$$
$$= \arg\max_{\tilde{z}\in\tilde{\mathcal{Z}}} \left\{ \left\langle \eta \sum_{s=1}^{t-1} \tilde{g}_{s} \middle| \tilde{z} \right\rangle - \frac{1}{2} \left\| \tilde{z} \right\|_{2}^{2} \right\}.$$

Then, Theorem D.1 together with the fact that $\left\|\tilde{\mathcal{Z}}\right\|_2 = \left\|\tilde{\mathcal{C}}^\circ \cap \mathcal{B}_2\right\|_2 \leqslant 1$ gives

$$\max_{\tilde{z}\in\tilde{\mathcal{Z}}}\sum_{t=1}^{T} \langle \tilde{g}_t | \tilde{z} \rangle - \sum_{t=1}^{T} \langle \tilde{g}_t | \tilde{z}_t \rangle \leqslant \frac{1}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \| \tilde{g}_t \|_2^2.$$

By taking the expectation and dividing by T, we get

$$\mathbb{E}\left[\max_{\tilde{z}\in\tilde{\mathcal{Z}}}\langle \bar{\tilde{g}}_{T}|\tilde{z}\rangle\right] \leqslant \frac{1}{2\eta T} + \mathbb{E}\left[\frac{1}{T}\sum_{t=1}^{T}\langle \tilde{g}_{t}|\tilde{z}_{t}\rangle\right] + \frac{\eta}{2T}\mathbb{E}\left[\sum_{t=1}^{T}\|\tilde{g}_{t}\|_{2}^{2}\right].$$

We first analyze the first sum of the right-hand side. Let us prove that each scalar product $\langle \tilde{g}_t | \tilde{z}_t \rangle$ is nonpositive in expectation. For all $1 \leq t \leq T$, we replace \tilde{g}_t by its definition:

$$\mathbb{E}\left[\left\langle \tilde{g}_t | \tilde{z}_t \right\rangle\right] = \mathbb{E}\left[\left\langle \tilde{\mathbf{g}}((k_t, a_t), \hat{f}_t) \middle| \tilde{z}_t \right\rangle\right].$$

We then consider the conditional expectation with respect to \mathcal{G}_t . The application $\tilde{\mathbf{g}}((k_t, a_t), \cdot)$ being linear, and the variables k_t , a_t and \tilde{z}_t being measurable with respect to \mathcal{G}_t , we can make $\mathbb{E}\left[\hat{f}_t \mid \mathcal{G}_t\right]$ appear as follows:

$$\mathbb{E}\left[\langle \tilde{g}_t | \tilde{z}_t \rangle\right] = \mathbb{E}\left[\mathbb{E}\left[\left\langle \tilde{\mathbf{g}}((k_t, a_t), \hat{f}_t) \middle| \tilde{z}_t \right\rangle \middle| \mathcal{G}_t\right]\right] \\ = \mathbb{E}\left[\left\langle \tilde{\mathbf{g}}\left((k_t, a_t), \mathbb{E}\left[\hat{f}_t \middle| \mathcal{G}_t\right]\right) \middle| \tilde{z}_t \right\rangle\right] \\ = \mathbb{E}\left[\left\langle \tilde{\mathbf{g}}((k_t, a_t), \mathbb{E}\left[f_t \middle| \mathcal{G}_t\right]\right) \middle| \tilde{z}_t \right\rangle\right] \\ = \mathbb{E}\left[\left\langle \tilde{\mathbf{g}}((k_t, a_t), f_t) \middle| \tilde{z}_t \right\rangle\right],$$

where we used Lemma A.4 to replace the conditional expectation of \hat{f}_t by the conditional expectation of f_t . Now consider the sigma-algebra \mathcal{H}_t generated by

$$(k_1, a_1, i_1, s_1, \ldots, k_{t-1}, a_{t-1}, i_{t-1}, s_{t-1}).$$

By definition of the algorithm, the law of random variable (k_t, a_t) knowing \mathcal{H}_t is \tilde{x}_t . We now resume the above computation by introducing the conditional expectation with respect to \mathcal{H}_t and f_t :

$$\begin{split} \mathbb{E}\left[\langle \tilde{g}_t | \tilde{z}_t \rangle\right] &= \mathbb{E}\left[\langle \tilde{\mathbf{g}}((k_t, a_t), f_t) | \tilde{z}_t \rangle\right] \\ &= \mathbb{E}\left[\mathbb{E}\left[\langle \tilde{\mathbf{g}}((k_t, a_t), f_t) | \tilde{z}_t \rangle \mid \mathcal{H}_t, f_t\right]\right] \\ &= \mathbb{E}\left[\langle \tilde{\mathbf{g}}\left(\mathbb{E}\left[(k_t, a_t) \mid \mathcal{H}_t, f_t\right], f_t) | \tilde{z}_t \rangle\right] \\ &= \mathbb{E}\left[\langle \tilde{\mathbf{g}}\left(\mathbb{E}\left[(k_t, a_t) \mid \mathcal{H}_t\right], f_t) | \tilde{z}_t \rangle\right] \\ &= \mathbb{E}\left[\langle \tilde{\mathbf{g}}\left(\tilde{x}_t, f_t\right) | \tilde{z}_t \rangle\right]. \end{split}$$

By definition of the algorithm, $\tilde{x}_t = \tilde{\mathbf{x}}(\tilde{z}_t)$. In other words (see Proposition 3.3), for all $f \in \mathcal{F}$, the scalar product $\langle \tilde{\mathbf{g}}(\tilde{x}_t, f) | \tilde{z}_t \rangle$ is nonpositive. This is in particular true for $f = f_t$. Therefore, $\mathbb{E} [\langle \tilde{g}_t | \tilde{z}_t \rangle] \leq 0$.

We now turn to the second sum that involves the squared norms $\|\tilde{g}_t\|_2^2$. For $1 \leq t \leq T$, using the definition of $\tilde{\mathbf{g}}$,

$$\begin{split} \|\tilde{g}_{t}\|_{2}^{2} &= \left\|\tilde{\mathbf{g}}((k_{t}, a_{t}), \hat{f}_{t})\right\|_{2}^{2} \\ &= \left\|\left(\mathbb{1}_{\{k=k_{t}\}}\mathbb{1}_{\{a=a_{t}\}}\hat{f}_{t}\right)_{\substack{k\in\mathcal{K}\\a\in\mathcal{A}}}\right\|_{2}^{2} \\ &= \sum_{\substack{k\in\mathcal{K}\\a\in\mathcal{A}}}\left\|\mathbb{1}_{\{k=k_{t}\}}\mathbb{1}_{\{a=a_{t}\}}\hat{f}_{t}\right\|_{2}^{2} = \left\|\hat{f}_{t}\right\|_{2}^{2}. \end{split}$$

Using (ii) from Lemma B.1, we have

$$\mathbb{E}\left[\left\|\tilde{g}_{t}\right\|_{2}^{2}\right] = \mathbb{E}\left[\left\|\hat{f}_{t}\right\|_{2}^{2}\right] = \mathbb{E}\left[\mathbb{E}\left[\left\|\hat{f}_{t}\right\|_{2}^{2} \middle| \mathcal{G}_{t}\right]\right] \leqslant \frac{\left|\mathcal{I}\right|^{2}}{\gamma}.$$

Putting everything together, we obtain in expectation the following bound on the distance from $\tilde{\tilde{g}}_T$ to $\tilde{\mathcal{C}}$:

$$\mathbb{E}\left[\mathbf{d}_{2}\left(\bar{\tilde{g}}_{T}, \ \tilde{\mathcal{C}}\right)\right] = \mathbb{E}\left[\max_{\tilde{z}\in\tilde{\mathcal{Z}}}\langle\bar{\tilde{g}}_{T}|\tilde{z}\rangle\right] \leqslant \frac{1}{2\eta T} + \frac{\eta\left|\mathcal{I}\right|^{2}}{2\gamma},$$

where the above equality comes from the expression of the Euclidean distance to $\tilde{\mathcal{C}}$ given by Proposition C.6.

B.2 From $\overline{\tilde{g}}_T$ in the auxiliary space to $\mathbf{R}(\overline{\tilde{g}}_T)$ in the initial space

Lemma B.2

$$\mathbf{d}_{2}\left(\mathbf{R}(\bar{\tilde{g}}_{T}), \mathbb{R}^{d}_{-}\right) \leqslant \left(L_{\mathbf{r}}\sqrt{|\mathcal{K}| |\mathcal{A}|}\right) \cdot \mathbf{d}_{2}\left(\bar{\tilde{g}}_{T}, \tilde{\mathcal{C}}\right).$$

Proof. It follows from property (ii) in Proposition 3.3 that $\tilde{\mathcal{C}} \subset \mathbf{R}^{-1}(\mathbb{R}^d_{-})$. Therefore, we can write

$$\begin{aligned} \mathbf{d}_{2}(\mathbf{R}(\bar{\tilde{g}}_{T}), \ \mathbb{R}_{-}^{d}) &= \min_{g' \in \mathbb{R}_{-}^{d}} \|\mathbf{R}(\bar{\tilde{g}}_{T}) - g'\|_{2} \\ &\leqslant \min_{\tilde{g} \in \mathbf{R}^{-1}(\mathbb{R}_{-}^{d})} \|\mathbf{R}(\bar{\tilde{g}}_{T}) - \mathbf{R}(\tilde{g})\|_{2} \\ &\leqslant \min_{\tilde{g} \in \tilde{\mathcal{C}}} \|\mathbf{R}(\bar{\tilde{g}}_{T}) - \mathbf{R}(\tilde{g})\|_{2} \\ &\leqslant \|\mathbf{R}\| \cdot \min_{\tilde{g} \in \tilde{\mathcal{C}}} \|\bar{\tilde{g}}_{T} - \tilde{g}\|_{2} \\ &= \|\mathbf{R}\| \cdot \mathbf{d}_{2} \left(\bar{\tilde{g}}_{T}, \ \tilde{\mathcal{C}}\right), \end{aligned}$$

where $\|\mathbf{R}\|$ is the operator norm of \mathbf{R} . To conclude the proof, let us prove that the latter is bounded from above by $L_{\mathbf{r}}\sqrt{|\mathcal{K}||\mathcal{A}|}$. Let $\tilde{g} \in (\mathbb{R}^{S \times \mathcal{I}})^{\mathcal{K} \times \mathcal{A}}$. By definition of \mathbf{R} , and using the Lipschitz constant $L_{\mathbf{r}}$ from Lemma A.3 which is common to the linear applications $\mathbf{r}^{[k]}(a, \cdot)$, we have

$$\begin{split} \|\mathbf{R}(\tilde{g})\|_{2} &= \left\|\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \mathbf{r}^{[k]}(a, \tilde{g}^{ka})\right\|_{2} \leqslant \sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \left\|\mathbf{r}^{[k]}(a, \tilde{g}^{ka})\right\|_{2} \\ &\leqslant \sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} L_{\mathbf{r}} \left\|\tilde{g}^{ka}\right\|_{2} \leqslant L_{\mathbf{r}} \sqrt{|\mathcal{K}| |\mathcal{A}| \sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \|\tilde{g}^{ka}\|_{2}^{2}} \\ &= L_{\mathbf{r}} \sqrt{|\mathcal{K}| |\mathcal{A}|} \cdot \|\tilde{g}\|_{2} \,, \end{split}$$

which concludes the proof.

B.3 Decomposition of $\mathbf{R}(\tilde{\tilde{g}}_T)$

We have the following expression of the image by **R** of the average auxiliary payoff $\bar{\tilde{g}}_T$.

Lemma B.3

$$\mathbf{R}(\bar{\tilde{g}}_T) = \mathbf{R}\left(\frac{1}{T}\sum_{t=1}^T \tilde{g}_t\right) = \sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \lambda_T(k, a) \cdot \mathbf{r}^{[k]}(a, \bar{\hat{f}}_T(k, a)).$$

Proof. Using the definitions of \mathbf{R} , \tilde{g}_t , $\tilde{\mathbf{g}}$, and the linearity of \mathbf{R} and $\mathbf{r}^{[k]}(a, \cdot)$, we can write

$$\mathbf{R}\left(\frac{1}{T}\sum_{t=1}^{T}\tilde{g}_{t}\right) = \frac{1}{T}\sum_{t=1}^{T}\mathbf{R}(\tilde{g}_{t}) = \frac{1}{T}\sum_{t=1}^{T}\sum_{\substack{k\in\mathcal{K}\\a\in\mathcal{A}}}\mathbf{r}^{[k]}(a,\tilde{g}_{t}^{ka})$$
$$= \frac{1}{T}\sum_{t=1}^{T}\sum_{\substack{k\in\mathcal{K}\\a\in\mathcal{A}}}\mathbf{r}^{[k]}\left(a,\mathbb{1}_{\{k=k_{t}\}}\mathbb{1}_{\{a=a_{t}\}}\hat{f}_{t}\right)$$
$$= \sum_{\substack{k\in\mathcal{K}\\a\in\mathcal{A}}}\lambda_{T}(k,a)\cdot\mathbf{r}^{[k]}(a,\bar{f}_{T}(k,a)).$$

B.4 Average estimator $\hat{f}_T(k, a)$ is close to average flag $\bar{f}_T(k, a)$

Lemma B.4

$$\mathbb{E}\left[\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \lambda_T(k, a) \left\| \bar{\hat{f}}_T(k, a) - \bar{f}_T(k, a) \right\|_2 \right]$$
$$\leq |\mathcal{I}| |\mathcal{K}| |\mathcal{A}| \left(\frac{8}{\sqrt{T\gamma}} + \frac{8}{3T\gamma}\right).$$

Proof. Let $k \in \mathcal{K}$ and $a \in \mathcal{A}$. Consider the random process $(X_t(k, a))_{t \ge 1}$ defined by

$$X_t(k,a) := \mathbb{1}_{\{k_t=k, a_t=a\}} \left(\hat{f}_t - f_t \right),$$

and to which we are aiming at applying Corollary E.4. $(X_t(k,a))_{t\geq 1}$ is a martingale difference sequence with respect to filtration $(\mathcal{G}_t)_{t\geq 1}$. Indeed, since $\mathbb{1}_{\{k_t=k, a_t=a\}}$ is measurable with respect to \mathcal{G}_t ,

$$\mathbb{E}\left[\mathbbm{1}_{\{k_t=k, a_t=a\}}\left(\hat{f}_t - f_t\right) \middle| \mathcal{G}_t\right]$$
$$= \mathbbm{1}_{\{k_t=k, a_t=a\}} \mathbb{E}\left[\hat{f}_t - f_t \middle| \mathcal{G}_t\right] = 0$$

where the last equality follows from (i) in Lemma A.4. Moreover, using (iii) from Lemma A.4, we bound each $X_t(k, a)$ as follows.

$$\begin{split} \|X_t(k,a)\|_2 &\leqslant \left\|\hat{f}_t - f_t\right\|_2 \leqslant \left\|\hat{f}_t\right\|_2 + \|f_t\|_2 \\ &\leqslant \frac{|\mathcal{I}|}{\gamma} + \left\|(\mathbf{s}(i,y_t))_{i\in\mathcal{I}}\right\|_2 \\ &= \frac{|\mathcal{I}|}{\gamma} + \sqrt{\sum_{i\in\mathcal{I}} \|\mathbf{s}(i,y_t)\|_2^2} \\ &\leqslant \frac{|\mathcal{I}|}{\gamma} + \sqrt{|\mathcal{I}|} \leqslant \frac{2\,|\mathcal{I}|}{\gamma}, \end{split}$$

where we used the fact that $\gamma \ge 1$ for the last inequality. As far as the conditional variances are concerned, we have

$$\mathbb{E}\left[\left\|X_{t}(k,a)\right\|_{2}^{2} \middle| \mathcal{G}_{t}\right] = \mathbb{E}\left[\mathbb{1}_{\{k_{t}=k, a_{t}=a\}} \left\|\hat{f}_{t} - f_{t}\right\|_{2}^{2} \middle| \mathcal{G}_{t}\right]$$

$$\leq \mathbb{E}\left[\left\|\hat{f}_{t} - f_{t}\right\|_{2}^{2} \middle| \mathcal{G}_{t}\right]$$

$$\leq \mathbb{E}\left[\left\|\hat{f}_{t}\right\|_{2}^{2} \middle| \mathcal{G}_{t}\right] + \mathbb{E}\left[\left\|f_{t}\right\|_{2}^{2} \middle| \mathcal{G}_{t}\right]$$

$$\leq \frac{\left|\mathcal{I}\right|^{2}}{\gamma} + \left|\mathcal{I}\right| \leq \frac{2\left|\mathcal{I}\right|^{2}}{\gamma}.$$

where the first term of the second line has been bounded using property (ii) from Lemma A.4, whereas the second term is bounded by $|\mathcal{I}|$ since

$$\|f_t\|_2^2 = \|(\mathbf{s}(i, y_t))_{i \in \mathcal{I}}\|_2^2 = \sum_{i \in \mathcal{I}} \|\mathbf{s}(i, y_t)\|_2^2 \leq |\mathcal{I}|.$$

Therefore we have

$$\frac{1}{T}\sum_{t=1}^{T} \mathbb{E}\left[\left\|X_t(k,a)\right\|_2^2 \left|\mathcal{G}_t\right] \leqslant \frac{2\left|\mathcal{I}\right|^2}{\gamma}\right]$$

We can now apply Corollary E.4 with $M = 2 |\mathcal{I}| / \gamma$ and $V = 2 |\mathcal{I}|^2 / \gamma$ to get:

$$\mathbb{E}\left[\left\|\frac{1}{T}\sum_{t=1}^{T}X_t(k,a)\right\|_2\right] \leqslant \frac{8\left|\mathcal{I}\right|}{\sqrt{T\gamma}} + \frac{8\left|\mathcal{I}\right|}{3T\gamma}$$

Besides, it follows from the definition of $X_t(k, a)$ that

$$\frac{1}{T}\sum_{t=1}^{T} X_t(k,a) = \lambda_T(k,a) \left(\bar{f}_T(k,a) - \bar{f}_T(k,a)\right).$$

Finally, by summing over k and a, we obtain:

$$\mathbb{E}\left[\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \lambda_T(k, a) \left\| \left(\bar{\hat{f}}_T(k, a) - \bar{f}_T(k, a) \right) \right\|_2 \right]$$
$$\leq |\mathcal{I}| \left| \mathcal{K} \right| \left| \mathcal{A} \right| \left(\frac{8}{\sqrt{T\gamma}} + \frac{8}{3T\gamma} \right).$$

B.5 Average estimator $\tilde{f}_T(k,a)$ is close to \mathcal{F}_c^k

Lemma B.5

$$\mathbb{E}\left[\sum_{\substack{k\in\mathcal{K}\\a\in\mathcal{A}}}\mathbf{d}_{2}\left(\tilde{\tilde{g}}_{T}^{ka}, \mathcal{F}_{c}^{k}\right)\right] \leqslant \sqrt{|\mathcal{K}||\mathcal{A}|}\left(\frac{1}{2\eta T} + \frac{\eta\left|\mathcal{I}\right|^{2}}{2\gamma}\right)$$

Proof. Consider the set $\tilde{\mathcal{Z}}_0$ defined by

$$ilde{\mathcal{Z}}_0 := \prod_{k \in \mathcal{K}} \left((\mathcal{F}_c^k)^\circ \cap \mathcal{B}_2 \right)^{\mathcal{A}}$$

and let us assume for the moment that the following inclusion holds:

$$\tilde{\mathcal{Z}}_0 \subset \sqrt{|\mathcal{K}| |\mathcal{A}|} \cdot \tilde{\mathcal{Z}}.$$
 (6)

For each $k \in \mathcal{K}$ and $a \in \mathcal{A}$, \mathcal{F}_c^k being a closed convex cone, Proposition C.6 gives the following expression of the distance of $\overline{\tilde{g}}_T^{ka}$ to \mathcal{F}_c^k :

$$\mathbf{d}_{2}\left(\bar{\tilde{g}}_{T}^{ka}, \ \mathcal{F}_{c}^{k}\right) = \max_{\tilde{z}^{ka} \in (\mathcal{F}_{c}^{k})^{\circ} \cap \mathcal{B}_{2}} \left\langle \bar{\tilde{g}}_{T}^{ka} \middle| \tilde{z}^{ka} \right\rangle.$$

By summing over k and a, we have:

$$\begin{split} \sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \mathbf{d}_{2} \left(\bar{\tilde{g}}_{T}^{ka}, \ \mathcal{F}_{c}^{k} \right) &= \sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \max_{\tilde{z} \in \mathcal{A}} \max_{\tilde{z} \in \mathcal{A}} \left\langle \bar{\tilde{g}}_{T}^{k} \right| \tilde{z}^{ka} \rangle \\ &= \max_{\tilde{z} \in \tilde{\mathcal{Z}}_{0}} \sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \left\langle \bar{\tilde{g}}_{T} \right| \tilde{z} \rangle \\ &\leq \sqrt{|\mathcal{K}| |\mathcal{A}|} \cdot \max_{\tilde{z} \in \tilde{\mathcal{Z}}} \left\langle \bar{\tilde{g}}_{T} \right| \tilde{z} \rangle \\ &= \sqrt{|\mathcal{K}| |\mathcal{A}|} \cdot \mathbf{d}_{2} \left(\bar{\tilde{g}}_{T}, \ \tilde{\mathcal{C}} \right), \end{split}$$

where for the inequality we used inclusion (6), and for the last equality Proposition C.6 together with the fact that $\tilde{Z} = \tilde{C}^{\circ} \cap \mathcal{B}_2$ by definition. Taking the expectation and substituting distance $\mathbf{d}_2(\tilde{g}_T, \tilde{C})$ by the bound from Lemma B.1 yields the result.

Let us now prove inclusion (6). Let $\tilde{z} = (\tilde{z}^{ka})_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \in \tilde{\mathcal{Z}}_0$. First, let us prove that $\tilde{z} \in \tilde{\mathcal{C}}^{\circ}$. Let $\tilde{g} \in \tilde{\mathcal{C}}$. We can write

$$\langle \tilde{g} | \tilde{z} \rangle = \sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \left\langle \tilde{z}^{ka} \big| \tilde{g}^{ka} \right\rangle.$$

But for each $k \in \mathcal{K}$ and $a \in \mathcal{A}$, by definition of $\tilde{\mathcal{Z}}_0$, we have $\tilde{z}^{ka} \in (\mathcal{F}_c^k)^{\circ}$, and since $\tilde{\mathcal{C}} \subset \prod_{k \in \mathcal{K}} (\mathcal{F}_c^k)^{\mathcal{A}}$ by definition, we also have $\tilde{g}^{ka} \in \mathcal{F}_c^k$. Therefore, $\langle \tilde{g}^{ka} | \tilde{z}^{ka} \rangle \leq 0$ and consequently, $\langle \tilde{g} | \tilde{z} \rangle \leq 0$. This proves $\tilde{\mathcal{Z}}_0 \subset \tilde{\mathcal{C}}^{\circ}$.

Let $\tilde{z} \in \tilde{\mathcal{Z}}_0$. By definition of $\tilde{\mathcal{Z}}_0$, we have $\|\tilde{z}^{ka}\|_2 \leq 1$ for all $k \in \mathcal{K}$ and $a \in \mathcal{A}$. Thus

$$\|\tilde{z}\|_{2} = \sqrt{\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \|\tilde{z}^{ka}\|_{2}^{2}} \leq \sqrt{|\mathcal{K}||\mathcal{A}|},$$

and therefore $\tilde{\mathcal{Z}}_0 \subset \sqrt{|\mathcal{K}| |\mathcal{A}|} \cdot \mathcal{B}_2$. Finally, we have

$$\tilde{\mathcal{Z}}_0 \subset \tilde{\mathcal{C}}^\circ \cap \sqrt{|\mathcal{K}| |\mathcal{A}|} \cdot \mathcal{B}_2 = \sqrt{|\mathcal{K}| |\mathcal{A}|} \cdot \tilde{\mathcal{Z}}.$$

B.6
$$\mathbf{r}^{[k]}(a, \hat{f}_T(k, a))$$
 is close to $\mathbf{r}(a, \bar{f}_T(k, a))$

Lemma B.6

$$\mathbb{E}\left[\sum_{\substack{k\in\mathcal{K}\\a\in\mathcal{A}}}\lambda_{T}(k,a)\left\|\mathbf{r}(a,\bar{f}_{T}(k,a))-\mathbf{r}^{[k]}(a,\bar{f}_{T}(k,a))\right\|_{2}\right]$$
$$\leqslant L_{\mathbf{r}}\left|\mathcal{I}\right|\left|\mathcal{K}\right|\left|\mathcal{A}\right|\left(\frac{8}{\sqrt{T\gamma}}+\frac{8}{3T\gamma}\right)\right.$$
$$\left.+L_{\mathbf{r}}\sqrt{\left|\mathcal{K}\right|\left|\mathcal{A}\right|}\left(\frac{1}{\eta T}+\frac{\eta\left|\mathcal{I}\right|^{2}}{\gamma}\right).$$

Proof. Let $(k, a) \in \mathcal{K} \times \mathcal{A}$ and denote $f := \overline{f}_T(k, a)$ and $\hat{f} := \overline{f}_T(k, a)$ to alleviate notation. Denote $\mathbf{P}^{[k]}$ the Euclidean projection onto \mathcal{F}_c^k . Then of course $\mathbf{P}^{[k]}(\hat{f})$ belongs to \mathcal{F}_c^k , and since $\mathbf{r}(a, \cdot)$ and $\mathbf{r}^{[k]}(a, \cdot)$ coincide on \mathcal{F}_c^k by Proposition A.2, we can write

$$\begin{split} \mathbf{r}(a,f) - \mathbf{r}^{[k]}(a,\hat{f}) &= \mathbf{r}(a,f) - \mathbf{r}(a,\hat{f}) + \mathbf{r}(a,\hat{f}) \\ &- \mathbf{r}(a,\mathbf{P}^{[k]}(\hat{f})) + \mathbf{r}^{[k]}(a,\mathbf{P}^{[k]}(\hat{f})) - \mathbf{r}^{[k]}(a,\hat{f}). \end{split}$$

Thus, by taking the norm and using the triangle inequality and the Lipschitz constant $L_{\mathbf{r}}$ which is common to $\mathbf{r}(a, \cdot)$ and $\mathbf{r}^{[k]}(a, \cdot)$ to get

$$\begin{split} \left\| \mathbf{r}(a,f) - \mathbf{r}^{[k]}(a,\hat{f}) \right\|_{2} \\ \leqslant L_{\mathbf{r}} \left(\left\| f - \hat{f} \right\|_{2} + 2 \cdot \mathbf{d}_{2} \left(\hat{f}, \ \mathcal{F}_{c}^{k} \right) \right). \end{split}$$

We now multiply by $\lambda_T(k, a)$. The last term in the above right-hand side is transformed as

$$2\lambda_T(k,a) \cdot \mathbf{d}_2\left(\hat{f}, \ \mathcal{F}_c^k\right) = 2 \cdot \mathbf{d}_2\left(\lambda_T(k,a)\hat{f}, \ \mathcal{F}_c^k\right)$$
$$= 2 \cdot \mathbf{d}_2\left(\tilde{g}_T^{ka}, \ \mathcal{F}_c^k\right),$$

where used the fact that \mathcal{F}_c^k is a convex cone to push the factor $\lambda_T(k, a)$ into the distance. Therefore,

$$\lambda_T(k,a) \left\| \mathbf{r}(a,f) - \mathbf{r}^{[k]}(a,\hat{f}) \right\|_2$$

$$\leq L_{\mathbf{r}} \cdot \lambda_T(k,a) \left\| f - \hat{f} \right\|_2 + 2L_{\mathbf{r}} \cdot \mathbf{d}_2 \left(\bar{\tilde{g}}_T^{ka}, \ \mathcal{F}_c^k \right).$$

Finally, we get the result by taking the expectation, summing over k and a, and plugging Lemmas B.4 and B.5.

B.7 g is closer to \mathbb{R}^d_- than r

Lemma B.7

$$\mathbf{d}_{2}\left(\sum_{\substack{k\in\mathcal{K}\\a\in\mathcal{A}}}\lambda_{T}(k,a)\cdot\mathbf{g}(a,\bar{y}_{T}(k,a)), \ \mathbb{R}_{-}^{d}\right)$$
$$\leqslant \mathbf{d}_{2}\left(\sum_{\substack{k\in\mathcal{K}\\a\in\mathcal{A}}}\lambda_{T}(k,a)\cdot\mathbf{r}(a,\bar{f}_{T}(k,a)), \ \mathbb{R}_{-}^{d}\right).$$

Proof. Let $k \in \mathcal{K}$ and $a \in \mathcal{A}$. First note that $\mathbf{f}(\bar{y}_T(k, a)) = \bar{f}_T(k, a)$. Indeed, using the affinity of \mathbf{f} ,

$$\mathbf{f}(\bar{y}_T(k,a)) = \mathbf{f}\left(\frac{1}{|N_T(k,a)|} \sum_{t \in N_T(k,a)} y_t\right)$$
$$= \frac{1}{|N_T(k,a)|} \sum_{t \in N_T(k,a)} \mathbf{f}(y_t)$$
$$= \frac{1}{|N_T(k,a)|} \sum_{t \in N_T(k,a)} f_t = \bar{f}_T(k,a).$$

For each component $n \in \{1, \ldots, d\}$, we have $\mathbf{g}^n(a, \bar{y}_T(k, a)) \leq \mathbf{r}^n(a, \bar{f}_T(k, a))$ by property (i) in Proposition 3.1. Finally, using the explicit expression of the Euclidean distance to \mathbb{R}^d_- , we have

$$\mathbf{d}_{2} \left(\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{g}(a, \bar{y}_{T}(k, a)), \mathbb{R}_{-}^{d} \right) \\ = \sqrt{\sum_{n=1}^{d} \left(\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{g}^{n}(a, \bar{y}_{T}(k, a)) \right)_{+}^{2}} \\ \leqslant \sqrt{\sum_{n=1}^{d} \left(\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{r}^{n}(a, \bar{f}_{T}(k, a)) \right)_{+}^{2}} \\ = \mathbf{d}_{2} \left(\sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \lambda_{T}(k, a) \cdot \mathbf{r}(a, \bar{f}_{T}(k, a)), \mathbb{R}_{-}^{d} \right).$$

B.8 Decomposition of $g(a_t, y_t)$ with respect to the realized auxiliary decision (k_t, a_t)

Lemma B.8

$$\frac{1}{T}\sum_{t=1}^{T}\mathbf{g}(a_t, y_t) = \sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \lambda_T(k, a) \cdot \mathbf{g}(a, \bar{y}_T(k, a))$$

Proof. Using the definitions of $N_T(k, a)$ and $\lambda_T(k, a)$, and the linearity of $\mathbf{g}(a, \cdot)$, we have

$$\frac{1}{T} \sum_{t=1}^{T} \mathbf{g}(a_t, y_t) = \frac{1}{T} \sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \sum_{t \in N_T(k, a)} \mathbf{g}(a, y_t)$$
$$= \sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \frac{|N_T(k, a)|}{T} \cdot \frac{1}{|N_T(k, a)|} \sum_{\substack{t \in N_T(k, a)}} \mathbf{g}(a, y_t)$$
$$= \sum_{\substack{k \in \mathcal{K} \\ a \in \mathcal{A}}} \lambda_T(k, a) \cdot \mathbf{g}(a, \bar{y}_T(k, a)).$$

B.9 From $\mathbf{g}(i_t, j_t)$ to $\mathbf{g}(a_t, y_t)$

Lemma B.9

$$\mathbb{E}\left[\left\|\frac{1}{T}\sum_{t=1}^{T}\mathbf{g}(i_t, j_t) - \frac{1}{T}\sum_{t=1}^{T}\mathbf{g}(a_t, y_t)\right\|_2\right] \\ \leqslant \frac{2\sqrt{\pi} \|\mathbf{g}\|_2}{\sqrt{T}} + 2\gamma \|\mathbf{g}\|_2.$$

Proof. Consider the process $(X_t)_{t \ge 1}$ defined by

$$X_t = \mathbf{g}(i_t, j_t) - (1 - \gamma)\mathbf{g}(a_t, y_t) - \gamma \mathbf{g}(u, y_t),$$

and the filtration $(\mathcal{G}'_t)_{t \ge 1}$ where \mathcal{G}'_t is generated by

$$(k_1, a_1, y_1, i_1, s_1, \dots, k_{t-1}, a_{t-1}, y_{t-1}, i_{t-1}, s_{t-1}, k_t, a_t, y_t).$$

 $(X_t)_{t \ge 1}$ is martingale difference sequence with respect to filtration $(\mathcal{G}'_t)_{t \ge 1}$. Indeed, knowing \mathcal{G}'_t , the law of i_t is $(1 - \gamma)a_t + \gamma u$ by definition of the algorithm, and thus the law of (i_t, j_t) is $((1 - \gamma)a_t + \gamma u) \otimes y_t$. We can then write, by bilinearity of **g**:

$$\mathbb{E}\left[\mathbf{g}(i_t, j_t) \,|\, \mathcal{G}'_t\right] = (1 - \gamma)\mathbf{g}(a_t, y_t) + \gamma \mathbf{g}(u, y_t).$$

Moreover, $||X_t||_2$ is always bounded by $2||\mathbf{g}||_2$:

$$\begin{aligned} \|X_t\|_2 &= \|(1-\gamma)\left(\mathbf{g}(i_t, j_t) - \mathbf{g}(a_t, y_t)\right) \\ &+ \gamma(\mathbf{g}(i_t, j_t) - \mathbf{g}(u, y_t))\|_2 \\ &\leqslant (1-\gamma)\|\mathbf{g}(i_t, j_t) - \mathbf{g}(a_t, y_t)\|_2 \\ &+ \gamma\|\mathbf{g}(i_t, j_t) - \mathbf{g}(u, y_t)\|_2 \\ &\leqslant 2\|\mathbf{g}\|_2. \end{aligned}$$

We can thus apply Corollary E.2 with $M=2\,\|\mathbf{g}\|_2$ to get

$$\mathbb{E}\left[\left\|\frac{1}{T}\sum_{t=1}^{T}X_{t}\right\|_{2}\right] \leqslant \frac{2\sqrt{\pi}\left\|\mathbf{g}\right\|_{2}}{\sqrt{T}}.$$

Therefore,

$$\begin{aligned} \left\| \frac{1}{T} \sum_{t=1}^{T} \mathbf{g}(i_t, j_t) - \frac{1}{T} \sum_{t=1}^{T} \mathbf{g}(a_t, y_t) \right\|_2 \\ &= \left\| \frac{1}{T} \sum_{t=1}^{T} \left(X_t + \gamma(\mathbf{g}(u, y_t) - \mathbf{g}(a_t, y_t)) \right) \right\|_2 \\ &\leqslant \left\| \frac{1}{T} \sum_{t=1}^{T} X_t \right\|_2 + \left\| \frac{\gamma}{T} \sum_{t=1}^{T} \left(\mathbf{g}(u, y_t) - \mathbf{g}(a_t, y_t) \right) \right\|_2 \\ &\leqslant \left\| \frac{1}{T} \sum_{t=1}^{T} X_t \right\|_2 + 2\gamma \|\mathbf{g}\|_2, \end{aligned}$$

And taking the expectation:

$$\mathbb{E}\left[\left\|\frac{1}{T}\sum_{t=1}^{T}\mathbf{g}(i_t, j_t) - \frac{1}{T}\sum_{t=1}^{T}\mathbf{g}(a_t, y_t)\right\|_2\right] \\ \leqslant \frac{2\sqrt{\pi} \|\mathbf{g}\|_2}{\sqrt{T}} + 2\gamma \|\mathbf{g}\|_2.$$

B.10 Final bound

We now combine the above lemmas in the order specified at the beginning of the section to get:

$$\mathbb{E}\left[\mathbf{d}_{2}\left(\bar{g}_{T}, \mathbb{R}_{-}^{d}\right)\right] \leqslant \frac{2\sqrt{\pi} \|\mathbf{g}\|_{2}}{\sqrt{T}} + 2\gamma \|\mathbf{g}\|_{2} + L_{\mathbf{r}} |\mathcal{I}| |\mathcal{K}| |\mathcal{A}| \left(\frac{8}{\sqrt{T\gamma}} + \frac{8}{3T\gamma}\right) + \frac{3L_{\mathbf{r}}}{2}\sqrt{|\mathcal{K}| |\mathcal{A}|} \left(\frac{1}{\eta T} + \frac{\eta |\mathcal{I}|^{2}}{\gamma}\right).$$

Injecting the values of η and γ yields the result.

C Closed Convex Cones

Throughout the section, \mathcal{W} will be a finite-dimensional vector space and \mathcal{W}^* its dual.

Definition C.1 A nonempty subset C of W is a closed convex cone if it is closed and if for all $w, w' \in C$ and $\lambda \in \mathbb{R}_+$, we have $w + w' \in C$ and $\lambda w \in C$.

The following proposition gathers a few immediate properties.

Proposition C.2 (i) A closed convex cone is convex.

(ii) An intersection of closed convex cones is a closed convex cone.

- (iii) A Cartesian product of closed convex cones is a closed convex cone.
- (iv) A half-space of the form $\{w \in W | \langle z | w \rangle \leq 0\}$ (for some $z \in W^*$) is a closed convex cone.

Definition C.3 Let \mathcal{A} be a subset of \mathcal{W} . The polar cone of \mathcal{A} is a subset of the dual space \mathcal{W}^* defined by

$$\mathcal{A}^{\circ} = \left\{ z \in \mathcal{W}^* \, | \, \forall w \in \mathcal{A}, \ \langle w | z \rangle \leqslant 0 \right\}.$$

The following proposition is an immediate consequence of the Bipolar theorem — see e.g. Theorem 3.3.14 in Borwein and Lewis [2010].

Proposition C.4 Let \mathcal{A} be a subset of \mathcal{W} .

- (i) $\mathcal{A}^{\circ\circ}$ is the smallest closed convex cone containing \mathcal{A} .
- (ii) If \mathcal{A} is closed and convex, then $\mathcal{A}^{\circ\circ} = \mathbb{R}_+ \mathcal{A}$.
- (iii) If \mathcal{A} is a closed convex cone, then $\mathcal{A}^{\circ\circ} = \mathcal{A}$.

Proposition C.5 Let $\varphi : \mathcal{W} \to \tilde{\mathcal{W}}$ be a linear application between two finite-dimensional vector spaces \mathcal{W} and $\tilde{\mathcal{W}}$, φ^* its transpose, C and \tilde{C} closed convex cones in \mathcal{W} and $\tilde{\mathcal{W}}$ respectively.

- (i) $\varphi(\mathcal{C})$ is a closed convex cone.
- (ii) Then $\varphi^{-1}(\tilde{\mathcal{C}}) = \varphi^*(\tilde{\mathcal{C}}^\circ)^\circ$. In particular, $\varphi^{-1}(\tilde{\mathcal{C}})$ is a closed convex cone.

Proof. Property (i) is obvious. We prove property (ii) as follows. For $w \in \mathcal{W}$,

$$w \in \varphi^{-1}(\tilde{\mathcal{C}}) \iff \varphi(w) \in \tilde{\mathcal{C}} \iff \varphi(w) \in \tilde{\mathcal{C}}^{\circ \circ}$$
$$\iff \forall \tilde{z} \in \tilde{\mathcal{C}}^{\circ}, \quad \langle \tilde{z} | \varphi(w) \rangle \leqslant 0$$
$$\iff \forall z \in \tilde{\mathcal{C}}^{\circ}, \quad \langle \varphi^*(\tilde{z}) | w \rangle \leqslant 0$$
$$\iff w \in \varphi^*(\tilde{\mathcal{C}}^{\circ})^{\circ}.$$

Therefore, $\varphi^{-1}(\tilde{\mathcal{C}})$ is a closed convex cone because it is a polar cone.

Proposition C.6 Let C be a closed convex cone in \mathbb{R}^n . For all point $w \in \mathbb{R}^n$, its Euclidean distance to C can be written

$$\mathbf{d}_{2}\left(w, \ \mathcal{C}\right) = \max_{z \in \mathcal{C}^{\circ} \cap \mathcal{B}_{2}} \left\langle w | z \right\rangle.$$

where \mathcal{B}_2 denotes the closed unit Euclidean ball.

D A regret minimization bound

The following statement is classic in the regret minimization literature—see e.g. Shalev-Shwartz [2011, Theorem 2.4].

Theorem D.1 Let $n \ge 1$, \mathbb{R}^n endowed with its canonical Euclidean structure, \mathcal{Z} a nonempty convex compact subset of \mathbb{R}^d , $(u_t)_{t\ge 1}$ a sequence in \mathbb{R}^n , $\eta > 0$, and

$$z_t = \arg\max_{z\in\mathcal{Z}} \left\{ \left\langle \eta \sum_{s=1}^{t-1} u_s \middle| z \right\rangle - \frac{1}{2} \left\| z \right\|_2^2 \right\}, \quad t \ge 1.$$

Then, for all $T \ge 1$,

$$\max_{z \in \mathcal{Z}} \sum_{t=1}^{T} \langle u_t | z \rangle - \sum_{t=1}^{T} \langle u_t | z_t \rangle \leqslant \frac{\|\mathcal{Z}\|_2^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|u_t\|_2^2.$$

E Concentration inequalities

The following result is a generalization to vectorvalued martingale differences of Hoeffding–Azuma's inequality and is due to Kallenberg and Sztencel [1991].

Proposition E.1 Let $(U_t)_{t\geq 1}$ be a sequence of martingale differences in \mathbb{R}^d , bounded almost-surely by M > 0:

$$\forall t \ge 1, \quad \|U_t\|_2 \le M, \quad a.s.$$

Then, for every $\varepsilon > 0$ and $T \ge 1$,

$$\mathbb{P}\left[\left\|\frac{1}{T}\sum_{t=1}^{T}U_{t}\right\|_{2} \ge \varepsilon\right] \le 2\exp\left(-\frac{T\varepsilon^{2}}{4M^{2}}\right)$$

Corollary E.2 Under the assumptions of Proposition E.1, we have:

$$\mathbb{E}\left[\left\|\frac{1}{T}\sum_{t=1}^{T}U_{t}\right\|_{2}\right]\leqslant M\sqrt{\frac{\pi}{T}}$$

Proof. The result follows from Proposition E.1 by integrating the tail of the distribution:

$$\mathbb{E}\left[\left\|\bar{U}_{T}\right\|_{2}\right] = \int_{0}^{+\infty} \mathbb{P}\left[\left\|\bar{U}_{T}\right\|_{2} \ge \varepsilon\right] \,\mathrm{d}\varepsilon$$
$$\leqslant \int_{0}^{+\infty} 2e^{-T\varepsilon^{2}/4M^{2}} \,\mathrm{d}\varepsilon$$
$$= 2\int_{0}^{+\infty} e^{-\varepsilon^{2}(T/4M^{2})} \,\mathrm{d}\varepsilon = M\sqrt{\frac{\pi}{T}}.$$

The following Bernstein-like inequality is proved in Pinelis [1994]—see also [Tarres and Yao, 2014, Corollary A.2]. **Proposition E.3** Let $(X_t)_{t\geq 1}$ be a martingale difference sequence in a Hilbert space with respect to a filtration $(\mathcal{G}_t)_{t\geq 0}$. Suppose that $||X_t|| \leq M$ almost-surely, and

$$\frac{1}{T}\sum_{t=1}^{T} \mathbb{E}\left[\left\|X_{t}\right\|^{2} \middle| \mathcal{G}_{t-1}\right] \leqslant V.$$

Then,

$$\mathbb{P}\left[\max_{1\leqslant t\leqslant T}\left\|\sum_{t'=1}^{t} X_{t'}\right\| \ge \varepsilon\right] \leqslant 2\exp\left(-\frac{\varepsilon^2}{2TV + 2M\varepsilon/3}\right)$$

Corollary E.4 Under the assumptions of Proposition E.3,

$$\mathbb{E}\left[\left\|\frac{1}{T}\sum_{t=1}^{T}X_{t}\right\|\right] \leqslant 4\sqrt{2}\sqrt{\frac{V}{T}} + \frac{4M}{3T}.$$

Proof. Let $A \ge 0$ to be chosen later.

$$\mathbb{E}\left[\left\|\bar{X}_{T}\right\|\right] = \int_{0}^{+\infty} \mathbb{P}\left[\left\|\bar{X}_{T}\right\| \ge \varepsilon\right] d\varepsilon$$

$$\leq 2 \int_{0}^{+\infty} \exp\left(-\frac{\varepsilon^{2}T^{2}}{2VT + 2M\varepsilon T/3}\right) d\varepsilon$$

$$= 2 \int_{0}^{+\infty} \exp\left(-\frac{\varepsilon^{2}T}{2V + 2M\varepsilon/3}\right) d\varepsilon$$

$$\leq 2 \left(A + \int_{A}^{+\infty} \exp\left(-\frac{\varepsilon^{2}T}{2\varepsilon(V/A + M/3)}\right) d\varepsilon\right)$$

$$= 2 \left(A + \int_{A}^{+\infty} \exp\left(-\frac{\varepsilon T}{2(V/A + M/3)}\right) d\varepsilon\right)$$

$$= 2 \left(A + \left[-\frac{2}{T}\left(\frac{V}{A} + \frac{M}{3}\right)\right]$$

$$\times \exp\left(-\frac{\varepsilon T}{2(V/A + M/3)}\right)\right]_{A}^{+\infty}$$

$$\leq 2A + \frac{4}{T}\left(\frac{V}{A} + \frac{M}{3}\right).$$

Choosing $A = \sqrt{2V/T}$ gives:

$$\mathbb{E}\left[\left\|\bar{X}_T\right\|\right] \leqslant 4\sqrt{2}\sqrt{\frac{V}{T}} + \frac{4M}{3T}.$$