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A Proofs of technical results

A.1 Proof of Proposition 3.1

Lemma A.1 There exists a finite family of polytopes
(X `)`∈L such that

(i) ∆(I) =
⋃
`∈L X `;

(ii) For each ` ∈ L and f ∈ F , r( · , f) is affine on
X `.

Proof. Let 1 6 n 6 d and b ∈ B. Let us first prove
that rn( · , b) is piecewise affine. The map f being affine
and defined on ∆(J ), the set f−1(b) is a polytope.
Denote yb,1, . . . , yb,q its vertices. Let x ∈ ∆(I). By
linearity of g(x, · ), rn(x, b) can then be written

rn(x, b) = maxgn(x, f−1(b)) = max
16p6q

gn(x, yb,p).

rn( · , b) now appears as the maximum of a finite fam-
ily (gn( · , yb,p))16p6q of linear functions. It is therefore
piecewise affine and so is r( · , b). Therefore, for each
b ∈ B there exists a decomposition of ∆(I) into poly-
topes on each of which r( · , b) is affine. B being finite,
we can consider the decomposition (X `)`∈L which re-
fines all of them. r( · , b) is therefore affine on each
polytope X ` for all b ∈ B. Let us now prove that
r( · , f) is affine on each polytope X ` for all f ∈ F .

Let f ∈ F , ` ∈ L, x1, x2 ∈ X ` and λ ∈ [0, 1]. We
consider the unique decomposition f =

∑
b∈B µ

b ·b and
k ∈ K such that suppµ ⊂ Fk. Using the definition of
r and the affinity of r( · , b) on X `, we have

r(λx1 + (1− λ)x2, f)

=
∑
b∈B

µb · r(λx1 + (1− λ)x2, b)

=
∑
b∈B

µb (λr(x1, b) + (1− λ)r(x2, b))

= λ
∑
b∈B

µb · r(x1, b) + (1− λ)
∑
b∈B

µb · r(x2, b)

= λr(x1, f) + (1− λ)r(x2, f),

where the last equality stands because of the unique-
ness of the decomposition of f lets us recognize the
definitions of r(x1, b) and r(x2, b) from Equation (4).
�

Proof. of Proposition 3.1 (i) Let x ∈ ∆(I) and
y ∈ ∆(J ). Denote f = f(y). We consider the unique
decomposition f =

∑
b∈B µ

b · b and k ∈ K such that

suppµ ⊂ Fk. f−1 being affine on Fk, we have

g(x, y) ∈ g(x, f−1(f))

= g

x, f−1

 ∑
b∈suppµ

µb · b


= g

(
x,
∑
b∈B

µb · f−1(b)

)

=
∑

b∈suppµ

µb · g(x, f−1(b)).

Then for each 1 6 n 6 d,

gn(x, y) 6 max
∑

b∈suppµ

µb · g(x, f−1(b))

=
∑
b∈B

µb ·maxgn(x, f−1(b))

=
∑
b∈B

µb · rn(x, b) = rn(x, f),

where for the second equality, we recognized the def-
inition of rn(x, b) from Equation (3) on page 5, and
the the last equality, the definition of rn(x, f) from
Equation (4).

(ii) Let f ∈ F . Thanks to the characterization of
approachability from Proposition 1, there exists x ∈
∆(I) such that m(x, f) ∈ Rd−. Let f =

∑
b∈B µ

b · b be
the unique decomposition of f given by Lemma 3.1.
With the same arguments as above, we have for each
1 6 n 6 d,

rn(x, f) =
∑
b∈B

µb · rn(x, b)

=
∑
b∈B

µb ·maxgn(x, f−1(b))

= max
∑
b∈B

µb · gn(x, f−1(b))

= maxgn

(
x, f−1

(∑
b∈B

µb · b

))
= maxgn(x, f−1(f)) = maxmn(x, f) 6 0.

Therefore, r(x, f) ∈ Rd−.

(iii) Let x ∈ ∆(I), k ∈ K, f1, f2 ∈ Fk and λ ∈ [0, 1].
We write f1 =

∑
b∈B µ

b
1 · b and f2 =

∑
b∈B µ

b
2 · b with

suppµ1 ⊂ Fk and suppµ2 ⊂ Fk. The unique decom-
position of λf1 +(1−λ)f2 given by Lemma 3.1 is then

λf1 + (1− λ)f2 =
∑
b∈B

(λµb1 + (1− λ)µb2) · b.
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Therefore, using the definition of r and the affinity of
r(x, · ) on Fk,

r(x, λf1 + (1− λ)f2)

= r

(
x,
∑
b∈B

(λµb1 + (1− λ)µb2) · b

)

=
∑
b∈B

(λµb1 + (1− λ)µb2) · r(x, b)

= λ
∑
b∈B

µb1 · r(x, b)

+ (1− λ)
∑
b∈B

µb2 · r(x, b)

= λr(x, f1) + (1− λ) · r(x, f2).

(iv) is already proved in Lemma A.1. �

A.2 Existence of r[k]

Proposition A.2 For every k ∈ K, there exists a
map r[k] : ∆(I)× RS×I → Rd such that

(i) for all x ∈ ∆(I), the map r[k](x, · ) : RS×I → Rd
is linear;

(ii) for all x ∈ ∆(I) and f ∈ Fk, r[k](x, f) = r(x, f).

Proof. Let k ∈ K and x ∈ ∆(I). Let us consider
span(Fk) ⊂ RS×I , the linear span of Fk. There exists
a basis (f1, . . . , fq) of span(Fk) such that fp belongs
to Fk for each 1 6 p 6 q. We now define r[k](x, · ) on
span(Fk) by setting

r[k](x, fp) := r(x, fp), for each element fp of the basis,

and extending linearly. r[k](x, · ) can then be further
extended to the whole space RS×I by setting its value
to zero on some complementary subspace of span(Fk).

Let us now prove that r[k](x, · ) coincides with r(x, · )
on Fk. Let f ∈ Fk. In particular, f belongs to
span(Fk) and can be uniquely written

f =

q∑
p=1

λpfp, where λ1, . . . , λq ∈ R.

The application r[k](x, · ) being linear by definition, we
have

r[k](x, f) =

q∑
p=1

λpr(x, fp).

We now aim at proving that the above sum is equal to
r(x, f). This cannot be done by directly applying the
affinity of r(x, · ) (property (iii) in Lemma 3.1) because

some of the above coefficients λp may be negative. To
overcome this, we first separate the terms according to
the signs of the coefficients λp. We denote Λ+ (resp.
Λ−) the sum of all positive (resp. negative) coefficients
λp and write

r[k](x, f) =
∑
λp>0

λpr(x, fp) +
∑
λp<0

λpr(x, fp)

= Λ+
∑
λp>0

(
λp
Λ+

)
r(x, fp)

+ Λ−
∑
λp<0

(
λp
Λ−

)
r(x, fp).

Since each of the above sum is now a convex combina-
tion, we can apply the affinity of r(x, · ):

r[k](x, f) = Λ+ · r

x, ∑
λp>0

(
λp
Λ+

)
fp


+ Λ−r

x, ∑
λp<0

(
λp
Λ−

)
fp

 .

Let us prove that

r(x, f)− Λ−r

x, ∑
λp<0

(
λp
Λ−

)
fp


= Λ+ · r

x, ∑
λp>0

(
λp
Λ+

)
fp

 . (5)

This will prove that r[k](x, f) = r(x, f).

r(x, f)− Λ−r

x, ∑
λp<0

(
λp
Λ−

)
fp


= (1− Λ−)

(
1

1− Λ−
r(x, f)

+
−Λ−

1− Λ−
r

x, ∑
λp<0

(
λp
Λ−

)
fp


= (1− Λ−) · r

x, 1

1− Λ−
f +

∑
λp<0

(
− λp

1− Λ−

)
fp


= (1− Λ−) · r

x, 1

1− Λ−

f − ∑
λp<0

λpfp


=
(
1− Λ−

)
· r

x, ∑
λp>0

(
λp

1− Λ−

)
fp

 .
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For relation (5) to be true, it is now enough to prove
that Λ+ + Λ− = 1. Since Fk ⊂ F ⊂ ∆(S)I , for any
f0 = (f is0 )s∈S

i∈I
∈ Fk, we have

∑
s∈S
i∈I

f is0 =
∑
i∈I

∑
s∈S

f is0 =
∑
i∈I

1 = |I| .

By applying the above to f and the fp, we get

|I| =
∑
s∈S
i∈I

f is =
∑
s∈S
i∈I

∑
λp>0

λpf
is
p +

∑
λp<0

λpf
is
p


=
∑
λp>0

λp
∑
s∈S
i∈I

f isp +
∑
λp<0

λp
∑
s∈S
i∈I

f isp

= Λ+ |I|+ Λ− |I| ,

and we indeed get Λ+ + Λ− = 1 by dividing by |I|,
which concludes the proof. �

A.3 A lemma on Lr

Recall that Lr was defined as the maximal Lipschitz
constant of mappings r(x, ·). Then it is also the max-
imal operator norm of the linear maps r[k](a, · ):

Lr := max
k∈K
a∈A

max
f∈RS×I
f 6=0

∥∥r[k](a, f)
∥∥

2

‖f‖2
.

Lemma A.3 Lr is a common Lipschitz constant to
r(a, · ) and r[k](a, · ) (k ∈ K and a ∈ A). In other
words, for all k ∈ K and a ∈ A, we have

(i) for all f, f ′ ∈ RS×I ,
∥∥r[k](a, f)− r[k](a, f ′)

∥∥
2
6

Lr ‖f − f ′‖2;

(ii) for all f, f ′ ∈ F , ‖r(a, f)− r(a, f ′)‖2 6
Lr ‖f − f ′‖2.

Proof. Property (i) follows from the definition of Lr

and the linearity of the map r[k](a, · ).

(ii) Let k ∈ K, a ∈ A and f, f ′ ∈ F . (Fk)k∈K
being a finite decomposition of F into convex poly-
topes, there exists a finite sequence (k1, k2, . . . , kq) in
K such that the kp’s are all different and a sequence
(f0 = f, f1, f2, . . . , fq = f ′) in the affine segment [f, f ′]
such that [fp−1, fp] ⊂ Fkp for each 1 6 p 6 q, see Fig-
ure 1. Therefore, using the fact that r[k′](a, · ) and

Figure 1: An illustrative figure of the sequence (f0 =
f, f1, f2, . . . , fq = f ′)

•f0 • fq•
f1

•
f2 •

fq−1
. . .

Fk1

Fk2 Fkq−1

r(a, · ) coincide on Fk′ for all k′ ∈ K, we can write

‖r(a, f)− r(a, f ′)‖2

=

∥∥∥∥∥
q∑
p=1

(r(a, fp−1)− r(a, fp))

∥∥∥∥∥
2

=

∥∥∥∥∥
q∑
p=1

r[kp](a, fp−1)− r[kp](a, fp)

∥∥∥∥∥
2

6
q∑
p=1

∥∥∥r[kp](a, fp−1)− r[kp](a, fp)
∥∥∥

2

6 Lr

q∑
p=1

‖fp−1 − fp‖2

= Lr ‖f − f ′‖2 ,

where the last equality holds because the points
f0, . . . , fq are aligned and ordered. �

A.4 Proof of Proposition 3.2

Proof. Using the definition of R,

R

((
1{k0=k}λ

a · f
)
k∈K
a∈A

)
=
∑
k∈K

∑
a∈A

r[k](a,1{k0=k}λ
a · f)

=
∑
a∈A

λa · r[k0](a, f)

=
∑
a∈A

λa · r(a, f) = r(x, f),

where the second equality holds because by linear-
ity of r[k](a, · ) (Proposition A.2), the fourth because
r[k0](x, · ) and r(x, · ) coincide on Fk0 (property (ii) in
Proposition A.2, and the last by affinity of r( · , f) on
X ` (property (iv) in Proposition 3.1). �
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A.5 Proof of Proposition 3.3

(i) Let k ∈ K. R−1
k (Rd−) is a closed convex cone as the

inverse image via a linear application of the closed con-
vex cone Rd− (Proposition C.5). Fkc is a closed convex
cone by definition, and (Fkc )A is thus a closed convex
cone as a Cartesian product of closed convex cones.
Therefore, C̃k = R−1

k (Rd−) ∩ (Fkc )A is also a closed
convex cone as the intersection of two closed convex
cones. Then, C̃ is also a closed convex cone as a Carte-
sian product of closed convex cones.

(ii) Let g̃ = (g̃ka)k∈K
a∈A
∈ C̃. By definition of C̃, for each

k ∈ K, (g̃ka)a∈A belongs to C̃k and thus to (Fkc )A.
Therefore, g̃ ∈

∏
k∈K(Fkc )A. Moreover,

R(g̃) =
∑
k∈K

Rk

(
(g̃ka)a∈A

)
belongs to Rd−. Indeed, each term of the above sum
belongs to Rd− because for all k ∈ K, (g̃ka)a∈A ∈ C̃k ⊂
R−1
k (Rd−).

(iii) This full information game has convex compact
decision sets and a bilinear payoff function. Thanks
to the characterization of approachable closed convex
cones in full information, the statement of the propo-
sition is then equivalent to Blackwell condition:

∀f ∈ F , ∃ x̃ ∈ ∆(K ×A), g̃(x̃, f) ∈ C̃,

which we now aim at proving. Let f ∈ F and k0 ∈
K such that f ∈ Fk0 . According to property (ii) in
Proposition 3.1, there exists x ∈ ∆(I) such that such
that r(x, f) ∈ Rd−. By Proposition 3.1, there exists
` ∈ L such that x ∈ X ` and we can write x as a
convex combination of the vertices of X `:

x =
∑
a∈A

λa · a where

{
(λa)a∈A ∈ ∆(A)

supp(λa)a∈A ⊂ X `.

Now consider the random decision

x̃ :=
(
1{k=k0}λ

a
)
k∈K
a∈A

∈ ∆(K ×A)

and let us prove that g̃(x̃, f) ∈ C̃. We have by defini-
tion of g̃:

g̃(x̃, f) =
(
1{k=k0}λ

a · f
)
k∈K
a∈A

,

and since C̃ =
∏
k∈K C̃k, we only have to check that

(λaf)a∈A belongs to C̃k0 = R−1
k0

(Rd−) ∩ (Fk0c )A. First,
because f ∈ Fk0 , λaf belongs to the closed convex
cone Fk0c = R+Fk0 and we have indeed (λaf)a∈A ∈
(Fk0c )A. Then, let us prove thatRk0 ((λaf)a∈A) ∈ Rd−.

Using Proposition 3.2,

Rk0((λaf)a∈A) = R

((
1{k=k0}λ

a · f
)
k∈K
a∈A

)
= r(x, f) ∈ Rd−.

Therefore, we have proved that (λaf)a∈A belongs to
C̃k0 = R−1

k0
(Rd−) ∩ (Fk0c )A, and thus, that g̃(x̃, f) ∈ C̃,

which concludes the proof. �

A.6 Properties of the estimate f̂t.

Lemma A.4 For all t > 1,

(i) E
[
f̂t

∣∣∣Gt] = E [ft | Gt];

(ii) E
[∥∥∥f̂t∥∥∥2

2

∣∣∣∣Gt] 6 |I|2γ ;

(iii)
∥∥∥f̂t∥∥∥2

2
6
|I|2

γ2
.

Proof. (i) Let i ∈ I. Using the conditional expecta-
tion with respect to event {it = i}, we have

E
[
f̂ it

∣∣∣Gt] = E
[

1{it=i}

P [it = i | Gt]
δst

∣∣∣∣Gt]
= P [it = i | Gt]E

[
δst

P [it = i | Gt]

∣∣∣∣Gt, {it = i}
]

= E [δst | Gt, {it = i}]
= E [E [δst | yt,Gt, {it = i}] | Gt, {it = i}]
= E [s(i, yt) | Gt, {it = i}]
= E [s(i, yt) | Gt]
= E

[
f it
∣∣Gt] ,

hence the result.

(ii) We write

E
[∥∥∥f̂t∥∥∥2

2

∣∣∣∣Gt] = E

[∑
i∈I

∥∥∥∥ 1{it=i}

P [it = i | Gt]
δst

∥∥∥∥2

2

∣∣∣∣∣Gt
]

= P [it = i | Gt]

× E

[∑
i∈I

∥∥∥∥ δst
P [it = i | Gt]

∥∥∥∥2

2

∣∣∣∣∣Gt, {it = i}

]

=
∑
i∈I

1

P [it = i | Gt]
E
[
‖δst‖

2
2

∣∣∣Gt, {it = i}
]

=
∑
i∈I

1

P [it = i | Gt]

6
|I|2

γ
,

where the last inequality stands because
P [it = i | Gt] > γ/|I| by definition of the algorithm.
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(iii) We have∥∥∥f̂t∥∥∥2

2
=
∑
i∈I

∥∥∥∥ 1{it=i}

P [it = i | Gt]
δst

∥∥∥∥2

2

=
∑
i∈I

1{it=i}
‖δst‖

2
2

P [it = i | Gt]2

6
|I|2

γ2

∑
i∈I

1{it=i} =
|I|2

γ2
.

�

B Proof of Theorem 4.1

B.1 Average auxiliary payoff ¯̃gT is close to
auxiliary target set C̃

Lemma B.1

E
[
d2

(
¯̃gT , C̃

)]
6

1

2ηT
+
η |I|2

2γ
.

Proof. For t > 1, we can write

z̃t = PZ̃

(
η

t−1∑
s=1

g̃s

)
= arg min

z̃∈Z̃

∥∥∥∥∥z̃ − η
t−1∑
s=1

g̃s

∥∥∥∥∥
2

2

= arg max
z̃∈Z̃

{〈
η

t−1∑
s=1

g̃s

∣∣∣∣∣z̃
〉
− 1

2
‖z̃‖22

}
.

Then, Theorem D.1 together with the fact that∥∥∥Z̃∥∥∥
2

=
∥∥∥C̃◦ ∩ B2

∥∥∥
2
6 1 gives

max
z̃∈Z̃

T∑
t=1

〈g̃t|z̃〉 −
T∑
t=1

〈g̃t|z̃t〉 6
1

2η
+
η

2

T∑
t=1

‖g̃t‖22 .

By taking the expectation and dividing by T , we get

E
[
max
z̃∈Z̃
〈¯̃gT |z̃〉

]
6

1

2ηT
+ E

[
1

T

T∑
t=1

〈g̃t|z̃t〉

]

+
η

2T
E

[
T∑
t=1

‖g̃t‖22

]
.

We first analyze the first sum of the right-hand side.
Let us prove that each scalar product 〈g̃t|z̃t〉 is non-
positive in expectation. For all 1 6 t 6 T , we replace
g̃t by its definition:

E [〈g̃t|z̃t〉] = E
[〈

g̃((kt, at), f̂t)
∣∣∣z̃t〉] .

We then consider the conditional expectation with re-
spect to Gt. The application g̃((kt, at), · ) being linear,
and the variables kt, at and z̃t being measurable with

respect to Gt, we can make E
[
f̂t

∣∣∣Gt] appear as fol-
lows:

E [〈g̃t|z̃t〉] = E
[
E
[〈

g̃((kt, at), f̂t)
∣∣∣z̃t〉 ∣∣∣Gt]]

= E
[〈

g̃
(

(kt, at),E
[
f̂t

∣∣∣Gt])∣∣∣z̃t〉]
= E [〈g̃((kt, at),E [ft | Gt])|z̃t〉]
= E [〈g̃((kt, at), ft)|z̃t〉] ,

where we used Lemma A.4 to replace the conditional
expectation of f̂t by the conditional expectation of ft.
Now consider the sigma-algebra Ht generated by

(k1, a1, i1, s1, . . . , kt−1, at−1, it−1, st−1).

By definition of the algorithm, the law of random vari-
able (kt, at) knowing Ht is x̃t. We now resume the
above computation by introducing the conditional ex-
pectation with respect to Ht and ft:

E [〈g̃t|z̃t〉] = E [〈g̃((kt, at), ft)|z̃t〉]
= E [E [〈g̃((kt, at), ft)|z̃t〉 |Ht, ft]]
= E [〈g̃ (E [(kt, at) |Ht, ft] , ft)|z̃t〉]
= E [〈g̃ (E [(kt, at) |Ht] , ft)|z̃t〉]
= E [〈g̃(x̃t, ft)|z̃t〉] .

By definition of the algorithm, x̃t = x̃(z̃t). In other
words (see Proposition 3.3), for all f ∈ F , the scalar
product 〈g̃(x̃t, f)|z̃t〉 is nonpositive. This is in partic-
ular true for f = ft. Therefore, E [〈g̃t|z̃t〉] 6 0.

We now turn to the second sum that involves the
squared norms ‖g̃t‖22. For 1 6 t 6 T , using the defini-
tion of g̃,

‖g̃t‖22 =
∥∥∥g̃((kt, at), f̂t)

∥∥∥2

2

=

∥∥∥∥∥(1{k=kt}1{a=at}f̂t

)
k∈K
a∈A

∥∥∥∥∥
2

2

=
∑
k∈K
a∈A

∥∥∥1{k=kt}1{a=at}f̂t

∥∥∥2

2
=
∥∥∥f̂t∥∥∥2

2
.

Using (ii) from Lemma B.1, we have

E
[
‖g̃t‖22

]
= E

[∥∥∥f̂t∥∥∥2

2

]
= E

[
E
[∥∥∥f̂t∥∥∥2

2

∣∣∣∣Gt]] 6 |I|2γ .

Putting everything together, we obtain in expectation
the following bound on the distance from ¯̃gT to C̃:

E
[
d2

(
¯̃gT , C̃

)]
= E

[
max
z̃∈Z̃
〈¯̃gT |z̃〉

]
6

1

2ηT
+
η |I|2

2γ
,

where the above equality comes from the expression of
the Euclidean distance to C̃ given by Proposition C.6.
�
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B.2 From ¯̃gT in the auxiliary space to R(¯̃gT )
in the initial space

Lemma B.2

d2

(
R(¯̃gT ), Rd−

)
6 (Lr

√
|K| |A|) · d2

(
¯̃gT , C̃

)
.

Proof. It follows from property (ii) in Proposition 3.3
that C̃ ⊂ R−1(Rd−). Therefore, we can write

d2(R(¯̃gT ), Rd−) = min
g′∈Rd

−

‖R(¯̃gT )− g′‖2

6 min
g̃∈R−1(Rd

−)
‖R(¯̃gT )−R(g̃)‖2

6 min
g̃∈C̃
‖R(¯̃gT )−R(g̃)‖2

6 ‖R‖ ·min
g̃∈C̃
‖¯̃gT − g̃‖2

= ‖R‖ · d2

(
¯̃gT , C̃

)
,

where ‖R‖ is the operator norm of R. To conclude
the proof, let us prove that the latter is bounded from
above by Lr

√
|K| |A|. Let g̃ ∈ (RS×I)K×A. By defi-

nition of R, and using the Lipschitz constant Lr from
Lemma A.3 which is common to the linear applications
r[k](a, · ), we have

‖R(g̃)‖2 =

∥∥∥∥∥∥∥
∑
k∈K
a∈A

r[k](a, g̃ka)

∥∥∥∥∥∥∥
2

6
∑
k∈K
a∈A

∥∥∥r[k](a, g̃ka)
∥∥∥

2

6
∑
k∈K
a∈A

Lr

∥∥g̃ka∥∥
2
6 Lr

√√√√|K| |A|∑
k∈K
a∈A

‖g̃ka‖22

= Lr

√
|K| |A| · ‖g̃‖2 ,

which concludes the proof. �

B.3 Decomposition of R(¯̃gT )

We have the following expression of the image by R of
the average auxiliary payoff ¯̃gT .

Lemma B.3

R(¯̃gT ) = R

(
1

T

T∑
t=1

g̃t

)
=
∑
k∈K
a∈A

λT (k, a)·r[k](a,
¯̂
fT (k, a)).

Proof. Using the definitions of R, g̃t, g̃, and the lin-
earity of R and r[k](a, · ), we can write

R

(
1

T

T∑
t=1

g̃t

)
=

1

T

T∑
t=1

R(g̃t) =
1

T

T∑
t=1

∑
k∈K
a∈A

r[k](a, g̃kat )

=
1

T

T∑
t=1

∑
k∈K
a∈A

r[k]
(
a,1{k=kt}1{a=at}f̂t

)

=
∑
k∈K
a∈A

λT (k, a) · r[k](a,
¯̂
fT (k, a)).

�

B.4 Average estimator ¯̂
fT (k, a) is close to

average flag f̄T (k, a)

Lemma B.4

E

∑
k∈K
a∈A

λT (k, a)
∥∥∥ ¯̂
fT (k, a)− f̄T (k, a)

∥∥∥
2


6 |I| |K| |A|

(
8√
Tγ

+
8

3Tγ

)
.

Proof. Let k ∈ K and a ∈ A. Consider the random
process (Xt(k, a))t>1 defined by

Xt(k, a) := 1{kt=k, at=a}

(
f̂t − ft

)
,

and to which we are aiming at applying Corol-
lary E.4. (Xt(k, a))t>1 is a martingale difference se-
quence with respect to filtration (Gt)t>1. Indeed, since
1{kt=k, at=a} is measurable with respect to Gt,

E
[
1{kt=k, at=a}

(
f̂t − ft

) ∣∣∣Gt]
= 1{kt=k, at=a}E

[
f̂t − ft

∣∣∣Gt] = 0.

where the last equality follows from (i) in Lemma A.4.
Moreover, using (iii) from Lemma A.4, we bound each
Xt(k, a) as follows.

‖Xt(k, a)‖2 6
∥∥∥f̂t − ft∥∥∥

2
6
∥∥∥f̂t∥∥∥

2
+ ‖ft‖2

6
|I|
γ

+
∥∥(s(i, yt))i∈I

∥∥
2

=
|I|
γ

+

√∑
i∈I
‖s(i, yt)‖22

6
|I|
γ

+
√
|I| 6 2 |I|

γ
,
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where we used the fact that γ > 1 for the last inequal-
ity. As far as the conditional variances are concerned,
we have

E
[
‖Xt(k, a)‖22

∣∣∣Gt] = E
[
1{kt=k, at=a}

∥∥∥f̂t − ft∥∥∥2

2

∣∣∣∣Gt]
6 E

[∥∥∥f̂t − ft∥∥∥2

2

∣∣∣∣Gt]
6 E

[∥∥∥f̂t∥∥∥2

2

∣∣∣∣Gt]+ E
[
‖ft‖22

∣∣∣Gt]
6
|I|2

γ
+ |I| 6 2 |I|2

γ
.

where the first term of the second line has been
bounded using property (ii) from Lemma A.4, whereas
the second term is bounded by |I| since

‖ft‖22 =
∥∥(s(i, yt))i∈I

∥∥2

2
=
∑
i∈I
‖s(i, yt)‖22 6 |I| .

Therefore we have

1

T

T∑
t=1

E
[
‖Xt(k, a)‖22

∣∣∣Gt] 6 2 |I|2

γ
.

We can now apply Corollary E.4 with M = 2 |I| /γ
and V = 2 |I|2 /γ to get:

E

[∥∥∥∥∥ 1

T

T∑
t=1

Xt(k, a)

∥∥∥∥∥
2

]
6

8 |I|√
Tγ

+
8 |I|
3Tγ

.

Besides, it follows from the definition of Xt(k, a) that

1

T

T∑
t=1

Xt(k, a) = λT (k, a)
(

¯̂
fT (k, a)− f̄T (k, a)

)
.

Finally, by summing over k and a, we obtain:

E

∑
k∈K
a∈A

λT (k, a)
∥∥∥( ¯̂
fT (k, a)− f̄T (k, a)

)∥∥∥
2


6 |I| |K| |A|

(
8√
Tγ

+
8

3Tγ

)
.

�

B.5 Average estimator ¯̂
fT (k, a) is close to Fkc

Lemma B.5

E

∑
k∈K
a∈A

d2

(
¯̃gkaT , Fkc

) 6√|K| |A|( 1

2ηT
+
η |I|2

2γ

)

Proof. Consider the set Z̃0 defined by

Z̃0 :=
∏
k∈K

(
(Fkc )◦ ∩ B2

)A
,

and let us assume for the moment that the following
inclusion holds:

Z̃0 ⊂
√
|K| |A| · Z̃. (6)

For each k ∈ K and a ∈ A, Fkc being a closed convex
cone, Proposition C.6 gives the following expression of
the distance of ¯̃gkaT to Fkc :

d2

(
¯̃gkaT , Fkc

)
= max
z̃ka∈(Fk

c )◦∩B2

〈
¯̃gkaT
∣∣z̃ka〉 .

By summing over k and a, we have:∑
k∈K
a∈A

d2

(
¯̃gkaT , Fkc

)
=
∑
k∈K
a∈A

max
z̃ka∈(Fk

c )◦∩B2

〈
¯̃gkaT
∣∣z̃ka〉

= max
z̃∈Z̃0

∑
k∈K
a∈A

〈¯̃gT |z̃〉

6
√
|K| |A| ·max

z̃∈Z̃
〈¯̃gT |z̃〉

=
√
|K| |A| · d2

(
¯̃gT , C̃

)
,

where for the inequality we used inclusion (6), and for
the last equality Proposition C.6 together with the fact
that Z̃ = C̃◦∩B2 by definition. Taking the expectation
and substituting distance d2(¯̃gT , C̃) by the bound from
Lemma B.1 yields the result.

Let us now prove inclusion (6). Let z̃ = (z̃ka)k∈K
a∈A

∈

Z̃0. First, let us prove that z̃ ∈ C̃◦. Let g̃ ∈ C̃. We can
write

〈g̃|z̃〉 =
∑
k∈K
a∈A

〈
z̃ka
∣∣g̃ka〉 .

But for each k ∈ K and a ∈ A, by definition of Z̃0,
we have z̃ka ∈ (Fkc )◦, and since C̃ ⊂

∏
k∈K(Fkc )A

by definition, we also have g̃ka ∈ Fkc . Therefore,〈
g̃ka
∣∣z̃ka〉 6 0 and consequently, 〈g̃|z̃〉 6 0. This

proves Z̃0 ⊂ C̃◦.

Let z̃ ∈ Z̃0. By definition of Z̃0, we have
∥∥z̃ka∥∥

2
6 1

for all k ∈ K and a ∈ A. Thus

‖z̃‖2 =

√√√√∑
k∈K
a∈A

‖z̃ka‖22 6
√
|K| |A|,

and therefore Z̃0 ⊂
√
|K| |A| · B2. Finally, we have

Z̃0 ⊂ C̃◦ ∩
√
|K| |A| · B2 =

√
|K| |A| · Z̃.

�
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B.6 r[k](a,
¯̂
fT (k, a)) is close to r(a, f̄T (k, a))

Lemma B.6

E

∑
k∈K
a∈A

λT (k, a)
∥∥∥r(a, f̄T (k, a))− r[k](a,

¯̂
fT (k, a))

∥∥∥
2


6 Lr |I| |K| |A|

(
8√
Tγ

+
8

3Tγ

)
+ Lr

√
|K| |A|

(
1

ηT
+
η |I|2

γ

)
.

Proof. Let (k, a) ∈ K × A and denote f := f̄T (k, a)

and f̂ :=
¯̂
fT (k, a) to alleviate notation. Denote P[k]

the Euclidean projection onto Fkc . Then of course
P[k](f̂) belongs to Fkc , and since r(a, · ) and r[k](a, · )
coincide on Fkc by Proposition A.2, we can write

r(a, f)− r[k](a, f̂) = r(a, f)− r(a, f̂) + r(a, f̂)

− r(a,P[k](f̂)) + r[k](a,P[k](f̂))− r[k](a, f̂).

Thus, by taking the norm and using the triangle in-
equality and the Lipschitz constant Lr which is com-
mon to r(a, · ) and r[k](a, · ) to get

∥∥∥r(a, f)− r[k](a, f̂)
∥∥∥

2

6 Lr

(∥∥∥f − f̂∥∥∥
2

+ 2 · d2

(
f̂ , Fkc

))
.

We now multiply by λT (k, a). The last term in the
above right-hand side is transformed as

2λT (k, a) · d2

(
f̂ , Fkc

)
= 2 · d2

(
λT (k, a)f̂ , Fkc

)
= 2 · d2

(
¯̃gkaT , Fkc

)
,

where used the fact that Fkc is a convex cone to push
the factor λT (k, a) into the distance. Therefore,

λT (k, a)
∥∥∥r(a, f)− r[k](a, f̂)

∥∥∥
2

6 Lr · λT (k, a)
∥∥∥f − f̂∥∥∥

2
+ 2Lr · d2

(
¯̃gkaT , Fkc

)
.

Finally, we get the result by taking the expectation,
summing over k and a, and plugging Lemmas B.4
and B.5. �

B.7 g is closer to Rd− than r

Lemma B.7

d2

∑
k∈K
a∈A

λT (k, a) · g(a, ȳT (k, a)), Rd−


6 d2

∑
k∈K
a∈A

λT (k, a) · r(a, f̄T (k, a)), Rd−

 .

Proof. Let k ∈ K and a ∈ A. First note that
f(ȳT (k, a)) = f̄T (k, a). Indeed, using the affinity of
f ,

f(ȳT (k, a)) = f

 1

|NT (k, a)|
∑

t∈NT (k,a)

yt


=

1

|NT (k, a)|
∑

t∈NT (k,a)

f(yt)

=
1

|NT (k, a)|
∑

t∈NT (k,a)

ft = f̄T (k, a).

For each component n ∈ {1, . . . , d}, we have
gn(a, ȳT (k, a)) 6 rn(a, f̄T (k, a)) by property (i) in
Proposition 3.1. Finally, using the explicit expression
of the Euclidean distance to Rd−, we have

d2

∑
k∈K
a∈A

λT (k, a) · g(a, ȳT (k, a)), Rd−



=

√√√√√√√ d∑
n=1

∑
k∈K
a∈A

λT (k, a) · gn(a, ȳT (k, a))


2

+

6

√√√√√√√ d∑
n=1

∑
k∈K
a∈A

λT (k, a) · rn(a, f̄T (k, a))


2

+

= d2

∑
k∈K
a∈A

λT (k, a) · r(a, f̄T (k, a)), Rd−

 .

�

B.8 Decomposition of g(at, yt) with respect to
the realized auxiliary decision (kt, at)

Lemma B.8

1

T

T∑
t=1

g(at, yt) =
∑
k∈K
a∈A

λT (k, a) · g(a, ȳT (k, a))
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Proof. Using the definitions of NT (k, a) and λT (k, a),
and the linearity of g(a, · ), we have

1

T

T∑
t=1

g(at, yt) =
1

T

∑
k∈K
a∈A

∑
t∈NT (k,a)

g(a, yt)

=
∑
k∈K
a∈A

|NT (k, a)|
T

· 1

|NT (k, a)|
∑

t∈NT (k,a)

g(a, yt)

=
∑
k∈K
a∈A

λT (k, a) · g(a, ȳT (k, a)).

�

B.9 From g(it, jt) to g(at, yt)

Lemma B.9

E

[∥∥∥∥∥ 1

T

T∑
t=1

g(it, jt)−
1

T

T∑
t=1

g(at, yt)

∥∥∥∥∥
2

]

6
2
√
π ‖g‖2√
T

+ 2γ ‖g‖2 .

Proof. Consider the process (Xt)t>1 defined by

Xt = g(it, jt)− (1− γ)g(at, yt)− γg(u, yt),

and the filtration (G′t)t>1 where G′t is generated by

(k1, a1, y1, i1, s1, . . . ,

kt−1, at−1, yt−1, it−1, st−1, kt, at, yt).

(Xt)t>1 is martingale difference sequence with respect
to filtration (G′t)t>1. Indeed, knowing G′t, the law of it
is (1 − γ)at + γu by definition of the algorithm, and
thus the law of (it, jt) is ((1− γ)at + γu)⊗ yt. We can
then write, by bilinearity of g:

E [g(it, jt) | G′t] = (1− γ)g(at, yt) + γg(u, yt).

Moreover, ‖Xt‖2 is always bounded by 2 ‖g‖2:

‖Xt‖2 = ‖(1− γ) (g(it, jt)− g(at, yt))

+ γ(g(it, jt)− g(u, yt))‖2
6 (1− γ)‖g(it, jt)− g(at, yt)‖2

+ γ‖g(it, jt)− g(u, yt)‖2
6 2 ‖g‖2 .

We can thus apply Corollary E.2 with M = 2 ‖g‖2 to
get

E

[∥∥∥∥∥ 1

T

T∑
t=1

Xt

∥∥∥∥∥
2

]
6

2
√
π ‖g‖2√
T

.

Therefore,∥∥∥∥∥ 1

T

T∑
t=1

g(it, jt)−
1

T

T∑
t=1

g(at, yt)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

T

T∑
t=1

(Xt + γ(g(u, yt)− g(at, yt)))

∥∥∥∥∥
2

6

∥∥∥∥∥ 1

T

T∑
t=1

Xt

∥∥∥∥∥
2

+

∥∥∥∥∥ γT
T∑
t=1

(g(u, yt)− g(at, yt))

∥∥∥∥∥
2

6

∥∥∥∥∥ 1

T

T∑
t=1

Xt

∥∥∥∥∥
2

+ 2γ ‖g‖2 ,

And taking the expectation:

E

[∥∥∥∥∥ 1

T

T∑
t=1

g(it, jt)−
1

T

T∑
t=1

g(at, yt)

∥∥∥∥∥
2

]

6
2
√
π ‖g‖2√
T

+ 2γ ‖g‖2 .

�

B.10 Final bound

We now combine the above lemmas in the order spec-
ified at the beginning of the section to get:

E
[
d2

(
ḡT , Rd−

)]
6

2
√
π ‖g‖2√
T

+ 2γ ‖g‖2

+ Lr |I| |K| |A|
(

8√
Tγ

+
8

3Tγ

)
+

3Lr

2

√
|K| |A|

(
1

ηT
+
η |I|2

γ

)
.

Injecting the values of η and γ yields the result.

C Closed Convex Cones

Throughout the section,W will be a finite-dimensional
vector space and W∗ its dual.

Definition C.1 A nonempty subset C ofW is a closed
convex cone if it is closed and if for all w,w′ ∈ C and
λ ∈ R+, we have w + w′ ∈ C and λw ∈ C.

The following proposition gathers a few immediate
properties.

Proposition C.2 (i) A closed convex cone is con-
vex.

(ii) An intersection of closed convex cones is a closed
convex cone.
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(iii) A Cartesian product of closed convex cones is a
closed convex cone.

(iv) A half-space of the form {w ∈ W | 〈z|w〉 6 0} (for
some z ∈ W∗) is a closed convex cone.

Definition C.3 Let A be a subset of W. The polar
cone of A is a subset of the dual space W∗ defined by

A◦ = {z ∈ W∗ | ∀w ∈ A, 〈w|z〉 6 0} .

The following proposition is an immediate consequence
of the Bipolar theorem — see e.g. Theorem 3.3.14
in Borwein and Lewis [2010].

Proposition C.4 Let A be a subset of W.

(i) A◦◦ is the smallest closed convex cone containing
A.

(ii) If A is closed and convex, then A◦◦ = R+A.

(iii) If A is a closed convex cone, then A◦◦ = A.

Proposition C.5 Let ϕ : W → W̃ be a linear appli-
cation between two finite-dimensional vector spaces W
and W̃, ϕ∗ its transpose, C and C̃ closed convex cones
in W and W̃ respectively.

(i) ϕ(C) is a closed convex cone.

(ii) Then ϕ−1(C̃) = ϕ∗(C̃◦)◦. In particular, ϕ−1(C̃)
is a closed convex cone.

Proof. Property (i) is obvious. We prove property
(ii) as follows. For w ∈ W,

w ∈ ϕ−1(C̃) ⇐⇒ ϕ(w) ∈ C̃ ⇐⇒ ϕ(w) ∈ C̃◦◦

⇐⇒ ∀z̃ ∈ C̃◦, 〈z̃|ϕ(w)〉 6 0

⇐⇒ ∀z ∈ C̃◦, 〈ϕ∗(z̃)|w〉 6 0

⇐⇒ w ∈ ϕ∗(C̃◦)◦.

Therefore, ϕ−1(C̃) is a closed convex cone because it
is a polar cone. �

Proposition C.6 Let C be a closed convex cone in
Rn. For all point w ∈ Rn, its Euclidean distance to C
can be written

d2 (w, C) = max
z∈C◦∩B2

〈w|z〉 .

where B2 denotes the closed unit Euclidean ball.

D A regret minimization bound

The following statement is classic in the regret min-
imization literature—see e.g. Shalev-Shwartz [2011,
Theorem 2.4].

Theorem D.1 Let n > 1, Rn endowed with its
canonical Euclidean structure, Z a nonempty convex
compact subset of Rd, (ut)t>1 a sequence in Rn, η > 0,
and

zt = arg max
z∈Z

{〈
η

t−1∑
s=1

us

∣∣∣∣∣z
〉
− 1

2
‖z‖22

}
, t > 1.

Then, for all T > 1,

max
z∈Z

T∑
t=1

〈ut|z〉 −
T∑
t=1

〈ut|zt〉 6
‖Z‖22

2η
+
η

2

T∑
t=1

‖ut‖22 .

E Concentration inequalities

The following result is a generalization to vector-
valued martingale differences of Hoeffding–Azuma’s
inequality and is due to Kallenberg and Sztencel
[1991].

Proposition E.1 Let (Ut)t>1 be a sequence of mar-
tingale differences in Rd, bounded almost-surely by
M > 0:

∀t > 1, ‖Ut‖2 6M, a.s.

Then, for every ε > 0 and T > 1,

P

[∥∥∥∥∥ 1

T

T∑
t=1

Ut

∥∥∥∥∥
2

> ε

]
6 2 exp

(
− Tε2

4M2

)
.

Corollary E.2 Under the assumptions of Proposi-
tion E.1, we have:

E

[∥∥∥∥∥ 1

T

T∑
t=1

Ut

∥∥∥∥∥
2

]
6M

√
π

T
.

Proof. The result follows from Proposition E.1 by
integrating the tail of the distribution:

E
[∥∥ŪT∥∥2

]
=

∫ +∞

0

P
[∥∥ŪT∥∥2

> ε
]

dε

6
∫ +∞

0

2e−Tε
2/4M2

dε

= 2

∫ +∞

0

e−ε
2(T/4M2) dε = M

√
π

T
.

�

The following Bernstein-like inequality is proved
in Pinelis [1994]—see also [Tarres and Yao, 2014,
Corollary A.2].
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Proposition E.3 Let (Xt)t>1 be a martingale differ-
ence sequence in a Hilbert space with respect to a filtra-
tion (Gt)t>0. Suppose that ‖Xt‖ 6 M almost-surely,
and

1

T

T∑
t=1

E
[
‖Xt‖2

∣∣∣Gt−1

]
6 V.

Then,
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]
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)
.

Corollary E.4 Under the assumptions of Proposi-
tion E.3,
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Proof. Let A > 0 to be chosen later.
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)
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Choosing A =
√

2V/T gives:

E
[∥∥X̄T

∥∥] 6 4
√

2

√
V

T
+

4M

3T
.

�


